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On the theory of Lorentz gases with long range interactions

Alessia Nota ∗, Sergio Simonella †, Juan J. L. Velázquez ‡,

July 17, 2017

Abstract. We construct and study the stochastic force field generated by a Poisson distribu-
tion of sources at finite density, x1, x2, · · · in R3 each of them yielding a long range potential
QiΦ(x − xi) with possibly different charges Qi ∈ R. The potential Φ is assumed to behave
typically as |x|−s for large |x|, with s > 1/2. We will denote the resulting random field as
“generalized Holtsmark field”. We then consider the dynamics of one tagged particle in such
random force fields, in several scaling limits where the mean free path is much larger than
the average distance between the scatterers. We estimate the diffusive time scale and identify
conditions for the vanishing of correlations. These results are used to obtain appropriate
kinetic descriptions in terms of a linear Boltzmann or Landau evolution equation depending
on the specific choices of the interaction potential.

Keywords. Lorentz model, Holtsmark field, kinetic equations, power law forces, collisions,
diffusion.
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1 Introduction.

In this paper we study the evolution of a classical Newtonian particle moving in the three-
dimensional space, in the field of forces produced by a random distribution of fixed sources
(scatterers). We will assume that the force field acting over a particle at the position x due
to a scatterer centered at xj is given by −Qj∇Φ (x− xj), Qj ∈ R, where the potential Φ(x)
is radially symmetric and behaves typically as |x|−s for large |x|. The case of gravitational or
Coulombian scatterers corresponds to potentials proportional to |x|−1.

The dynamics of tagged particles in fixed centers of scatterers has been extensively studied,
see [1, 2, 16, 23] for classical surveys on the topic. Such systems are known generally as Lorentz
gases, since they were proposed by Lorentz in 1905 to explain the motion of electrons in metals
[24]. The scatterers are assumed to be short ranged and, in the classical setting, they are
modelled as elastic hard spheres. A case of weak, long range field with diffusion has been
studied in [27].

The statistical properties of the gravitational field generated by a Poisson repartition of
point masses with finite density are also well known. The associated distribution, known as
Holtsmark field, has been investigated in connection with several applications in spectroscopy
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and astronomy [5, 14, 17, 20]. It is a symmetric stable distribution with parameter 3/2,
skewness parameter 0 and semiexplicit form of the density function. In the present paper, we
intend to study generalizations of such distribution for a large class of random potentials Φ.
The main motivation is to clarify how the tracer particle dynamics depends on the details of
Φ.

It is not an easy task to construct the dynamics of a tagged particle for arbitrary Φ.
Nevertheless, it is possible to obtain a rather detailed information in the ‘kinetic limit’. We
focus on a family of potentials {Φ (x, ε)}ε>0 and denote by `ε the mean free path, namely the
characteristic length travelled by a particle before its velocity vector v changes by an amount
of the same order of magnitude as the velocity itself. We will denote by d the typical distance
between scatterers and we will use this distance as unit of length. We will then fix the unit
of time in order to make the speed of the tagged particle of order one. We are interested in
potentials for which

lim
ε→0

`ε
d

= lim
ε→0

`ε =∞ . (1.1)

In particular, the forces produced are small at distances of order one from the scatterers (but
possibly of order 1 at small distances). Since the location of the centers of force is random,
the position of the particle is also a random variable. To describe the evolution, we therefore
compute the probability density fε of finding the particle at a given point x with a given
value of the velocity v at time t ≥ 0. If an additional condition concerning the independence
of the deflections in macroscopic time scales `ε holds as ε→ 0, then on a macroscopic scale of
space and time fε approximates a function f governed by a kinetic equation. More precisely,
fε (`εt, `εx, v)→ f(t, x, v) which solves one of the following equations:

1) a linear Boltzmann equation of the form

(∂tf + v∂xf) (t, x, v) =

∫
S2

B (v;ω) [f (t, x, |v|ω)− f (t, x, v)] dω , (1.2)

where we denoted by ∂x the three dimensional gradient and B is some nonnegative collision
kernel (depending on Φ);
2) a linear Landau type equation

(∂tf + v∂xf) (x, v, t) = κ∆v⊥f (x, v, t) , (1.3)

where κ > 0 depends on Φ.

The form of the equation derived, as well as the collision kernel B and the diffusion coefficient
κ depend on the specific families of potentials {Φ (x, ε)}ε>0 under consideration (see Section
3 for further details).

Additionally, there are families of potentials {Φ (x, ε)}ε>0 for which the evolution equation
for f contains a sum of both a Boltzmann term as in (1.2), and other terms as in (1.3). In
other cases the model describing the dynamics of the tagged particle must take into account
the non-negligible correlations between the velocities at points placed within a distance of the
order of the mean free path.

Heuristically, (1.2) describes dynamics in which the main deflections are binary collisions
taking place when the tagged particle approaches within a distance λε of one of the scatterer
centers, with λε > 0 converging to 0 as ε → 0. This does not imply that the interaction
potential Φ should be compactly supported or have a very fast decay within distances of
order λε (cf. Remark 4.10). The quantity λε is a fundamental length of the problem and we
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shall refer to it (when it exists) as collision length associated to {Φ (x, ε)}ε>0. The kinetic
equation (1.3) characterizes cases in which λε is not reached, meaning that particle deflections
are only due to the addition of very small forces produced by the scatterers. In turn, the
latter process can arise in different ways, depending on the specific Φ. For instance, at any
given time, one can have a huge number of scatterers producing a relevant (small) force in
the tagged particle, or no scatterer or just one scatterer producing a relevant force, in such
a way that the accumulation of many of these small, binary interactions yields an important
deflection of the trajectory on the large time scale. We will discuss several of these possibilities
in Section 4.

A mathematical derivation of the kinetic equations (1.2) and (1.3) has been provided in
cases of compactly supported potentials, in the so-called low density and weak coupling limits
respectively. We refer to [12, 15, 18] for first results in these directions, to [29] (Chapter I.8)
and to [30] for an account of the subsequent literature. An alternative way of deriving a
linear Landau equation is to consider multiple weak interactions of the tagged particle with
the scatterers whose density is intermediate between the Boltzmann-Grad regime and the
weak-coupling regime; see for instance [3, 10, 26] (and Section 4.4 below).

As shown in [13], it is furthermore possible to derive Boltzmann equations in cases of
potentials with diverging support. It is however unclear, even at a formal level, what kinetic
behaviour has to be expected for generic {Φ (x, ε)}ε>0 and in particular for potentials of the
form

Φ (x, ε) =
εs

|x|s
(1.4)

(for which λε = ε).
We sketch now the main ideas behind the derivation of (1.2) and (1.3) (or combinations of

them) for generic Φ. We construct the generalized Holtsmark field associated to {Φ (x, ε)}ε>0.
These are random force fields obtained as the sum of the forces generated by a Poisson
distribution of points. Their analysis was initiated by Holtsmark in [17].

We assume condition (1.1) and also that the particle deflections are independent in the
macroscopic time scale. We split (in a smooth manner) the potential Φ (x, ε) as

Φ (x, ε) = ΦB (x, ε) + ΦL (x, ε)

where ΦB (x, ε) is supported in a ball of radius Mλε, with M of order one but large, and
ΦL (x, ε) is supported at distances larger than Mλε

2 . At distances of order λε, the particle is
deflected for an amount of order one by the interaction ΦB (x, ε) . Since the scatterers are
distributed according to a Poisson repartition with finite density, the time between two such
consecutive collisions is of order of the ‘Boltzmann-Grad time scale’

TBG =
1

(λε)
2 . (1.5)

We compute next the time scale TL (‘Landau time scale’) in which the deflections produced
by ΦL become relevant. Due to (1.1), we have TBG → ∞ and TL → ∞ as ε → 0. We shall
have then three different possibilities: (i) if TBG � TL as ε → 0, the evolution of f will be
given by (1.2); (ii) if TBG � TL as ε→ 0, f will evolve according to (1.3); (iii) if TBG and TL
are of the same order of magnitude, f will be driven by a Boltzmann-Landau equation. In
the case of the potentials (1.4) it turns out that TBG � TL as ε→ 0 if s > 1 and TBG � TL
as ε → 0 if 1/2 < s ≤ 1. The limitation s > 1

2 is necessary to ensure that the random fields
are not almost constant over distances of order d (see Remark 2.10).
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Our analysis relies on the smallness of the total force field at distances of order one from
the scatterers. For slowly decaying potentials, these fields can be still constructed in the
system of infinitely many scatterers, thanks to the mutual cancellations of forces produced
by a random, spatially homogeneous distribution of sources (notice that in Lorentz gases,
contrarily to plasmas, no screening effects occur, even when the scatterers contain charges
with different signs). However, some extra conditions must be imposed, depending on the
decay. Let us restrict to (1.4) for definiteness. Then, if s > 2 the random force field can be
written as a convergent series of the binary forces produced by the scatterers. If 1

2 < s ≤ 2,
it is possible to obtain the random force fields at a given point as the limit of forces produced
by scatterers in finite clouds whose size tends to infinity. Nevertheless, the average value of
the force field at a given point will generally depend on the geometry of the finite clouds. For
s > 1, a translation invariant field can be still obtained by imposing a symmetry condition
on the cloud. Finally, if s ≤ 1, the force fields become spatially inhomogeneous, unless
we consider “neutral” distributions of scatterers (e.g. fields produced by charges Qj = ±1
yielding attractive and repulsive forces and with average zero charge).

In this paper we restrict the analysis to the three-dimensional case. We also comment on
the analogue of our main results in two dimensions (see Remarks 2.11, 4.6).

The paper is organized as follows. In the first part (Section 2) we construct the generalized
Holtsmark fields. In the second part (Sections 3 and 4) we study the deflections experienced
by a tagged particle in several families of such distributions and deduce the resulting kinetic
equation for f . A discussion on inhomogeneous cases and concluding remarks are collected
in the last two sections (Sections 5 and 6).

2 Generalized Holtsmark fields.

2.1 Definitions.

In this section we characterize in a precise mathematical form the random distribution of
forces in which the dynamics of the tagged particle will take place.

We will call scatterer configuration any countable collection of infinitely many points
{xn}n∈N , xn ∈ R3. We will denote by Ω the set of locally finite scatterer configurations,
i.e. such that # {xn}n∈N ∩K <∞ for any compact K ⊂ R3. The associated σ−algebra B is

generated by the sets UU,m =
{
{xn}n∈N , # {xn}n∈N∩U = m

}
for all bounded open U ⊂ R3

and m = 0, 1, 2, · · · . We then have a measurable space (Ω,B, ν) where ν is the probability
measure associated to the Poisson distribution with intensity one.

Given any finite set
I = {Q1, Q2, Q3, ..., QL} , Qj ∈ R (2.1)

we introduce a probability measure µ in the set I. We define the set of charged scatterer
configurations Ω⊗ I as

Ω⊗ I =
{
{(xn, Qn)}n∈N , {xn}n∈N ∈ Ω, Qn ∈ I

}
.

We define the σ−algebra B of subsets of Ω⊗ I as the one generated by the sets

UU,m,j =
{
{(xn, Qn)}n∈N , # {(xn, Qn) : Qn = Qj , xn ∈ U} = m

}
,
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where U ⊂ R3 and Qj ∈ I. We then define a probability measure ν ⊗ µ by means of

(ν ⊗ µ)

 L⋂
j=1

[
UU,nj ,j

] =
exp (− |U |)

∏L
j=1 [µ (Qj) |U |]nj∏L

j=1 (nj)!
. (2.2)

Notice that (2.2) defines a probability measure because
∑L

j=1 µ (Qj) = 1.

Definition 2.1 Suppose that I is a finite set as in (2.1) and let µ be a probability measure
on I. We consider the measure ν ⊗ µ on Ω⊗ I. We define random force field (associated to
ν ⊗ µ) the set of measurable mappings

{
F (x) : x ∈ R3

}
:

F (x) : Ω⊗ I → R3 ∪ {∞} , ω → F (x)ω (2.3)

satisfying (ν ⊗ µ)
(

(F (x))−1 ({∞})
)

= 0 for any x ∈ R3.

When I has just one element, we shorten the notation Ω⊗ I by Ω and ν ⊗ µ by ν.
Let B

(
R3
)

be the Borel algebra of R3. We are interested in translation invariant fields,
defined as follows:

Definition 2.2 The random force field
{
F (x) : x ∈ R3

}
is invariant under translations if

for any collection of points x1, x2, · · · ∈ R3, for any collection A1, A2, · · · ∈ B
(
R3
)

and any
a ∈ R3 the following identity holds:

(ν ⊗ µ)

(⋂
k

(F (xk + a))−1 (Ak)

)
= (ν ⊗ µ)

(⋂
k

(F (xk))
−1 (Ak)

)
.

Moreover, we focus on additive force fields generated by the scatterers in configurations
ω ∈ Ω. More precisely:

Definition 2.3 Assign the potential Φ ∈ C2
(
R3 \ {0} ; R

)
and let I = {Q1, Q2, ..., QL} be a

finite set with probability measure µ. An element ω ∈ Ω⊗I is then characterized by the sequence
ω = {(xn, Qjn)}n∈N . We say that the random force field

{
F (x) : x ∈ R3

}
is a generalized

Holtsmark field associated to Φ if there exists an open set U ⊂ R3 with 0 ∈ U such that, for
any x ∈ R3, the following identity holds:

F (x)ω = FU (x)ω = lim
R→∞

F
(R)
U (x)ω , (2.4)

where
F

(R)
U (x)ω := −

∑
xn∈RU

Qjn∇Φ (x− xn) (2.5)

and the convergence in (2.4) takes place in law. Namely:

lim
R→∞

(ν ⊗ µ)

({
ω : −

∑
xn∈RU

Qjn∇Φ (x− xn) ∈ A

})
= (ν ⊗ µ)

(
{ω : FU (x)ω ∈ A}

)
for all A ∈ B

(
R3
)
.
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Notice that we do not assume the absolute convergence of the series
∑

xn
Qjn∇Φ (x− xn).

As we shall see in the rest of this section, the limits F (x)ω might in general depend on the
choice of the domains U . Notice also that the generalized Holtsmark fields are not necessarily
invariant under translations in the sense of Definition 2.2. Finally, we mention that the
C2−regularity could be relaxed (it will be used in Section 3 to ensure a well defined dynamics
for one particle moving in the Holtsmark field).

We shall refer to the numbers Qj as scatterer charges. Moreover, for brevity, we shall
call scatterer distribution the joint distribution ν⊗µ of scatterer configurations and scatterer
charges on Ω ⊗ I, and indicate by E [·] the corresponding expectation. In particular, the
condition

∑L
j=1Qjµ (Qj) = 0 models a neutral system. In the case of Coulomb, we shall call

this condition ‘electroneutrality’. Neutral systems display special properties. In fact, we will
show that when the potential Φ decays slowly (including the Coulombian case), the neutrality
becomes necessary to prove the existence of a translation invariant F .

Finally, in the case of scatterers with only one charge, neutrality can be replaced by the
assumption of a “background charge” with opposite sign:

Definition 2.4 Assign the potential Φ ∈ C2
(
R3 \ {0} ; R

)
such that

∫
|y|<1 |∇Φ (y)| dy < ∞.

We will say that the random force field
{
F (x) : x ∈ R3

}
is a generalized Holtsmark field with

background associated to Φ if there exists an open set U ⊂ R3 with 0 ∈ U such that, for any

x ∈ R3, (2.4) holds (in the sense of convergence in law) with F
(R)
U = F

(R),0
U given by

F
(R),0
U (x)ω := −

[ ∑
xn∈RU

∇Φ (x− xn)−
∫
RU
∇Φ (x− y) dy

]
. (2.6)

Note that in this case we assume L = 1 and Q1 = 1, although more general cases could be
easily included. The above negative background can be thought as a form of the so-called
‘Jeans swindle’, which has been often used in cosmological problems to study the stability
properties of gravitational systems [4, 19].

Remark 2.5 (Historical comment) The goal of Holtsmark’s paper (cf. [17]) was to de-
scribe the broadening of the spectral lines in gases. This broadening of spectral lines is induced
by the electrical fields acting on the molecules of the gas (Stark effect). On the other hand
the electrical field acting on each individual molecule is a random variable which depends on
the specific distribution of the surrounding gas molecules. The properties of such a random
field were computed in [17] in the cases in which the fields induced by the gas molecules can be
approximated by either point charges (ions), dipoles or quadrupoles. Combining the properties
of the resulting random electrical fields with the physical laws describing the Stark effect it is
possible to prove that the broadening of the spectral lines scales like a power law of the gas den-
sity. The exponents characterizing these laws are different for ions, dipoles and quadrupoles
(cf. [17]).

In the rest of this section, we construct several examples of generalized Holtsmark fields,
and study their basic properties.
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2.2 Construction.

Let s > 1/2. We will consider potentials Φ in the following classes

Cs :=
{

Φ ∈ C2
(
R3 \ {0} ; R

) ∣∣∣ Φ (x) = Φ (|x|)

and ∃A 6= 0, r > max(s, 2) s.t., for |x| ≥ 1,∣∣∣∣Φ (x)− A

|x|s
∣∣∣∣+ |x|

∣∣∣∣∇(Φ (x)− A

|x|s
)∣∣∣∣ ≤ C

|x|r
}
. (2.7)

where C > 0 is a given constant. The potentials in Cs decay as |x|−s with an explicit
error determined by C, r. The singularity at the origin, possibly strong, is not relevant in
the discussions of this section. The assumption of radial symmetry might be relaxed. The
condition r > max(s, 2) is technically helpful in the proofs that follow and it could be also
relaxed, at the price of additional estimates of the remainder.

Let us denote by m(R) (η1, · · · , ηJ ; y1, · · · , yJ) the J−point characteristic function of the

random field F
(R)
U (x), that is:

m(R) (η1, · · · , ηJ ; y1, · · · , yJ) := E

[
exp

(
i
J∑
k=1

ηk · F
(R)
U (yk)

)]
(2.8)

for all J ≥ 1, η1, · · · , ηJ ∈ R3 and y1, · · · , yJ ∈ R3. Notice that we are dropping from
the notation the possible dependence on U . We will further abbreviate m(R) (η1, · · · , ηJ) in
statements where y1, · · · , yJ are fixed.

Suppose that Φ ∈ Cs. Let ξ ∈ C∞
(
R3
)

be an arbitrary cutoff function satisfying ξ (y) = 1
for |y| ≥ 1, ξ (y) = 0 for |y| ≤ 1

2 and ξ (y) = ξ (|y|) when |∇Φ| is non-integrable at the
origin, and ξ ≡ 1 otherwise. Then, we will show that (see the proof of the theorem below),
as R→∞, m(R) converges pointwise to

m (η1, · · · , ηJ) := exp
(
i
J∑
k=1

ηk ·MU (yk)
)

(2.9)

· exp
( L∑
j=1

µ (Qj)

∫
R3

[
exp

(
− iQj

J∑
k=1

ηk · ∇Φ (yk − y)
)

−1 + iQj

J∑
k=1

ηk · ∇Φ (yk − y) ξ (yk − y)
]
dy
)

where MU : R3 → R3 ∪ {∞} is given by

MU (x) := −A lim
R→∞

L∑
j=1

µ (Qj)Qj

∫
RU
∇
(

1

|x− y|s

)
ξ (x− y) dy (2.10)

(and by 0 in the case of the field (2.6)).
Formula (2.9) is a generalization of the formulas for the Holtsmark field for Coulomb po-

tential in [5]. As we shall explain below, Eq. (2.10) determines the (non)invariance properties
of the limiting field as well as its (in)dependence in the features of the geometry U .

8



The integral in the last two lines of (2.9) converges absolutely for s > 1/2. Moreover, it
is o(η) for small values of the η−variables. In particular, if |MU (x)| <∞, then the limit field
FU in (2.4) is well defined and

E [FU (x)] = MU (x) . (2.11)

However, the limit integral in (2.10) is only conditionally convergent when s ≤ 2, so that the
existence and the properties of FU depend strongly on µ,U, s through MU (x). The results
are summarized by the following statement.

Theorem 2.6 Suppose that Φ ∈ Cs. Let U ⊂ R3 be a bounded open set with 0 ∈ U and
∂U ∈ C1. Then, the right-hand side of (2.4) converges in law and defines a random field F
(in the sense of Definition (2.3)) in the following cases:

a.1 s > 2 ;

a.2
∑L

j=1Qjµ (Qj) = 0 (‘neutrality’) and s > 1/2;

a.3 F
(R)
U = F

(R),0
U (given by (2.6)),

∫
|y|<1 |∇Φ (y)| dy <∞ and s > 1/2 ;

b. 1 < s ≤ 2 and
∫
U\{|y|< 1

2
}∇

(
1
|y|s
)
dy = 0 ;

c. s = 1 and
∫
U ∇

(
1
|y|

)
dy = 0 .

Moreover, the following properties hold in the specific cases:

a.1-2-3 F is independent on the domain U , it is invariant under translations in the sense of
Definition 2.2, and it has characteristic function given by (2.9) independent of ξ and
with MU = 0;

b. F is independent on the domain U , it is invariant under translations in the sense of
Definition 2.2, and it has characteristic function given by (2.9) independent of ξ and
with MU = 0; however, if RU is replaced by RU − Rs−1e in (2.5) with e ∈ R3 and |e|
small enough, then it can be MU (x) 6= 0;

c. F = FU (x) depends on the domain U , it is not invariant under translations, and it has
characteristic function given by (2.9) independent of ξ and with

MU (x) = −A
L∑
j=1

µ (Qj)Qj

∫
∂U

(x · y)n (y)

|y|3
dS (y) (2.12)

where n(y) is the outer normal to ∂U at y.

Some remarks on this result follow.

Remark 2.7 Note that s ≤ 2 implies that
∑

xn
Qjn∇Φ (x− xn) can be no more than condi-

tionally convergent. In this case, if the neutrality condition is not satisfied, we need a rather
stringent assumption on the domain (items b and c), which can be thought as a geometrical
condition on the cloud scatterer distribution. To prove the criticality of such a condition, we
show (see Section 2.3.2 in the proof) in case b that small displacements of the domain U
(i.e. slight asymmetries of the cloud) can yield in the limit random force fields with a non-zero
component in one particular direction.
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Remark 2.8 The case s = 1 is of course particularly relevant, because it corresponds to
gravitational and Coulombian forces. The major distinguishing feature of this case is that,
in absence of neutrality, the limiting force field is not invariant under translations (item c.).
Roughly speaking, a density of charges of order one with only one sign yields a change in the
average force of order one over distances of the order of the scatterer distance. Additional
features of this case are discussed in Section 2.4 and in the next remark.

Remark 2.9 In the case of potentials Φ given exactly by a power law, the random variable
FU (x) is given by MU (x)+ζ (cf. (2.11)) where ζ = (ζ1, ζ2, ζ3) and each of the random variables
ζi is a multiple of a symmetric stable Levy distribution [14]. The characteristic exponent is
3/2 in the case s = 1. For this particular potential and in the electroneutral case, we can take
the limit of the cutoff ξ to one and the 1-point characteristic function m (η) becomes:

m (η) = exp

−C0 |η|
3
2

L∑
j=1

µ (Qj) |Qj |
3
2

 , η ∈ R3

where the constant C0 takes the value 2π
∫∞

0

[
1− sin(x)

x

]
x−5/2dx (see [5] for the computa-

tion). Moreover, using the inversion formula for the Fourier transform we can compute the
probability density for the force field F. In particular, elementary computations allow to obtain
the probability density p̃ (|F |) of the absolute value |F |. It turns out that p̃ (|F |) is a bounded
function which behaves proportionally to |F |−5/2 as |F | → ∞. In particular, E [|F |] <∞.

Remark 2.10 Suppose that s < 1
2 in items a.2 and a.3 and assume by definiteness that

Φ(x) = ε
|x|s , s < 1

2 . In this case, we obtain a completely different picture of the resulting
random force fields, because this is due mostly to the particles placed very far away. Assuming
neutrality (necessary to deal with spatially homogeneous force fields), one can compute the
limit of the fields generated by a cloud of particles contained in RU, where U is the unit ball.
One sees that, in order to obtain force fields of order one, ε has to be rescaled with R as
ε = R1− 1

2s . Then, the resulting force field obtained as R→∞ is constant in regions where |x|
is bounded and it is given by a Gaussian distribution. Since the dynamics of a tagged particle
would greatly differ from the one taking place in the generalized Holtsmark fields obtained in
Theorem 2.6, we will not continue with the study of this case in this paper.

Remark 2.11 In two dimensions, the critical value separating absolutely and conditionally
convergent cases is s = 1 (cf. (2.10)) and the Coulombian case would correspond to a loga-
rithmic potential. One can introduce C0 defined as the class of potentials close to A

log x for |x|
large (as in (2.7)). However, a straightforward adaptation of Theorem 2.6 is valid only for
s > 0, with the following identification of cases: a.1 s > 1; a.2 ‘neutrality’ and s > 0; a.3

‘existence of background’ and s > 0; b. 0 < s ≤ 1 and
∫
U\{|y|< 1

2
}∇

(
1
|y|s
)
dy = 0. Note that

every power law decay leads to spatially homogeneous generalized Holtsmark fields. If s ≤ 1,
a nontrivial condition on the geometry of the finite clouds is required.

2.3 Proof of Theorem 2.6.

2.3.1 Convergence.

It is a classical computation in probability theory [14]. It is enough to prove convergence of

the J−point characteristic function of the field F
(R)
U (x), defined by (2.5) or by (2.6).
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Let us assume (2.5). Fix y1, · · · , yJ ∈ R3, η1, · · · , ηJ ∈ R3. By definition (2.8)

m(R) = E

[
exp

(
i
J∑
k=1

ηk · F
(R)
U (yk)

)]
= E

[
J∏
k=1

∏
xn∈RU

exp (−iQjnηk · ∇Φ (yk − xn))

]
(2.13)

and the properties of the scatterer distribution ν ⊗ µ imply

m(R) =
∞∑

M=0

e−|RU |

M !

 L∑
j=1

µ (Qj)

∫
RU

exp

(
−iQj

J∑
k=1

ηk · ∇Φ (yk − y)

)
dy

M

= exp
( L∑
j=1

µ (Qj)

∫
RU

[
exp

(
− iQj

J∑
k=1

ηk · ∇Φ (yk − y)
)

− 1 + iQj

J∑
k=1

ηk · ∇Φ (yk − y) ξ (yk − y)
]
dy
)

· exp
(
− i

L∑
j=1

µ (Qj)Qj

∫
RU

J∑
k=1

ηk · ∇Φ (yk − y) ξ (yk − y) dy
)
, (2.14)

where ξ has been introduced before (2.9).
Note that the term in the square brackets is of order (1 + |y|2s+2)−1, which is integrable

in R3 for s > 1/2.
In the neutral case (item a.2), the last exponential in (2.14) is trivially equal to 1. Further-

more for s > 2 (item a.1) all the integrals are absolutely convergent and the last exponential
in (2.14) converges to 1 by the dominated convergence theorem, because of the symmetry of
Φ and ξ.

Otherwise (items b and c) we write∫
RU

ηk · ∇Φ (yk − y) ξ (yk − y) dy (2.15)

= A

∫
RU

ηk · ∇
(

1

|yk − y|s
)
ξ (yk − y) dy +

∫
RU

ηk · ∇ρ (yk − y) ξ (yk − y) dy

where A is the constant appearing in (2.7) and ρ (y) := Φ (y) − A
|y|s . Using Φ ∈ Cs as well

as the fact that r > 2 in (2.7), we obtain that |∇ρ (y)| is integrable in R3 and therefore the
symmetry of Φ and ξ imply

∫
RU ηk · ∇ρ (yk − y) ξ (yk − y) dy →

∫
R3 ηk · ∇ρ (y) ξ (y) dy = 0 in

the limit R→∞.
In the case F

(R)
U = F

(R),0
U given by (2.6) (item a.3), the computation is simpler since we

do not need to add/subtract the last exponential in (2.14).
By dominated convergence, we conclude that

lim
R→∞

m(R) = m

holds in all the cases considered with m given by (2.9) and MU (x) = 0 in cases a.1-2-3, while
we are left with the evaluation of MU (x) defined by the limit (2.10) in cases b and c.
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Let us focus on case b. Using the hypothesis on U , the symmetry of ξ and a change of
variables y → Ry we find

lim
R→∞

∣∣∣ ∫
RU
∇
(

1

|x− y|s
)
ξ (x− y) dy

∣∣∣
= lim

R→∞

∣∣∣ ∫
RU

[
∇
(

1

|x− y|s
)
ξ (x− y)−∇

(
1

|y|s
)
ξ (y)

]
dy
∣∣∣

= lim
R→∞

∣∣∣ ∫
RU−x

∇
(

1

|y|s
)
ξ (y) dy −

∫
RU
∇
(

1

|y|s
)
ξ (y) dy

∣∣∣
≤ lim

R→∞
C

R2

Rs+1
= 0 (2.16)

since s > 1. Therefore MU (x) = 0. Notice that, in the estimate, C is a positive constant
dependent on x and we used the regularity of ∂U . Moreover, the cutoff has been used only
to treat the non-integrable singularity of the case s = 2.

Similarly, in case c we get ∫
RU
∇
(

1

|x− y|

)
ξ (x− y) dy

=

∫
RU
∇
(

1

|x− y|
− 1

|y|

)
dy

=

∫
R∂U

(
1

|x− y|
− 1

|y|

)
n (y) dS (y) (2.17)

by using the divergence theorem, where n (y) is the outer normal at y ∈ ∂U. Hence, for any
given x, ∫

RU
∇
(

1

|x− y|

)
ξ (x− y) dy

= R

∫
∂U

(
1∣∣ x

R − y
∣∣ − 1

|y|

)
n (y) dS (y)

=

∫
∂U

(x · y)n (y)

|y|3
dS (y) + o (1) as R→∞ (2.18)

where o (1) is the remainder of the Taylor expansion in x/R. This proves that the limit (2.10)
reduces to (2.12) in this case.

All the properties stated in the theorem follow from the explicit computation of the
characteristic function m performed above. In particular, we readily check that

m (η1, · · · , ηJ ; y1, · · · , yJ) = (η1, · · · , ηJ ; y1 + a, · · · , yJ + a)

for any a ∈ R3, from which translation invariance of F follows in the cases a.1-2-3 and b.

2.3.2 Dependence on the geometry.

In this section we prove the statement concerning small asymmetries of the cloud of scatterers
in the case b. For convenience, we restrict to 1 < s < 2 and to L = 1 and consider the following
random field

F̄
(R)
U (x)ω := −

∑
xn∈RU−Rs−1e

∇Φ (x− xn) , (2.19)
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where e ∈ R3 is small (so that x ∈ RU −Rs−1e for any R large enough).
Notice that the displacement of the domain, which is of order Rs−1 tends to infinity,

since s > 1, but it is smaller than the size of the domain. As will become clear, choosing
displacements for the domains of order one brings no changes on the value of FU (x).

Arguing exactly as in the previous section we obtain limR→∞m
(R) = m with m given by

(2.9) and the limit in (2.10) to be determined. The computation in (2.16) is now replaced by∫
[RU−Rs−1e]

∇
(

1

|x− y|s
)
ξ (x− y) dy

= −s
∫

[RU−Rs−1e−x]

y

|y|s+2 ξ (y) dy + s

∫
RU

y

|y|s+2 ξ (y) dy

= −s
∫

[RU−Rs−1e−x]\RU

y

|y|s+2dy + s

∫
RU\[RU−Rs−1e−x]

y

|y|s+2dy

= −sR2−s

[∫
[U−Rs−2e− x

R ]\U

y

|y|s+2dy −
∫
U\[U−Rs−2e− x

R ]

y

|y|s+2dy

]
. (2.20)

Neglecting the contribution x/R and parametrizing the boundary, we obtain∫
[RU−Rs−1e]

∇
(

1

|x− y|s
)
ξ (x− y) dy = s

∫
∂U

(e · y)n (y)

|y|s+2 dS (y) + o(1) (2.21)

as R→∞, where n (y) is the outer normal at y ∈ ∂U. Therefore

MU (x) = −A lim
R→∞

∫
[RU−Rs−1e]

∇
(

1

|x− y|s

)
ξ (x− y) dy

= −As
∫
∂U

(e · y)n (y)

|y|s+2 dS (y) (2.22)

which is a nontrivial vector depending on e.

2.4 Case Φ (x) = 1
|x| : differential equations.

In the particular case in which Φ is the Coulomb or the Newton potential the random force
field FU (x) described by Theorem 2.6 satisfies a system of (Maxwell) differential equations.
In this section we derive such equations (Theorem 2.12). Then, we use them to show that
electroneutrality is necessary in order to obtain the translation invariance (Theorem 2.13).

Theorem 2.12 Suppose that Φ (x) = 1
|x| and let

{
FU (x) : x ∈ R3

}
be the corresponding ran-

dom force field constructed by means of Theorem 2.6.
(i) In the cases a.2 and c, for almost every ω ∈ Ω⊗ I with the form ω = {(xn, Qjn)}n∈N

we have that the function ψ (x) := FU (x)ω is a weak solution of (i.e. it satisfies in the sense
of distributions) the equation:

divψ =
∑
n

Qjnδ (· − xn) , curlψ = 0 . (2.23)

(ii) In the case a.3, for almost every ω ∈ Ω with the form ω = {xn}n∈N we have that the
function ψ (x) := FU (x)ω is a weak solution of (i.e. it satisfies in the sense of distributions)
the equation:

divψ =
∑
n

δ (· − xn)− 1 , curlψ = 0 . (2.24)
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Proof. The proof is very similar for the two cases and we perform the computations for (ii)
only.

Let Ba(y) be the ball of radius a centered in y. For any positive integer n we write

Fn(x)ω :=
∑

{|xj |≤2n}

x− xj
|x− xj |3

−
∫
B2n (0)

x− y
|x− y|3

dy

=
∑
{|xj |≤1}

x− xj
|x− xj |3

−
∫
B1(0)

x− y
|x− y|3

dy

+
n∑
`=1

 ∑
{2`−1<|xj |≤2`}

x− xj
|x− xj |3

−
∫
B

2`
(0)\B

2`−1 (0)

x− y
|x− y|3

dy


≡

 ∑
{|xj |≤1}

x− xj
|x− xj |3

−
∫
B1(0)

x− y
|x− y|3

dy

+
n∑
`=1

f`(x)ω .

We want to prove that the quantities |f`(x)| converge to zero, as `→∞, so quickly that we
obtain convergence with probability one as n→∞ for any fixed x.

Set Ω` = B2` (0) \ B2`−1(0) and I` (x) =
∫

Ω`

x−y
|x−y|3dy. Note that I` (0) = 0 and (since

the gradient is bounded) I` (x) is bounded uniformly in compact sets. By straightforward
computation we find that the variance is

E
[
(f` (x))2

]
=

∞∑
J=0

1

J !
e−|Ω`|

∫
Ω`

dx1

∫
Ω`

dx2...

∫
Ω`

dxJ

·

 ∑
{2`−1<|xj |≤2`}

x− xj
|x− xj |3

− I`(x)


 ∑
{2`−1<|xk|≤2`}

x− xk
|x− xk|3

− I`(x)


= (I` (x))2

∞∑
J=0

|Ω`|J−2

J !
e−|Ω`|

[(
J (J − 1)− 2J |Ω`|+ |Ω`|2

)]
+

[ ∞∑
J=1

1

(J − 1)!
e−|Ω`| |Ω`|J−1

]∫
Ω`

1

|x− y|4
dy

=

∫
Ω`

1

|x− y|4
dy , (2.25)

which is of order 2−`.
If A` :=

{
ω : |f`(x)| ≥ 1

`2

}
, then by Chebyshev’s inequality |A`| ≤ C`42−` for some C > 0,

which is summable over `. Borel-Cantelli implies that, with probability one, there are at
most a finite number of values of ` for which ω ∈ A`. Thus, the series

∑
`≥1 f`(x)ω converges

absolutely for any given x, with probability one.
In the same way, one estimates the gradients

∇Fn(x)ω = ∇

 ∑
{|xj |≤1}

x− xj
|x− xj |3

−
∫
B1(0)

x− y
|x− y|3

dy

+

n∑
`=1

∇f`(x)ω .
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We conclude that, with probability 1, Fn(x) and ∇Fn(x) converge uniformly over compact
sets after removal of a finite number of singularities. We can then pass to the limit in the
weak formulation of the equation

divFn =
∑

{|xj |≤2n}

δ (· − xj)− 1 , curlFn = 0 . (2.26)

Theorem 2.13 Suppose that
{
F (x) : x ∈ R3

}
is a random force field in the sense of Defini-

tion 2.1 with I = {Q1, Q2, ..., QL} and such that for almost every ω ∈ Ω ⊗ I with the form
ω = {(xn, Qjn)}n∈N the function ψ (x) := F (x)ω satisfies (2.23) in the weak formulation.
Suppose that the random force field

{
F (x) : x ∈ R3

}
is invariant under translations and that

the average E [|F (x)|] is finite for any point x ∈ R3. Then
∑L

j=1Qjµ (Qj) = 0.

Proof. Let ϕ ∈ C∞0
(
R3
)

be a test function. Let ψ := E [ψ]. Then, by averaging (2.23) with
respect to ν ⊗ µ (cf. Definition 2.1) we have

−
∫

R3

∇ϕ · ψ (x) dx =

 L∑
j=1

µ (Qj)Qj

∫
R3

ϕ, curlψ = 0

where we have used that E [
∑

n ϕ (xn)] =
∫

R3 ϕ. Then, there exists φ such that ψ = ∇φ and
φ is a weak solution of

∆φ =

L∑
j=1

µ (Qj)Qj in R3 . (2.27)

On the other hand, since the random field is invariant under traslations, ψ must be constant.
Taking φ as a linear function, the left-hand side of (2.27) vanishes and the theorem follows.

Remark 2.14 The Holtsmark field for Newtonian potentials has been studied in connection to
astrophysics. Several statistical properties of these random forces can be found in [5, 6, 7, 8, 9].

3 Conditions on the potentials yielding as limit equations for
f Boltzmann and Landau equations.

In the rest of this paper we discuss the dynamics of a tagged particle in some families of
generalized Holtsmark fields as those constructed in Section 2.2. We shall consider families
of potentials of the form

{Φ (x, ε) ; ε > 0} (3.1)

where ε is a small parameter tuning the mean free path `ε (cf. Introduction). The latter is
defined as the typical length that the tagged particle must travel in order to have a change in
its velocity comparable to the absolute value of the velocity itself. We recall that, in our units,
the average distance d between the scatterers is normalized to one, and the characteristic speed
of the tagged particle is of order one.
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We will be interested in the dynamics of the tagged particle in the so called kinetic limit.
One of the assumptions that we need in order to derive such a limit is

1 = d� `ε as ε→ 0. (3.2)

A second condition is the statistical independence of the particle deflections experienced over
distances of the order of `ε. This condition will be discussed in more detail in Section 3.2.

As argued in the Introduction, assumption (3.2) can be obtained in two different ways.
A first possibility is that the deflections are small except at rare collisions over distances of
order λε � d. If such rare deflections are the main cause for the change of velocity of the
tagged particle, we will obtain that the dynamics is given by a linear Boltzmann equation. A
second possibility is that the potentials in (3.1) are very weak, but the interaction with many
scatterers of the background yields eventually a change of the velocity of order one when
the particle moves over distances `ε � d. The force acting over the tagged particle at any
given time is a random variable depending on the (random) scatterer configuration, leading
to a diffusive process in the space of velocities. The dynamics of the tagged particle is then
described by a linear Landau equation (if the deflections are uncorrelated in a time scale of
order `ε).

We make now more precise the concept of collision length (sometimes also termed ‘Lan-
dau length’ in the literature), namely the characteristic distance for which the deflections
experienced by the tagged particle are of order one.

Definition 3.1 We will say that a family of radially symmetric potentials (3.1) has a well
defined collision length λε if there exists a positive function {λε} such that λε → 0 as ε → 0
and

lim
ε→0

Φ (λεy, ε) = Ψ (y) = Ψ (|y|) uniformly in compact sets of y ∈ R3 ,

where Ψ ∈ C2
(
R3 \ {0}

)
is not identically zero and satisfies

lim
|y|→∞

Ψ (y) = 0.

In this case, the characteristic time between collisions (Boltzmann-Grad time scale) is
defined by

TBG =
1

λ2
ε

. (3.3)

For instance, families of potentials behaving as in (1.4) have a collision length λε = ε. On the
contrary a family of potentials like Φ (x, ε) = εG (x) , where G is globally bounded, do not
have a collision length.

Notice that TBG →∞ as ε→ 0. In the kinetic regime (3.2), Boltzmann terms can appear
only if the family of potentials in (3.1) admits a collision length. If a family of potentials does
not have a collision length we will set TBG =∞, λε = 0.

Later on we will further assume that the potential Ψ yields a well defined scattering
problem between the tagged particle and one single scatterer, in the precise sense discussed
in Section 3.1.1.

Next, we recall the class of potentials (3.1) for which we assume (3.2). We will restrict
to radially symmetric functions Φ which are either globally smooth, or singular at the origin.
Moreover, we will be interested in random force fields which are defined in the whole space
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and are spatially homogeneous. As explained in Section 2 this requires to assume that there
are different types of charges and a neutrality condition holds, or that a background charge
is present, depending on the long range decay of the potential. More precisely, the above
assumptions are satisfied by the generalized Holtsmark fields as constructed in Theorem 2.6,
items a.1-2-3 and b, by assuming

Φ(·, ε) ∈ Cs (3.4)

for some s > 1/2 (cf. (2.7)). Clearly the constant A = A(ε) in (2.7) depends now on ε.
Let F (x, ε) be such a generalized Holtsmark field. Let (x(t), v(t)) be the position and

velocity of the tagged particle moving in the field. For each given scatterer configuration
ω ∈ Ω× I with the form ω = {(xn, Qjn)}n∈N, the evolution is given by the ODE:

dx

dt
= v ,

dv

dt
= F (x, ε)ω (3.5)

with initial data
x (0) = x0, v (0) = v0 (3.6)

for some x0 ∈ R3, v0 ∈ R3. Since the vector fields F (x, ε)ω are singular at the points {xn},
given (x0, v0) we do not have global well posedness of solutions for all ω ∈ Ω. However,
with (3.4) we assume to have global existence with probability one, i.e. the fields are locally
Lipschitz away from the points {xn} and the tagged particle does not collide with any of the
scatterers.

Let us denote by T t (x0, v0; ε;ω) the hamiltonian flow associated to the equations (3.5)-
(3.6). By assumption this flow is defined for all t ∈ R and a.e. ω. Suppose that f0 ∈
M+

(
R3 × R3

)
, where M+ denotes the set of nonnegative Radon measures. Our goal is to

study the asymptotics of the following quantity as ε tends to zero:

fε (`εt, `εx, v) = E[f0(T−`εt (`εx, v; ε; ·))] (3.7)

where the expectation is taken with respect to the scatterer distribution.
In order to check if it is possible to have a kinetic regime described by a Landau equation,

we must examine the contribution to the deflections of the tagged particle due to the action
of the potentials Φ (x, ε) at distances larger than the collision length λε. To this end we split
Φ (x, ε) as follows. We introduce a cutoff η ∈ C∞

(
R3
)

such that η (x) = η (|x|) , 0 ≤ η ≤ 1,
η (x) = 1 if |x| ≤ 1, η (x) = 0 if |x| ≥ 2. We then write

Φ (x, ε) = ΦB (x, ε) + ΦL (x, ε) (3.8)

with

ΦB (x, ε) := Φ (x, ε) η

(
|x|
Mλε

)
, ΦL (x, ε) := Φ (x, ε)

[
1− η

(
|x|
Mλε

)]
. (3.9)

Here M > 0 is a large real number which eventually will be sent to infinity at the end
of the argument. If the family of potentials does not have a collision length we just set
ΦL (x, ε) = Φ (x, ε) . In the above definitions B stands for ‘Boltzmann’ and L for ‘Landau’.
Indeed the potential ΦB yields the big deflections experienced by the tagged particle within
distances of order λε of one single scatterer and ΦL accounts for the deflections induced by
the scatterers which remain at distances much larger than λε from the particle trajectory.
Note that, if the potentials Φ (x, ε) satisfy the above explained conditions allowing to define
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spatially homogeneous generalized Holtsmark fields, then ΦB (x, ε) and ΦL (x, ε) satisfy simi-
lar conditions and we can define random force fields

{
FB (x, ε) : x ∈ R3

}
,
{
FL (x, ε) : x ∈ R3

}
associated respectively to ΦB (x, ε) and ΦL (x, ε) .

To understand the deflections produced by ΦL we have to study the ODE

dx

dt
= v ,

dv

dt
= FL (x, ε)ω (3.10)

for 0 ≤ t ≤ T , with initial data x (0) = x0, v (0) = v0. Due to the invariance under transla-
tions, we can assume x0 = 0, v0 = 0. The time scale T is chosen sufficiently small to guarantee
that the deflection experienced by the tagged particle in the time interval t ∈ [0, T ] is much
smaller than |v0| . Then, it is reasonable to use the approximation

x (t) ' v0t , t ∈ [0, T ] as ε→ 0

whence
dv

dt
' FL (v0t, ε)ω for t ∈ [0, T ] as ε→ 0

and the change of velocity in [0, T ] can be approximated as ε→ 0 by the random variable

DT (ε)ω :=

∫ T

0
FL (v0t, ε)ω dt . (3.11)

As in Section 2.2, we may study these random variables by computing the characteristic
function:

m
(ε)
T (θ) = E [exp (iθ ·DT (ε)ω)] , θ ∈ R3. (3.12)

The following result is a corollary of Theorem 2.6.

Corollary 3.2 Suppose that Φ(·, ε) ∈ Cs. Then, we can define spatially homogeneous random
force fields FL(·, ε) associated to ΦL(·, ε), by means of Theorem 2.6 (items a.1-2-3 and b).
The characteristic function (3.12) is given by

m
(ε)
T (θ) = exp

( L∑
j=1

µ (Qj)

∫
R3

[
exp

(
− iQjθ ·

∫ T

0
dt∇xΦL (v0t− y, ε)

)
(3.13)

−1 + iQjθ ·
∫ T

0
dt∇xΦL (v0t− y, ε)

]
dy
)
.

We focus now on the magnitude of the deflections due to ΦL. We assume that |θ| is of
order one. We are interested in time scales T = Tε for which DT (ε)ω is small, which means

|
∫ T

0 dt∇xΦL (v0t− y, ε) | � 1 as ε → 0 for the range of values of y ∈ R3 contributing to the
integrals in (3.13). We can then approximate the characteristic function as:

m
(ε)
T (θ) = exp

−1

2

L∑
j=1

µ (Qj)Q
2
j

∫
R3

(
θ ·
∫ T

0
dt∇xΦL (v0t− y, ε)

)2

dy

 . (3.14)

This formula suggests the following way of defining a characteristic time for the deflections.
Setting

σ (T ; ε) := sup
|θ|=1

∫
R3

dy

(
θ ·
∫ T

0
∇xΦL (vt− y, ε) dt

)2

, (3.15)
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we define the Landau time scale TL as the solution of the equation

σ (TL; ε) = 1 . (3.16)

Notice that TL is a function of ε and that we can assume, without loss of generality, that
|v| = 1 (we will do so in the following). If there is no solution of (3.16) for small ε we set
TL =∞.

Using the time scales TBG, TL, we reformulate condition (3.2) as

`ε = min {TBG, TL} � 1 as ε→ 0 (3.17)

and we deduce whether the evolution of f := limε→0 fε is described by means of a Landau
or a Boltzmann equation. In fact the relevant time scale to describe the evolution of f is the
shortest among TBG, TL, and the condition (3.17) can take place in different ways:

TL � TBG as ε→ 0 (3.18)

TL � TBG as ε→ 0 (3.19)

TL
TBG

→ C∗ ∈ (0,∞) as ε→ 0 . (3.20)

If (3.18) holds the dynamics of f will be described by a linear Boltzmann equation. If (3.19)
takes place we would obtain that the small deflections produced in the trajectories of the
tagged particle due to the part ΦL of the potential modify f (t, x, v) faster than the binary
encounters with scatterers yielding deflections of order one. In this case, if in addition the
deflections of the tagged particle are uncorrelated in time scales of order TL, the evolution
will be given by a suitable linear Landau equation. Finally, if (3.20) takes place then both
processes, binary collisions and collective small deflections of the tagged particle, are relevant
in the evolution of f , and we can have combinations of the above equations.

A technical point must be addressed here. Due to the presence of the cutoff M in (3.8)-
(3.9) some care is needed concerning the precise meaning of (3.16). Indeed, ΦL yields also
contributions due to binary collisions within distances of order Mλε from the scatterers. This
implies that, if (3.18) holds, we have σ (TBG; ε) ' δ (M) > 0. The natural way of giving a
precise meaning to the condition (3.18) will be then the following. The dynamics of f will be
described by the linear Boltzmann equation if we have

lim sup
ε→0

σ (TBG; ε) ≤ δ (M) with lim
M→∞

δ (M) = 0 , (3.21)

that is, the small deflections due to interactions between the tagged particle and the scatterers
at distances larger than Mλε become irrelevant as M →∞ in the time scale TBG .

In the rest of this section, we discuss the specific form of the kinetic equations obtained
in the different cases.

3.1 Kinetic equations describing the evolution of the distribution function
f : the Boltzmann case.

In this section we describe the evolution of the function fε defined in (3.7) as ε→ 0, assuming
(3.17) and (3.21) (i.e. (3.18)). Before doing that, we briefly review the associated two-body
problem. The following discussion is classical. For further details we refer to [22].
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3.1.1 Scattering problem in ΦB .

We consider the mechanical problem of the deflection of a single particle of mass m = 1 and
initial (t → −∞) velocity v 6= 0 moving in a field ΦB, whose centre (scatterer source) is at
rest. Due to Definition 3.1, it is natural to use here λε as unit of length. We define y = x

λε

and focus on the scattering problem associated to the potential ΨB (y) := Ψ (y) η
( y
M

)
. We

write V = |v| and r = |y|.

Figure 1: The two-body scattering. The solution of the two-body problem lies in a plane,
which is taken to be the plane of the page. The scatterer lies in the origin. The scalar b is
the impact parameter and χ = χ(b, V ) is the scattering angle.

The path of the particle in the central field is symmetrical about a line from the centre to the
nearest point in the orbit, hence the two asymptotes to the orbit make equal angles φ0 with
this line (see e.g. Figure 1). The angle of scattering is seen from Fig. 1 to be

χ (b, V ) = π − 2φ0 . (3.22)

We will say that the scattering problem is well defined for a given value of V and b if the
solution of the equations

dy

dt
= v ,

dv

dt
= −∇ΨB (y) (3.23)

satisfies:
lim

t→−∞
|y (t)| = lim

t→∞
|y (t)| =∞, lim

t→−∞
|v (t)| = lim

t→∞
|v (t)| = V. (3.24)

The effective potential reads

Ψeff (r) = ΨB(r) +
b2V 2

2r2
(3.25)
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where r = |y| . A sufficient condition for the scattering problem to be well defined for a
given value of V and almost all the values of b is that the set of nontrivial solutions r of the
simultaneous equations

ΨB
′(r)

V 2
=
b2

r3
,

ΨB(r)

V 2
+

b2

2r2
=

1

2
(3.26)

is nonempty only for a finite set of values b > 0. We will assume that this condition is satisfied
for all the families of potentials considered. A standard analysis of Newton equations shows
that the scattering angle is given by

χ (b, V ) = π − 2φ0 = π − 2

∫ +∞

r∗

b dr

r2
√

1− 2Ψeff (r) /V 2
(3.27)

where r∗ is the nearest approach of the particle to the scatterer (defined as the largest solution
to the second equation in (3.26)).

Using spherical coordinates with north pole v
|v| and azimuth angle ϕ characterizing the

plane of scattering, we define a mapping

(b, ϕ)→ ω = ω (b, ϕ; v) ∈ S2, (3.28)

where ω is the unit vector in the direction of the velocity of the particle as t → +∞. Let
Σ (v) ⊂ S2 be the image of this mapping. Due to the symmetry of the potential Ψ the set
Σ (v) is invariant under rotations around v

|v| .

We do not need to assume that the mapping (3.28) is injective in the variable b. In
particular, a point ω ∈ Σ (v) can have different preimages. We will consider only potentials
Ψ for which the number of these preimages is finite. We can then define a family of inverse
functions

ω → (bj (ω) , ϕj (ω)) , j ∈ J (ω)

where J (ω) is a set of indexes which characterizes the number of preimages of ω for each
ω ∈ Σ (v) . We classify the points of Σ (v) by means of the number of preimages, i.e. we write⋃∞
k=1Ak (v) = Σ (v) with

Ak (v) := {ω ∈ Σ (v) : #J (ω) = k} , k = 1, 2, 3, ... (3.29)

Let χAk(v) (ω) be the characteristic function of the set Ak(v). We define the differential

cross-section of the scattering problem as 1
|v|B where

B (v;ω) =
∞∑
k=1

Bk (v;ω)χAk(v) (ω) , ω ∈ Σ (v) , (3.30)

1

|v|
Bk (v;ω) =

∑
j∈J(ω)

bj
| sinχ|

∣∣∣ (∂χ (bj , V )

∂b

)−1 ∣∣∣ for ω ∈ Ak (v) . (3.31)

Since the dynamics defined by the equations (3.23) is invariant under time reversal (y, v, t)→
(y,−v,−t), the following detailed balance condition holds:

Bk (v;ω) = Bk

(
|v|ω;

v

|v|

)
. (3.32)

With a slight abuse, we will use in what follows the same notation for cutoffed and
uncutoffed (M →∞) potential.
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3.1.2 Kinetic equations.

We focus first on the case of Holtsmark fields with one single charge (L = 1, Q1 = 1).

Claim 3.3 Suppose that (3.21) holds. Let us assume that Ψ is as in Definition 3.1. Suppose
that the following limit exists:

fε (TBGt, TBGx, v)→ f (t, x, v) as ε→ 0 . (3.33)

Then f solves the linear Boltzmann equation

(∂tf + v∂xf) (t, x, v) =

∫
S2

B (v;ω) [f (t, x, |v|ω)− f (t, x, v)] dω (3.34)

where B is as in (3.30).

Justification of the Claim 3.3. We introduce a time scale t∗ satisfying 1 � t∗ � TBG.
We define the domain Dε (vt∗) ⊂ R3 as the set swept out by the sphere of radius Mλε
initially centered at the tagged particle, moving in the direction of v during the time t∗
(cf. (3.9)). The motion of the tagged particle is rectilinear between collisions and is affected
by the interaction ΦB if the domain Dε (vt∗) contains one or more scatterers. Notice that the
volume of Dε (vt∗) satisfies |Dε (vt∗)| ' πVM2λ2

εt∗ � 1 where V = |v|. Using the properties
of the Poisson distribution it follows that the probability of finding one scatterer in Dε (vt∗) is
approximately |Dε (vt∗)| and the probability of finding two or more scatterers is proportional
to |Dε (vt∗)|2 which can be neglected. We introduce a system of spherical coordinates having
v
|v| as north pole and we denote by ϕ the azimuth angle (as in Section 3.1.1). Assuming that

there is one scatterer in the domain Dε (vt∗), the conditional probability that the scatterer
has azimuth angle in the interval [ϕ,ϕ+ dϕ] and the impact parameter of the collision is in

the interval
[
b̄, b̄+ db̄

]
can be approximated by V t∗b̄db̄dϕ

|Dε(vt∗)| . We obtain deflections in the velocity

v of order one if b̄ is of order λε, therefore it is natural to introduce the change of variables
b̄ = λεb. We conclude that the probability of a collision in a time interval of length t∗ with
rescaled impact parameter b and azimuth angle ϕ is:

(λε)
2 V t∗bdbdϕ. (3.35)

In order to derive the evolution equation for the function f (t, x, v) it is convenient to
compute the limit behaviour of (cf. (3.7))

ψε (t, x, v) := E
[
ψ0,ε

(
T t (x, v; ε; ·)

)]
(3.36)

where ψ0,ε = ψ0,ε (x, v) is a smooth test function. We have the following duality formula∫ ∫
fε (t, x, v)ψ0,ε (x, v) dxdv =

∫ ∫
f0(x, v)ψε (t, x, v) dxdv , t > 0 (3.37)

which follows using (3.7), the change of variables T−t0 (x, v; ε; ·) = (y, w) , and (3.36). We com-
pute the differential equation satisfied by the function ψ (t, x, v) = limε→0 ψε (TBGt, TBGx, v)
with ψ0 (x, v) = limε→0 ψ0,ε (TBGx, v) . Supposing that h > 0 is small but such that hTBG � 1
and using the semigroup property of T t we obtain

ψε (TBG(t+ h), TBGx, v) = E
[
ψ0,ε

(
T TBG(t+h) (TBGx, v; ε; ·)

)]
= E

[
ψ0,ε

(
T TBGhT TBGt (TBGx, v; ε; ·)

)]
. (3.38)
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We assume now that the deflection of the particle during [TBGt, TBG(t+ h)] is independent
from its previous evolution in [0, TBGt] (in particular, recollisions of the particle with the
scatterers happen with small probability). To prove this independence would be a crucial
step of any rigorous proof of the Claim 3.3 (notice that this implies also the Markovianity of
the limit process). Then

ψε (TBG(t+ h), TBGx, v) ' E
[
ψε

(
TBGt, T

TBGh (TBGx, v; ε; ·)
)]

(3.39)

for small ε > 0. If the position of the particle is (TBGx, v) at the time TBGt, its new position
at the time TBG(t+ h) is TBGx+ vTBGh. Recalling the expression (3.35) for the probability
of a collision with given impact parameter and azimuth angle, we deduce

ψε (TBG(t+ h), TBGx, v)

' ψε (TBGt, TBGx+ vTBGh, v)

[
1− (λε)

2 V hTBG

∫ 2π

0
dϕ

∫ M

0
bdb

]
+

+ (λε)
2 V TBGh

∫ 2π

0
dϕ

∫ M

0
bdb ψε (TBGt, TBGx, |v|ω (b, ϕ; v))

where ω (b, ϕ; v) is as in (3.28). Here we neglected the probability of having more than one
collision in the time interval [TBGt, TBG(t+h)], since h is sufficiently small. Using TBGλ

2
ε = 1

and a Taylor expansion in h, we obtain, in the limit h→ 0,

∂ψ (t, x, v)

∂τ
= v

∂ψ (t, x, v)

∂x
+ V

∫ 2π

0
dϕ

∫ M

0
bdb [ψ (t, x, |v|ω (b, ϕ; v))− ψ (t, x, v)] . (3.40)

Finally, we pass to the limit in (3.37). We set f(t, x, v) = limε→0 fε (TBGt, TBGx, v),
f0(x, v) = f (0, x, v) and ψ̄ (t, x, v) = ψ (t0 − t, x, v) for t0 > 0. We get∫ ∫

f (t0, x, v) ψ̄ (t0, x, v) dxdv =

∫ ∫
f0(x, v)ψ̄0 (x, v) dxdv , t0 > 0

which implies

∂t

(∫ ∫
f (t, x, v) ψ̄ (t, x, v) dxdv

)
= 0 . (3.41)

Note that, by (3.40), for 0 < t < t0 we have

∂ψ̄ (t, x, v)

∂t
= −v∂ψ̄ (t, x, v)

∂x
− V

∫ 2π

0
dϕ

∫ M

0
bdb
[
ψ̄ (t, x, |v|ω (b, ϕ; v))− ψ̄ (t, x, v)

]
,

ψ̄ (t0, x, v) = ψ0 (x, v) . (3.42)

Using (3.41) and (3.42) and integrating by parts in the term containing ∂x we obtain

0 =

∫ ∫
ψ̄ (t, x, v) ∂tf (t, x, v) dxdv +

∫ ∫
ψ̄ (t, x, v) v∂xf (t, x, v) dxdv−

−
∫ ∫

dxdv

∫ 2π

0
dϕ |v|

∫ M

0
bdb
[
ψ̄ (t, x, |v|ω (b, ϕ; v))− ψ̄ (t, x, v)

]
f (t, x, v) . (3.43)
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Performing the change of variables in (3.28) (cf. (3.31)) and taking then the limit M →∞ we
can write the last integral term in (3.43) as

−
∫ ∫

dxdv ψ̄ (t, x, v)

∞∑
k=1

∫
Ak(v)

[
Bk

(
|v|ω;

v

|v|

)
f (t, x, |v|ω)−Bk (v;ω) f (t, x, v)

]
dω .

(3.44)
From (3.30), (3.32) and the arbitrariness of ψ̄, we get (3.34).

Remark 3.4 The above way of obtaining the Boltzmann equation is reminiscent of the cutoff
procedure used in [13] to derive the Boltzmann equation rigorously for potentials of the form
|x|−s for s > 2 in two space dimensions.

Remark 3.5 The condition (3.21) enters in the argument because we assume that the trajec-
tories of the particles between collisions are rectilinear. This is due to the fact that the time
TL required to produce deflections between collisions is much larger than the scale TBG.

Remark 3.6 If the Holtsmark field in which the particle evolves has different types of charges
we must replace (3.34) by the equation

(∂tf + v∂xf) (t, x, v) =

L∑
j=1

µ (Qj)

∫
S2

B (v;ω;Qj) [f (t, x, |v|ω)− f (t, x, v)] dω

where B (v;ω;Qj) is the scattering kernel obtained computing the deflections for each type of
charge. Notice that the form of Ψeff in (3.25) yields the following functional dependence for
the differential cross-section Σ = B/|v|:

Σ (v;ω;Qj) = Σ

(
v√
|Qj |

;ω; sgn (Qj)

)
i.e. we can reduce the computation of the scattering kernel to just two values of the charge ±1
and arbitrary particle velocities. Notice that there is no reason to expect B to take the same
value for positive and negative charges and a given value of the velocity, although it turns out
that this happens in the particular case of Coulomb potentials.

3.2 Kinetic equations describing the evolution of the distribution function
f : the Landau case.

In this section we consider the evolution of the function fε defined in (3.7) as ε→ 0, assuming
(3.17) and (3.19). The latter condition is not sufficient to obtain a Landau equation, since we
need also to have independent deflections on time scales of order TL. Under the conditions
yielding the Landau equation the deflections in times of order TL are gaussian variables and
the independence condition reads (cf. (3.11))

E
(
D(0)D(T̃L)

)
�
√

E (D(0)2) E
(
D(T̃L)2

)
as ε→ 0 (3.45)

where T̃L is some time scale much smaller than TL, and we denoted D (0) and D(T̃L) the de-

flections experienced during the time intervals
[
0, T̃L

]
,
[
T̃L, 2T̃L

]
respectively. Furthermore,
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in order to have a well defined probability distribution for the deflections we need the con-

vergence as ε→ 0 of the characteristic function m
(ε)
T (θ) in (3.14). More precisely, restricting

for simplicity to the case of one single charge and assuming |v| = 1, we have

1

2

∫
R3

(
θ ·
∫ ζTL

0
dt∇xΦL (vζTL − y, ε)

)2

dy → κ ζ |θ⊥|2 as ε→ 0 (3.46)

for every ζ > 0 and for some constant κ > 0, where θ⊥ = θ − θ·v
|v|

v
|v| . In particular,

m
(ε)
ζTL

(θ)→ exp
(
−κζ |θ⊥|2

)
as ε→ 0. (3.47)

We will not try to formulate the most general set of conditions under which (3.46) takes
place. However, we can expect this formula to be a consequence of the smallness of the
deflections, the independence condition (3.45) and the central limit theorem. We will show
in Section 4 examples of families of potentials for which the left-hand side of (3.46) converges
to a different quadratic form. For those families of potentials (3.45) also fails. Moreover, the
following simple argument sheds some light on the relation between (3.45) and (3.46). Suppose
that the deflections of the tagged particle in the time intervals [0, ζ1TL] and [ζ1TL, (ζ1 + ζ2)TL],
denoted by D1 and D2, are independent (at least asymptotically as ε → 0). Then the

characteristic function m
(ε)
(ζ1+ζ2)TL

(θ) of the total deflection D = D1 +D2 is close to a product

m
(ε)
ζ1TL

(θ)m
(ε)
ζ2TL

(θ). This is possible only if the function on the right-hand side of (3.46) is
linear in ζ (cf. (3.47)).

In the following we assume both (3.45) and (3.46) and we derive a linear Landau equation.

Claim 3.7 Assume that (3.19) holds and suppose that (3.45), (3.46) are also satisfied. Sup-
pose that the following limit exists:

fε (TLt, TLx, v)→ f (t, x, v) as ε→ 0. (3.48)

Then
(∂tf + v∂xf) (t, x, v) = κ∆v⊥f (t, x, v) (3.49)

where ∆v⊥ is the Laplace Beltrami operator on S2 (sphere of radius |v| = 1) and the diffusion
coefficient κ > 0 is defined by (3.46).

Remark 3.8 Using Cartesian coordinates, the diffusion term in (3.49) reads as

3∑
i,j=1

∂

∂vi
Ai,j(v)

∂

∂vj
f (t, x, v) (3.50)

where the diffusion matrix Ai,j(v) is given by

Ai,j(v) = κ

(
δij −

vivj
|v|2

)
. (3.51)

We refer to [23] and [28] for further details.
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Justification of the Claim 3.7. Using (3.47) and the Fourier inversion formula, we can
compute the probability density for the transition from (TLx, v) to (TLy, v +D) in a time
interval of length TLh with D ∈ R3 :

p (TLy, v +D;TLx, v;TLh) =
δ (TLy − TLx− vTLh)T 3

L

(2π)3

∫
R3

exp
(
−κh |θ⊥|2

)
exp (iD · θ) dθ

=
δ (TLy − TLx− vTLh) δ

(
D‖
)
T 3
L

4κπh
exp

(
−|D⊥|

2

κh

)
.

Here we write θ =
(
θ‖, θ⊥

)
with

θ‖ = θ · v
|v|
, θ⊥ = θ −

(
θ · v
|v|

)
v

|v|
(3.52)

and use a similar decomposition for D =
(
D‖, D⊥

)
and other vectors appearing later. That

is, the probability density yielding the transition from (TLx, v) to (TLy, w) is

p (TLy, w;TLx, v;TLh) =
δ (x− y − vh) δ

(
v‖ − w‖

)
4κπh

exp

(
−|v⊥ − w⊥|

2

κh

)
≡ G(y, w;x, v;h) .

(3.53)
Using the independence assumption, we obtain the following approximation for h small

fε (TL(t+ h), TLx, v) '
∫

R3

dy

∫
R3

dwfε (TLt, TLy, w; ε) p (TLy, w;TLx, v;TLh)

whence, using (3.48),

f (t+ h, x, v) =

∫
R3

dy

∫
R3

dwf (t, y, w)G (y, w;x, v;h)

and by (3.53)

f (t+ h, x, v) =
1

4κπh

∫
R2

dw⊥f
(
t, x− vh, v‖, w⊥

)
exp

(
−|v⊥ − w⊥|

2

κh

)
.

Approximating f (t, y, w) by means of its Taylor expansion up to second order in w⊥ = v⊥
and to first order in y = x as well as f (t+ h, x, v) by its first order Taylor expansion in h = 0,
we obtain (3.49).

3.3 The case of deflections with correlations of order one.

If (3.17) and TL � TBG hold but the condition (3.45) fails, then the dynamics of the distri-
bution function fε cannot be approximated by means of a Landau equation. We shall not
consider this case in detail in this paper. However it is interesting to formulate the type
of mathematical problem describing the dynamics of the tagged particle. We discuss such
formulation in the present section.

We denote the deflection experienced by the tagged particle at the point x, with initial
velocity v during a small (eventually infinitesimal) time h as D (x, v;h) . We use here macro-
scopic variables for space and time. As ε → 0, the characteristic function of D approaches
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the exponential of a quadratic function and the deflections become gaussian variables with
zero average. For these variables, the form of the correlation might be strongly dependent on
the family of potentials considered, but some general features might be expected.

First of all, due to the invariance under translation of the Holtsmark field, the correlation
functions will take the form

E [D (x1, v1;h)⊗D (x2, v2;h)] = K (x1 − x2, v1, v2;h) 6= 0. (3.54)

Furthermore, we will obtain (cf. examples in Section 4)∫ 1

0
K (y(s), v1, v2;h) ds <∞ (3.55)

for any curve y(s) of class C1. This integrability condition might be expected if (3.45)
fails, because otherwise one could have large deflections at small distances and TL would not
coincide with the scale of the mean free path (cf. (3.17)).

Finally, the equation yielding the evolution of the tagged particle can be written as

x (τ + dτ)− x (τ) = v(τ)dτ , v (τ + dτ)− v (τ) = D (x (τ) , v (τ) ; dτ) , (3.56)

where the order of magnitude of D is not necessarily dτ , but it might be of order (dτ)α
′

for
some 0 < α′ < 1 (see e.g. Section 4.2.3, 1

2 < s < 1).
A typical example which can be derived for a family of power law potentials is the following

(cf. Theorem 4.3-(ii)):

K (y, v1, v2; dτ) =
1

|y|α
Λ

(
y

|y|
, v1, v2

)
(dτ)2 , y 6= 0 , 0 < α < 1 , (3.57)

K (0, v1, v2; dτ) = Λ (v1, v2) (dτ)2−α , (3.58)

where Λ is a matrix valued function. Note that, likely, due to the integrability of the factor
1
|y|α in (3.57), the condition (3.58) does not play a relevant role.

It would be interesting to clarify if (3.54)-(3.58) forms a well defined mathematical problem
which can be solved for a suitable choice of initial values x (0) = x0, v (0) = v0. Note that this
is not a standard stochastic differential equation, but rather a stochastic differential equation
with correlated noise. The dynamics (3.56) has some analogies with fractional Brownian
motion [25].

4 Examples of kinetic equations derived for different families
of potentials.

We now apply the formalism of Section 3 to different families of potentials. First we check if
the families of potentials considered have an associated collision length, then we examine the
behaviour of the functions σ (T ; ε) in (3.15). We compute the time scales TBG, TL defined
in (3.3), (3.16) and check if (3.17) and some of the conditions (3.18)-(3.21) and (3.45)-(3.46)
hold. Finally, we write the corresponding kinetic equations.
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4.1 Kinetic time scales for potentials with the form Φ (x, ε) = Ψ
(
|x|
ε

)
.

We first consider the family of potentials

{Φ (x, ε) ; ε > 0} =

{
Ψ

(
|x|
ε

)
; ε > 0

}
(4.1)

where Φ(·, ε) ∈ Cs, s > 1/2. We have Ψ ∈ C2
(
R3 \ {0}

)
and

Ψ (y) ∼ A

|y|s
as |y| → ∞ , ∇Ψ (y) ∼ − sAy

|y|s+2 as |y| → ∞ (4.2)

for some real number A 6= 0 (cf. (2.7)). By Definition 3.1, the collision length is λε = ε and

TBG =
1

ε2
. (4.3)

It is possible to state some general result for these potentials which depends only on the
asymptotics of Ψ (y) as a power law as |y| → ∞.

Theorem 4.1 Consider the family of potentials (4.1) with Φ(·, ε) ∈ Cs, s > 1/2. Suppose
that the corresponding Holtsmark field defined in Section 2 is spatially homogeneous. Then

lim sup
ε→0

σ (TBG; ε) ≤ δ (M) with lim
M→∞

δ (M) = 0 if s > 1 (4.4)

where σ (T ; ε) is defined in (3.15). If we define TL by means of (3.16) we have

TL ∼
1

4πA2ε2 log
(

1
ε

) as ε→ 0 if s = 1 (4.5)

and

TL ∼
(

1

WsA2ε2s

) 1
3−2s

as ε→ 0 if
1

2
< s < 1 (4.6)

with

Ws = sup
|θ|=1

∫
R3

dξ

[
s2 (θ⊥ · ξ⊥)2

(∫ 1

0

dτ

|vτ − ξ|s+2

)2

+ θ2
‖

(
1

|ξ|s
− 1

|ξ − v|s
)2
]

(4.7)

(cf. (3.52)), whence
TL � TBG as ε→ 0 if s ≤ 1.

Remark 4.2 We recall that the assumption of spatial homogeneity for the Holtsmark field
means that we need to consider neutral distributions of charges or distributions with a back-
ground charge if s ≤ 1.
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4.1.1 Proof of Theorem 4.1: general strategy.

We use the splitting (3.8) which in the case of the family (4.1) becomes Φ (x, ε) = ΦB (x, ε) +
ΦL (x, ε) with

ΦB (x, ε) = ΨB,M

(x
ε

)
, ΦL (x, ε) = ΨL,M

(x
ε

)
, (4.8)

ΨB,M (y) = Ψ (y) η
( y
M

)
, ΨL,M (y) = Ψ (y)

[
1− η

( y
M

)]
. (4.9)

We study the asymptotic properties of the function

σ (T ; ε) = sup
|θ|=1

∫
R3

dy

(
θ ·
∫ T

0
∇xΦL (vt− y, ε) dt

)2

(4.10)

separately for the three different ranges s > 1, s = 1 and 1
2 < s < 1 and assuming |v| = 1.

4.1.2 Proof of Theorem 4.1: the case s > 1.

Our goal is to prove (4.4). To this end we first notice that (3.15) and (4.3) imply

σ (TBG; ε) =
1

ε8
sup
|θ|=1

∫
R3

dξ

(
θ

ε2
·
∫ 1

0
∇ΨL,M

(
vτ − ξ
ε3

)
dτ

)2

.

We use that |∇ΨL,M | ≤
Cχ[M,∞)(|y|)
|y|s+1 for some C > 0, where we denote as χA the characteristic

function of the set A. Then

σ (TBG; ε) ≤ C

ε8

∫
R3

dξ

ε3(s+1)

ε2

∫ 1

0

χ[M,∞)

(
|vτ−ξ|
ε3

)
|vτ − ξ|s+1 dτ

2

. (4.11)

We split the integral as
∫

R3 [· · ·] dξ =
∫
{|ξ|≥2} [· · ·] dξ +

∫
{|ξ|<2} [· · ·] dξ and notice that the

first term is ∫
{|ξ|≥2}

[· · ·] dξ ≤ Cε6(s−1)

∫
{|ξ|≥2}

dξ

|ξ|2(s+1)
≤ Cε6(s−1). (4.12)

We split again the second domain as{
|ξ⊥| ≥

Mε3

2
, |ξ| < 2

}
∪
{
|ξ⊥| <

Mε3

2
, |ξ| < 2

}

where η =
(
η‖, η⊥

)
(as in (3.52)). Note that |vτ − ξ|s+1 =

((
τ − ξ‖

)2
+ (ξ⊥)2

) s+1
2

. If |ξ⊥| ≥
Mε3

2 we use ∫ 1

0

χ[M,∞)

(
|vτ−ξ|
ε3

)
|vτ − ξ|s+1 dτ ≤

∫ ∞
−∞

dτ(
τ2 + (ξ⊥)2

) s+1
2

≤ C

|ξ⊥|s
. (4.13)
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Otherwise if |ξ⊥| < Mε3

2 , since the integrand is different from zero only if |vτ−ξ|
ε3

≥ M, we

must have
∣∣τ − ξ‖∣∣ ≥ Mε3

2 to have a nontrivial contribution, hence

∫ 1

0

χ[M,∞)

(
|vτ−ξ|
ε3

)
|vτ − ξ|s+1 dτ ≤

∫
[0,1]∩

{
|τ−ξ‖|≥Mε3

2

} dτ((
τ − ξ‖

)2
+ (ξ⊥)2

) s+1
2

≤ 1

|ξ⊥|s
∫{
|τ |≥ Mε3

2|ξ⊥|

} dτ

(τ2 + 1)
s+1
2

≤ C

M sε3s
. (4.14)

Combining (4.13) and (4.14) we get

∫ 1

0

χ[M,∞)

(
|vτ−ξ|
ε3

)
|vτ − ξ|s+1 dτ ≤ C

(max {|ξ⊥| ,Mε3})s
.

Plugging this estimate into the term
∫
{|ξ|<2} [· · ·] dξ (cf. (4.11)) we arrive at

1

ε8

∫
{|ξ|<2}

dξ

ε3(s+1)

ε2

∫ 1

0

χ[M,∞)

(
|vτ−ξ|
ε3

)
|vτ − ξ|s+1 dτ

2

≤ C

ε8

∫ 2

−2
dξ‖

∫
{|ξ⊥|≤Mε3}

dξ⊥

(
ε3(s+1)

ε2

1

(Mε3)s

)2

+

+
C

ε8

∫ 2

−2
dξ‖

∫
{|ξ⊥|>Mε3}

dξ⊥

(
ε3(s+1)

ε2

1

|ξ⊥|s

)2

≤ C

M2(s−1)
.

Using this and (4.12) we obtain

σ (TBG; ε) ≤ Cε6(s−1) +
C

M2(s−1)
.

Taking first the limit ε→ 0 (using s > 1) and then M →∞ we obtain (4.4). This gives the
result of Theorem 4.1 for s > 1.

4.1.3 Proof of Theorem 4.1: the case s = 1.

Our goal is to prove the existence of TL � TBG such that σ (TL; ε) ∼ 1 as ε→ 0, using (4.2)
with s = 1. We assume that A = 1, since A can be simply absorbed as a rescaling factor.

Changing variables y = Tξ, t = Tτ in (3.15) we can write:

σ (T ; ε) =
T 3

ε2
sup
|θ|=1

∫
R3

dξ

(
Tθ ·

∫ 1

0
∇ΨL,M

(
T (vτ − ξ)

ε

)
dτ

)2

.

Let Z = 1− η (cf. (4.9)). Using (4.2) we obtain

σ (T ; ε) = Tε2 sup
|θ⊥|=1

∫
R3

dξ

(θ⊥ · ξ⊥)

∫ 1

0

Z
(
T |vτ−ξ|
Mε

)
|vτ − ξ|3

dτ

2

[1 + ζ (M ; ε)] (4.15)
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where lim supε→0 |ζ (M ; ε) | ≤ ζ (M) and ζ (M) → 0 as M → ∞. In ζ (M ; ε) we collect: (i)
the errors coming from the computation of the gradient via (4.9) with the approximation
(2.7) (with s = 1 and A = 1), which can be estimated as in the previous section; (ii) the
contribution of the longitudinal component θ‖. Note that the latter yields a term of order

Tε2

∫
R3

dξ

Z
(
T |ξ|
Mε

)
|ξ|

−
Z
(
T |ξ−v|
Mε

)
|ξ − v|

2

, (4.16)

which can be estimated by CTε2. Since the integral in (4.15) will produce an additional
contribution of the order log

(
1
ε

)
, (4.16) can be absorbed into ζ (M ; ε).

We decompose the integral
∫

R3 [· · ·] dξ in (4.15) as
∫
{|ξ|≥2} [· · ·] dξ +

∫
{|ξ|<2} [· · ·] dξ and

notice that the first one is bounded, so that

σ (T ; ε) = Tε2 sup
|θ⊥|=1

∫
{|ξ|<2}

dξ

(θ⊥ · ξ⊥)

∫ 1

0

Z
(
T |vτ−ξ|
Mε

)
|vτ − ξ|3

dτ

2

[1 + ζ (M ; ε)] +O(Tε2) .

Arguing similarly we obtain that the main contribution to the integral is due to a cylinder
with principal axis (ξ‖ ∈ [0, 1], ξ⊥ = 0) and radius much smaller than 1. In particular

σ (T ; ε) ∼ Tε2

∫ 1

0
dξ‖

∫
{|ξ⊥|≤1}

dξ⊥ (θ⊥ · ξ⊥)2

∫ 1

0

Z
(
T |vτ−ξ|
Mε

)
|vτ − ξ|3

dτ

2

, (4.17)

where the error is negligible in the limit ε→ 0 and then M →∞.
Note that the region with |ξ⊥| ≤ 2Mε

T yields also a contribution of order Tε2 (as it might

be seen estimating the integral
∫ 1

0
dτ

|vτ−ξ|3 as C

(Mε
T )

2 if Mε
T ≤ |ξ⊥| ≤

2Mε
T ). We then have the

approximation

σ (T ; ε) ∼ Tε2

∫ 1

0
dξ‖

∫
{ 2Mε

T
≤|ξ⊥|≤1}

dξ⊥ (θ⊥ · ξ⊥)2

∫ 1

0

Z
(
T |vτ−ξ|
Mε

)
|vτ − ξ|3

dτ

2

.

Finally, for any ξ‖ ∈ (0, 1) we have

∫ 1

0

Z
(
T |vτ−ξ|
Mε

)
|vτ − ξ|3

dτ ∼ 1

|ξ⊥|2

∫ ∞
−∞

dτ

(τ2 + 1)
3
2

=
2

|ξ⊥|2
as |ξ⊥| → 0, |ξ⊥| ≥

Mε

T
. (4.18)

The approximation is not uniform in ξ‖ when ξ‖ is close to 0 or 1, but the contributions
of those regions (which yield terms bounded by the right-hand side of (4.18)) are negligible
compared with those due to the region ξ‖ ∈ (ε0, 1− ε0) , ε0 > 0 small. Therefore

σ (T ; ε) ∼ 4Tε2

∫ 1

0
dξ‖

∫
{ 2Mε

T
≤|ξ⊥|≤1}

(θ⊥ · ξ⊥)2

|ξ⊥|4
dξ⊥

and, computing the integral in ξ⊥ using polar coordinates, we obtain

σ (T ; ε) ∼ 4πTε2 log

(
1

ε

)
[1 + o (1)] as ε→ 0 . (4.19)

Using (3.16), Eq. (4.5) follows.
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4.1.4 Proof of Theorem 4.1: the case 1
2 < s < 1.

We proceed as in the previous section, assuming 1
2 < s < 1 and A = 1.

The analogous of (4.15)-(4.16) is

σ (T ; ε) = s2T 3−2sε2s sup
|θ|=1

(J1(θ⊥) + J2(θ‖)) [1 + ζ (M ; ε)] (4.20)

where

J1(θ⊥) :=

∫
R3

dξ (θ⊥ · ξ⊥)2

∫ 1

0

Z
(
T |vτ−ξ|
Mε

)
dτ

|vτ − ξ|s+2

2

(4.21)

and

J2(θ‖) :=
1

s2

∫
R3

dξ θ2
‖

Z
(
T |ξ|
Mε

)
|ξ|s

−
Z
(
T |ξ−v|
Mε

)
|ξ − v|s

2

. (4.22)

Notice however that, for this range of values of s, the region where |vτ − ξ| ≤ Mε
T gives a

negligible contribution, because the resulting integral is finite, differently from the previous
case. Thus we can replace Z by 1 introducing a negligible error.

The integral Ws in (4.7) is a numerical constant depending only on s and

σ (T ; ε) ∼WsT
3−2sε2s

as ε→ 0, from which (4.6) follows.
This concludes the proof of Theorem 4.1.

4.2 Computation of the correlations for potentials Φ (x, ε) = Ψ
(
|x|
ε

)
.

We now estimate the correlations of the deflections for families of potentials with the form

Φ (x, ε) = Ψ
(
|x|
ε

)
. We restrict to the cases where TL � TBG, i.e. to potentials with the

asymptotics (4.2) with s ≤ 1. We indicate in this section the deflection vector during the

time interval
[
0, T̃L

]
as

D
(
x0, v; T̃L

)
=

∫ T̃L

0
∇xΦL (x0 + vt, ε)ω dt , (4.23)

where T̃L = hTL, h > 0, x0 ∈ R3 and v ∈ R3 with |v| = 1.

Theorem 4.3 Suppose that the assumptions in Theorem 4.1 hold.

(i) Let us assume that s = 1 and TL is as in (4.5). Then (cf. (3.45))

E
(
D
(
x0, v; T̃L

)
D
(
x0 + vT̃L, v; T̃L

))
�

√
E

((
D
(
x0, v; T̃L

))2
)

E

((
D
(
x0 + vT̃L, v; T̃L

))2
)

as ε→ 0. (4.24)

32



(ii) Suppose that 1
2 < s < 1 and TL is as in (4.6). Let x1, x2 ∈ R3, (x2 − x1) = TLy with

y ∈ R3 and v1, v2 ∈ S2. Then (cf. Section 3.3)

E
(
D
(
x1, v1; T̃L

)
D
(
x2, v2; T̃L

))
∼ K (y, v1, v2;h) as ε→ 0 ,

where:

K (y, v1, v2;h) ∼ Λ (e)h2

|y|2s−1 as |y| → ∞ (4.25)

with e = y
|y| and

Λ (e) :=
s2

Ws

∫
R3

dη
[η ⊗ (η − e)]
|η|s+2 |η − e|s+2 ,

and K(0, v1, v2;h) = O(h3−2s). Moreover, as ε→ 0 the correlation matrix is

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
√

E

((
D
(
x1, v1; T̃L

))2
)

E

((
D
(
x2, v2; T̃L

))2
) ∼ K (y, v1, v2;h)

Csh3−2s
(4.26)

where Cs > 0 is given by (4.30) below.

Remark 4.4 Notice that we approximate in the case (i) the trajectory of the particle by
rectilinear ones. In an analogous manner, we could prove that the correlations also tend to
zero if we consider particles separated by distances larger than T̃L. In case (ii) we obtain that
the correlations between the particles at distances of the order of the mean free path do not
vanish as ε→ 0.

4.2.1 Proof of Theorem 4.3: the case s = 1.

We assume, without loss of generality, that x0 = 0. The result (4.19) in Section 4.1.3 shows
that the asymptotic behaviour in the right-hand side of (4.24) is given, up to a multiplicative
constant, by T̃Lε

2 log
(

1
ε

)
, which is of order h as ε → 0 if T̃L = hTL. Therefore, we need to

prove that E
(
D
(

0, v; T̃L

)
D
(
vT̃L, v; T̃L

))
� 1 as ε→ 0.

We get

E
(
D
(

0, v; T̃L

)
D
(
vT̃L, v; T̃L

))
=

∫
R3

dξ

(∫ T̃L

0
∇xΦL (vt1 − ξ, ε) dt1

)
⊗

(∫ 2T̃L

T̃L

∇xΦL (vt2 − ξ, ε) dt2

)
. (4.27)

Arguing as in Section 4.1.3 (cf. (4.15)) we can prove that the longitudinal contributions
(i.e. those parallel to v) are negligible. Therefore we only consider the components on the
plane orthogonal to v.

Using the rescaling of variables t1 = TLτ1, t2 = TLτ2, ξ = TLy, we obtain that (4.27) is

bounded by (TL)5

ε2
times (cf. (4.8))∫ h

0
dτ1

∫ 2h

h
dτ2

∫
R3

dy

∣∣∣∣Ψ′L,M (TL (vτ1 − y)

ε

)∣∣∣∣ ∣∣∣∣Ψ′L,M (TL (vτ2 − y)

ε

)∣∣∣∣ |y⊥|
|vτ1 − y|

|y⊥|
|vτ2 − y|
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where y⊥ denotes the orthogonal projection of y in the plane orthogonal to v. That is, for
some C > 0 (cf. (4.9), (4.2)),

E
(
D
(

0, v; T̃L

)
D
(
vT̃L, v; T̃L

))
≤ CTLε2

∫ h

0
dτ1

∫ 2h

h
dτ2

∫
R3

dy |y⊥|2
χ{|y|≥ ε

TL

}
|y|3

χ{|v(τ2−τ1)−y|≥ ε
TL

}
|v (τ2 − τ1)− y|3

= CTLε
2

∫ 0

−h
dτ1

∫ h

0
dτ2

∫
R2

dy⊥ |y⊥|2
∫

R
dy‖

χ{|y|≥ ε
TL

}
(y2
‖ + y2

⊥)
3
2

χ{|v(τ2−τ1)−y|≥ ε
TL

}
((y‖ − (τ2 − τ1))2 + y2

⊥)
3
2

.

We now use the change of variables y‖ = |y⊥|X. Estimating also the characteristic func-
tions by 1, we find

E
(
D
(

0, v; T̃L

)
D
(
vT̃L, v; T̃L

))
≤ CTLε2

∫ 0

−h
dτ1

∫ h

0
dτ2

∫
R2

dy⊥

|y⊥|3
Q

(
τ2 − τ1

|y⊥|

)
where

Q (s) =

∫
R

dX

(X2 + 1)
3
2

1(
(X − s)2 + 1

) 3
2

.

We remark that Q (s) ≤ C
1+|s|3 . Then

E
(
D
(

0, v; T̃L

)
D
(
vT̃L, v; T̃L

))
≤ CTLε2

∫ 0

−h
dτ1

∫ h

0
dτ2

∫
R2

dy⊥

|y⊥|3 + (τ2 − τ1)3

≤ CTLε2

∫ 0

−h
dτ1

∫ h

0

dτ2

(τ2 − τ1)
≤ CTLε2

which is negligible as ε→ 0, by using the formula (4.5).

4.2.2 Proof of Theorem 4.3: the case s < 1.

By definition

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
=

∫ T̃L

0
dt1

∫ T̃L

0
dt2

∫
R3

dξ∇xΦL (ξ − v1t1, ε)⊗∇xΦL (ξ − (x2 − x1)− v2t2, ε)

and we are interested in a situation where (x2 − x1) = TLy, y ∈ R3. We use again the change
of variables ξ = TLη, tj = TLτj , j = 1, 2. Then:

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
=

(TL)5

ε2

∫ h

0
dτ1

∫ h

0
dτ2

∫
R3

dηΨ′L,M

(
TL (η − v1τ1)

ε

)
Ψ′L,M

(
TL (η − y − v2τ2)

ε

)
[

(η − v1τ1)

|η − v1τ1|
⊗ (η − y − v2τ2)

|η − y − v2τ2|

]
.
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Using (4.2) (with A = 1) we obtain that, up to an arbitrarily small error ζ (M ; ε) (as in
(4.15)),

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
∼ s2 (TL)3−2s ε2s

∫ h

0
dτ1

∫ h

0
dτ2

∫
R3

dη
[(η − v1τ1)⊗ (η − y − v2τ2)]

|η − v1τ1|s+2 |η − y − v2τ2|s+2

=
s2

Ws

∫ h

0
dτ1

∫ h

0
dτ2

∫
R3

dη
[(η − v1τ1)⊗ (η − y − v2τ2)]

|η − v1τ1|s+2 |η − y − v2τ2|s+2

=
s2

Ws

∫ h

0
dτ1

∫ h

0
dτ2

∫
R3

dη
[η ⊗ (η − U)]

|η|s+2 |η − U |s+2 ,

where we have used that TL ∼
(

1
Wsε2s

) 1
3−2s

(cf. (4.6)) and that U := [y + v2τ2 − v1τ1] . We

remark that the integral in the variable η is well defined for each U ∈ R3, U 6= 0 since
1
2 < s < 1. Let e = U

|U | be a unit vector in the direction of U. Then, rescaling we obtain

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
∼
∫ h

0
dτ1

∫ h

0
dτ2

Λ(e)

|y + v2τ2 − v1τ1|2s−1 (4.28)

where

Λ (e) =
s2

Ws

∫
R3

dη
[η ⊗ (η − e)]
|η|s+2 |η − e|s+2 , |e| = 1 .

We are interested now in taking h much smaller than |y| . Then the following approxima-
tion holds:

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
∼ h2Λ(e)

|y|2s−1

with e = y
|y| . Therefore (4.25) is proved. Notice also that (4.28) implies

‖K (y, v1, v2;h)‖ ≤ Ch2

(|y|+ h)2s−1 .

Similarly, we can compute the typical deflection from a given point x1, v1:

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x1, v1; T̃L

))
(4.29)

∼ s2

Ws

∫ h

0
dτ1

∫ h

0
dτ2

∫
R3

dη
[(η − v1τ1)⊗ (η − v1τ2)]

|η − v1τ1|s+2 |η − v1τ2|s+2

=
s2

Ws

∫ h

0
dτ1

∫ h

0
dτ2

∫
R3

dη
[η ⊗ (η − v1(τ2 − τ1))]

|η|s+2 |η − v1(τ2 − τ1)|s+2

=
s2

Ws

∫ h

0
dτ1

∫ h

0

dτ2

|τ2 − τ1|2s−1

∫
R3

dη
[η ⊗ (η − v1)]

|η|s+2 |η − v1|s+2 .

The last integral is a matrix and it remains invariant under rotations v1 → Rv1, where
R ∈ O (3) , whence it is a multiple of the identity σsI. Since the matrix is positive definite
we have σs > 0. Then the integral above becomes

s2σs
Ws

∫ h

0
dτ1

∫ h

0

dτ2

|τ2 − τ1|2s−1 = Csh
3−2s
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where

Cs =
s2σs
Ws

∫ 1

0
dτ1

∫ 1

0

dτ2

|τ2 − τ1|2s−1 . (4.30)

We have then obtained

E
(
D
(
x1, v1; T̃L

)
⊗D

(
x2, v2; T̃L

))
√

E

((
D
(
x1, v1; T̃L

))2
)

E

((
D
(
x2, v2; T̃L

))2
) ∼ C (y, v1, v2;h)

where the correlation function is given by (4.26) and

‖C (y, v1, v2;h) ‖ ≤ C(
1 + |y|

h

)2s−1 .

4.2.3 Kinetic equations.

We can now argue as in Section 3 to write the kinetic equations yielding the evolution for the

function f (t, x, v), for families of potentials with the form Φ (x, ε) = Ψ
(
|x|
ε

)
. Recall that the

long range behaviour is given by (4.2).

The case s > 1: Boltzmann equation. Let us assume that the scattering problem
associated to the potential Ψ is well posed for every V and almost every impact parameter
b (cf. Section 3.1.1). Then, since (4.4) holds, Claim 3.3 yields that the function defined by
means of (3.33) solves

(∂tf + v∂xf) (t, x, v) =

∫
S2

B (v;ω) [f (t, x, |v|ω)− f (t, x, v)] dω

if there are only charges of one type and

(∂tf + v∂xf) (t, x, v) =
L∑
j=1

µ (Qj)

∫
S2

B (v;ω;Qj) [f (t, x, |v|ω)− f (t, x, v)] dω

if the distribution of scatterers contains more than one type of charges. In these equations
the scattering kernel B is given by (3.30)-(3.31).

A particular case is Ψ (y) := 1
|y|s , s > 1. A rescaling argument allows to restrict to V = 1

and the expression for the kernel (with |v| = 1) is

B (v;ω) =
b

| sinχ|

∣∣∣ (∂χ (b)

∂b

)−1 ∣∣∣
where the scattering angle χ (b) = χ (b, 1) is a monotone function of b given by

χ (b) = π − 2

∫ +∞

r∗

b dr

r2
√

1− 2Ψeff (r)
, (4.31)

with

Ψeff (r) =
1

rs
+

b2

2r2
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and r∗ the unique solution of 2Ψeff (r∗) = 1. One finds

∂χ (b)

∂b
=

2s

bs+1

∫ π
2

0

sin(ξ)us−1(
u+ s

bsu
s−1
)2
(s− 1)

1
s−1 + sus−2

bs(
1 + sus−2

bs

) − s
 dξ , (4.32)

where u and ξ are related by

sin2 (ξ) = u2 + 2
(u
b

)s
.

The case s = 1: Landau equation. Combining Theorems 4.1 and 4.3 we obtain that the
function f (t, x, v) in (3.48) satisfies the linear Landau equation, which in the case of charges
of a single type has the form

(∂tf + v∂xf) (t, x, v) = κ∆v⊥f (t, x, v) (4.33)

where κ = 1
2 (since we have absorbed all the numerical constants in the formula for TL, see

Section 4.1.3). If we have charges of different types (cf. (3.14)), the same definition of TL in
(4.5) leads to

κ =
1

2

L∑
j=1

µ (Qj)Q
2
j . (4.34)

Coulombian potentials, i.e. Ψ (y) := 1
|y| , are particularly relevant in plasma physics and in

astrophysics where kinetic equations are used to describe the relaxation to equilibrium. The
presence of the logarithmic term in (4.5) is well known in both fields [4, 23]. As explained in
[4], in systems where the particles interact by means of Coulombian potentials the scatterers
at distances between R and 2R of the trajectory with R larger than the collision length
contribute equally to the deflections. This is the reason for the onset of the logarithmic term,
and also for the fact that the large amount of small deflections yields a larger effect than
Boltzmann-type collisions with individual scatterers.

The case 1
2 < s < 1: correlated deflections in times of the order of TL. In this case

we have TL � TBG. However, due to Theorem 4.3, the correlations between the deflections
in times of the order of TL are of order one. Therefore the dynamics of the distribution
function f cannot be approximated by means of the Landau equation. In fact the probability
distribution for the deflection in a time hTL is a gaussian distribution with zero average and

typical deviation of order h
3−2s

2 in the limit ε→ 0, i.e. we obtain (cf. Section 4.1.4)

m
(ε)
hTL

(θ)→ exp
(
−κh3−2sθ2

)
as ε→ 0, κ > 0 .

Diffusive processes (in the space of velocities) like the ones given by the Landau equation
are characterized by typical deviations of order

√
h which only take place for s = 1. Therefore,

a diffusive process cannot be expected if 1
2 < s < 1, but rather a stochastic differential

equation with correlations as explained in Section 3.3, see (3.54)-(3.58).

Remark 4.5 The analysis of the function σ (T ; ε) given by (4.10) allows to determine the set
of scatterers which influence the dynamics of the tagged particle. We will denote this set as
‘domain of influence’. This corresponds to the regions in the y variable which determine the
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asymptotics of the function σ (TL; ε) as ε→ 0 if TL . TBG. Assume that |v| = 1 and that the
tagged particle is in the origin at time zero. For the potentials with the form (4.1) considered
in this section, we obtain that in the case s = 1 the domain of influence are the scatterers
located in

(
x‖, x⊥

)
with x‖ ∈ [0, TL] and k1 ≤ |x⊥| ≤ TL

k1
, where k1 is a large number. These

scatterers are responsible for the logarithmic correction which determines the time scale TL
(see Section 4.1.3). If s < 1, the domain of influence is x‖ ∈ [0, TL] and |x⊥| ≤ k1TL (see
Section 4.1.4).

Remark 4.6 In the two-dimensional case, we may consider families of potentials of the form

Φ (x, ε) = Ψ
(
|x|
ε

)
with Φ(·, ε) ∈ Cs for any s > 0 and we always obtain spatially homogeneous

Holtsmark fields (see Remark 2.11). Nevertheless, unlike in three dimensions, the Coulombian
decay does not correspond to the crossing of the Boltzmann and the Landau time scales.
Indeed, TBG = 1

ε , (4.4) holds if s > 1
2 and TL diverges as 1

ε log 1
ε

if s = 1
2 . Moreover,

TL ∼
(

1
WsA2ε2s

) 1
2−2s

as ε→ 0 if 0 < s < 1
2 . Therefore

TL � TBG as ε→ 0 if s ≤ 1

2
in two dimensions.

Moreover, (4.24) is valid for s = 1
2 and a Landau equation is expected to hold. Instead, for

0 < s < 1
2 the correlations do not vanish on the scale of the mean free path and a set of

equations with memory arises as in (3.54)-(3.58) (with α = 2s and α′ = 1− s).

4.3 Potentials with the form Φ (x, ε) = εG (|x|).

We will now consider families of potentials with a form different from (4.1). We shall see how
sensitively the kinetic time scales TBG, TL and the resulting limiting kinetic equation can
depend on the specific details of the interaction. Let us consider

{Φ (x, ε) ; ε > 0} = {εG (|x|) ; ε > 0} (4.35)

where G ∈ Cs, s > 1/2. We have G ∈ C2
(
R3 \ {0}

)
and

G (x) ∼ A

|x|s
as |x| → ∞, A 6= 0 . (4.36)

Note that these potentials have an intrinsic length scale of order one, i.e. the order of magni-
tude of the average distance between scatterers. Other types of potentials with different or
additional length scales might be considered with analogous types of arguments, but we re-
strict to the present case for simplicity. Moreover, we restrict to classes of functions satisfying

G (x) ∼ B

|x|r
as |x| → 0 , B 6= 0, r ≥ 0 . (4.37)

The case r = 0 corresponds to

G ∈ C2
(
R3
)
, G bounded near the origin . (4.38)

We remark that in the case (4.38) the family of potentials (4.35) does not have a collision
length (or equivalently λε = 0, TBG = +∞). On the other hand, in the case (4.37) the
collision length is

λε = ε
1
r (4.39)
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and the Boltzmann-Grad time scale is then (cf. (3.3))

TBG =
1

ε
2
r

. (4.40)

4.3.1 Kinetic time scales.

We now study the properties of the function σ (T ; ε) in (3.15) and compare the time scale TL
defined by means of (3.16) with TBG given by (4.40).

Theorem 4.7 Consider the family of potentials (4.35) with G ∈ Cs, s > 1/2 and satisfy-
ing (4.37). Suppose that the corresponding Holtsmark field defined in Section 2 is spatially
homogeneous.

(i) If s > 1 and r > 1, then lim supε→0 σ (TBG; ε) ≤ δ (M) with δ (M)→ 0 as M →∞.

(ii) If s > 1, then TL ∼ 1
4πB2ε2|log(ε)| as ε → 0 if r = 1 and TL ∼ C

ε2
for some C > 0 as

ε→ 0 if r < 1. In both cases TL � TBG as ε→ 0.

(iii) Suppose that s = 1. If r > 1 we have lim supε→0 σ (TBG; ε) ≤ δ (M) with δ (M) → 0 as
M →∞. If r = 1 we obtain TL ∼ C1

ε2|log(ε)| for some C1 > 0 and therefore TL � TBG as

ε → 0. If r < 1 we obtain TL ∼ C2
ε2|log(ε)| for some C2 > 0 and therefore TL � TBG as

ε→ 0.

(iv) Suppose that s < 1. If r+2s > 3 we have lim supε→0 σ (TBG; ε) ≤ δ (M) with δ (M)→ 0
as M →∞. If r + 2s < 3 we obtain TL ∼ C0

ε
2

3−2s
as ε→ 0 and then TL � TBG = 1

ε
2
r

as

ε→ 0. If r + 2s = 3 we obtain that TL and TBG are comparable as ε→ 0.

Proof. We will assume in all the proof that v = (1, 0, 0) . We use the splitting (3.8) which
becomes here Φ (x, ε) = ΦB (x, ε) + ΦL (x, ε) with

ΦB (x, ε) = εG (|x|) η
(
|x|
Mλε

)
, ΦL (x, ε) = εG (|x|)

[
1− η

(
|x|
Mλε

)]
. (4.41)

Proof of (i).

Suppose that s > 1. Then using (3.15) and the fact that |θ⊥| ≤ 1 we have (in a similar way
as in the proof of Theorem 4.1)

σ (T ; ε) = sup
|θ|=1

∫
R3

dξ

(
θ ·
∫ T

0
∇xΦL (vt− ξ, ε) dt

)2

≤ J1 + J2 (4.42)

where

J1 = Cε2

∫
R3

dξ |ξ⊥|2
(∫ T

0
dt
χ{|vt−ξ|>1}

|vt− ξ|s+2

)2

,

J2 = Cε2

∫
R3

dξ |ξ⊥|2
(∫ T

0
dt

χ{
Mε

1
r≤|vt−ξ|≤1

}
|vt− ξ|r+2

)2

for some C > 0.
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We estimate J1 as

J1 ≤ Cε2

∫
R3

dξ |ξ⊥|2

∫ T

0
dt

χ{|ξ−vt|>1}(
(ξ1 − t)2 + |ξ⊥|2

) s∗+2
2


2

≤ Cε2

∫ T

−T
dt1

∫ T

−T
H1 (t) dt = CTε2

∫ T

−T
H1 (t) dt (4.43)

where s∗ := min{s, 2} and

H1 (t) :=

∫
R2

dξ⊥ |ξ⊥|2
∫ ∞
−∞

dξ1

χ{|ξ|>1}χ{|ξ−vt|>1}(
(ξ1)2 + |ξ⊥|2

) s∗+2
2
(

(ξ1 − t)2 + |ξ⊥|2
) s∗+2

2

=
1

|t|2s∗−1

∫
R2

|ξ⊥|2 dξ⊥
∫ ∞
−∞

χ{|ξ|> 1
t}χ{|ξ−v|> 1

t}dξ1(
(ξ1)2 + |ξ⊥|2

) s∗+2
2
(

(ξ1 − 1)2 + |ξ⊥|2
) s∗+2

2

. (4.44)

In the case |t| ≥ 1
2 we estimate the characteristic functions by one.

Suppose first that |ξ⊥| ≥ 1. We split the integral in ξ1 in the regions |ξ1| ≤ |ξ⊥| and
|ξ1| > |ξ⊥| . The resulting contribution to the integral in ξ1 would be of order 1

|ξ⊥|2s∗+3 in

the first region and similar in the second region. This gives an integrable contribution in the
region |ξ⊥| ≥ 1. Suppose now that |ξ⊥| < 1. We first estimate the integral∫ ∞

−∞

dξ1(
(ξ1)2 + |ξ⊥|2

) s∗+2
2
(

(ξ1 − 1)2 + |ξ⊥|2
) s∗+2

2

for |ξ⊥| small. We separate the regions close to ξ1 = 0 and ξ1 = 1. The rest gives a bounded
contribution. The contributions near these two points are similar and can be bounded by:∫ ∞

−∞

dξ1(
(ξ1)2 + |ξ⊥|2

) s∗+2
2

≤ C

|ξ⊥|s∗+1 .

Then, the contribution to the integral
∫
|ξ⊥|<1(. . . ) |ξ⊥|2 dξ⊥ is bounded by

∫
|ξ⊥|<1

dξ⊥
|ξ⊥|s∗−1 <∞.

Therefore, for |t| ≥ 1
2 , we have that:

0 ≤ H1 (t) ≤ C

|t|2s∗−1 .

Suppose now that |t| < 1
2 . Then, since |ξ| > 1 and |ξ − vt| > 1 we obtain that:(

(ξ1)2 + |ξ⊥|2
) s∗+2

2
(

(ξ1 − t)2 + |ξ⊥|2
) s∗+2

2 ≥ C
[
1 +

(
(ξ1)2 + |ξ⊥|2

)s∗+2
]

whence we obtain the following estimate:

H1 (t) ≤ C
∫

R2

dξ⊥

∫
R
dξ1

|ξ⊥|2[
1 +

(
(ξ1)2 + |ξ⊥|2

)s∗+2
] ≤ C <∞ (4.45)
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since s∗ > 1 > 1
2 . Hence, we obtain

0 ≤ H1 (t) ≤ C

1 + |t|2s∗−1 (4.46)

and, using (4.43), we get

J1 ≤ CTε2

∫ T

−T

dt

1 + |t|2s∗−1 ≤ CTε
2 (4.47)

if s > 1.
We have several possibilities for J2 depending on the values of r. Here we suppose that

r > 1. A computation similar to the one yielding (4.43) gives

J2 ≤ CTε2

∫ T

−T
H2 (t) dt (4.48)

with

H2 (t) :=

∫
R2

dξ⊥ |ξ⊥|2
∫ ∞
−∞

dξ1

χ{
Mε

1
r≤|ξ|≤1

}χ{
Mε

1
r≤|ξ−vt|≤1

}
(

(ξ1)2 + |ξ⊥|2
) r+2

2
(

(ξ1 − t)2 + |ξ⊥|2
) r+2

2

.

If |t| ≥ 2 we have

χ{
Mε

1
r≤|ξ|≤1

}χ{
Mε

1
r≤|ξ−vt|≤1

}
(

(ξ1)2 + |ξ⊥|2
) r+2

2
(

(ξ1 − t)2 + |ξ⊥|2
) r+2

2

= 0

because the supports of the characterstic functions are disjoint. On the other hand the
contribution to the integral in (4.48) due to the region {|t| < 2} can be estimated as∫

[−T,T ]∩[−2,2]
H2 (t) dt

≤ C
∫
{
Mε

1
r≤|ξ|≤1

} dξ⊥
|ξ⊥|r

∫ ∞
−∞

dξ1(
(ξ1)2 + |ξ⊥|2

) r+2
2

≤ C(
Mε

1
r

)2(r−1)
.

Using now (4.48), as well as r > 1, we obtain

J2 ≤
CTε2(

Mε
1
r

)2(r−1)
=

CTε
2
r

M2(r−1)
. (4.49)

Thanks to (4.42), (4.47), (4.49) as well as (4.40) we obtain

σ (TBG; ε) ≤ CTBGε2 +
CTBGε

2
r

M2(r−1)
= Cε2(1− 1

r ) +
C

M2(r−1)

so that item (i) in Theorem 4.7 is proved.

Proof of (ii).
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Suppose now that s > 1 and r ≤ 1. We can then use formula (4.47), but the above estimate
for J2 is not enough. Actually we need to approximate the integral∫

R3

dξ

(
θ ·
∫ T

0
∇xΦL (vt− ξ, ε)χ{

Mε
1
r≤|vt−ξ|≤1

}dt
)2

as ε→ 0 for T large. Proceeding as above, we obtain that the integral is approximated by

ε2B2

∫ T

0
dt1

∫ T−t1

−t1
W (t) dt (4.50)

where

W (t) :=

∫
R2

dξ⊥(θ⊥ · ξ⊥)2

∫ ∞
−∞

dξ1

χ{
Mε

1
r≤|ξ|≤1

} χ{
Mε

1
r≤|ξ−vt|≤1

}
(

(ξ1)2 + |ξ⊥|2
) r+2

2
(

(ξ1 − t)2 + |ξ⊥|2
) r+2

2

.

We are interested in computing (4.50) for T � 1. Note then that most of the contribution
is due to the region t1 ∈ [L, T − L] with L large:∫ T

0
dt1

∫ T−t1

−t1
W (t) dt =

∫ T−L

L
dt1

∫ T−t1

−t1
W (t) dt+O (L)

∫ ∞
−∞

W (t) dt . (4.51)

Moreover, it turns out that
∫∞
−∞ |W (t)| dt <∞. The main contribution to the first integral on

the right-hand side of (4.51) is due to the strip {|t| < L′} where we can assume that L′ < L.
We then get ∫ T

0
dt1

∫ T−t1

−t1
W (t) dt = T [1 + o (1)]

∫ ∞
−∞

W (t) dt (4.52)

where o (1)→ 0 as T →∞. We have∫ ∞
−∞

W (t) dt

=

∫
R2

dξ⊥(θ⊥ · ξ⊥)2

∫ ∞
−∞

dξ1

χ{
Mε

1
r≤|ξ|≤1

}
(

(ξ1)2 + |ξ⊥|2
) r+2

2

∫ ∞
−∞

dt

χ{
M2ε

2
r≤t2+|ξ⊥|2≤1

}
(
t2 + |ξ⊥|2

) r+2
2

. (4.53)

We must deal now separately with the cases r = 1 and r < 1. In the first case, we are
going to show that (4.53) diverges logarithmically as ε→ 0. The main contribution is due to
the region where |ξ⊥| → 0. The characteristic function χ{M2ε2≤t2+|ξ⊥|2≤1} can be replaced by

χ{|t|≤1} by making an error of order O
(
Mε
|ξ⊥|3

)
in the integral

∫ +∞
−∞ dt · · · , and the resulting

contribution to the whole integral is bounded by a constant:∫ ∞
−∞

W (t) dt =

∫
R2

dξ⊥
(θ⊥ · ξ⊥)2

|ξ⊥|2

∫ ∞
−∞

dξ1

χ{Mε≤|ξ|≤1}(
(ξ1)2 + |ξ⊥|2

) 3
2

∫ 1

|ξ⊥|

− 1

|ξ⊥|

dt

(t2 + 1)
3
2

+O(1) .
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For |ξ⊥| → 0, using
∫∞
−∞

dt

(t2+1)
3
2

= 2, we can approximate with

2

∫
R2

dξ⊥
(θ⊥ · ξ⊥)2

|ξ⊥|2

∫ ∞
−∞

χ{Mε≤|ξ|≤1}
dξ1(

(ξ1)2 + |ξ⊥|2
) 3

2

= 2

∫
R2

dξ⊥
(θ⊥ · ξ⊥)2

|ξ⊥|4

∫ ∞
−∞

χ{
Mε

|ξ⊥|
≤
√
X2+1≤ 1

|ξ⊥|

} dX

(X2 + 1)
3
2

∼ 4π |θ⊥|2 log

(
1

ε

)
as ε→ 0. We have then obtained∫

R3

dξ

(
θ ·
∫ T

0
∇xΦL (vt− ξ, ε)χ{Mε≤|vt−ξ|≤1}dt

)2

∼ 4πB2T |θ⊥|2 ε2 log

(
1

ε

)
as ε→ 0

(4.54)
whence the asymptotics in Theorem 4.7-(ii) for r = 1.

In the case r < 1, (4.53) converges to a finite integral as ε→ 0. The regions {|vt− ξ| > 1}
and {|vt− ξ| ≤ 1} give contributions of the same order of magnitude and∫

R3

dξ

(
θ ·
∫ T

0
∇xΦL (vt− ξ, ε) dt

)2

∼ ε2B2T

∫
R2

dξ⊥(θ⊥ · ξ⊥)2

∫ ∞
−∞

dξ1

χ{|ξ|≤1}(
(ξ1)2 + |ξ⊥|2

) r+2
2

∫ ∞
−∞

dt

χ{√
t2+|ξ⊥|2≤1

}
(
t2 + |ξ⊥|2

) r+2
2

+

+ ε2A2T

∫
R2

dξ⊥(θ⊥ · ξ⊥)2

∫ ∞
−∞

dξ1

χ{|ξ|>1}(
(ξ1)2 + |ξ⊥|2

) s+2
2

∫ ∞
−∞

dt

χ{√
t2+|ξ⊥|2>1

}
(
t2 + |ξ⊥|2

) s+2
2

(4.55)

as ε→ 0 for T large. In particular this implies the asymptotics of TL in Theorem 4.7-(ii) for
r < 1.

Proof of (iii).

We assume that s = 1 and r > 1. We can use the decomposition (4.42) and bound J2 using
(4.49). Concerning J1, we notice that (4.43), (4.44), (4.46) are valid for s ≤ 1. Then

σ (T ; ε) ≤ CT log (T ) ε2 +
CTε

2
r

M2(r−1)
,

therefore (4.40) implies

σ (T ; ε) ≤ C log

(
1

ε
2
r

)
ε2(1− 1

r ) +
C

M2(r−1)

which proves the first statement of (iii) in Theorem 4.7.
Suppose now that s = 1 and r ≤ 1. The case r = 1 is already included in the results of

Theorem 4.1. For r < 1, we consider the asymptotics of the quadratic form appearing in the

definition of σ (T ; ε) . Computing the contribution due to the region
{
Mε

1
r ≤ |vt− ξ| ≤ 1

}
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we can argue as in the proof of the point (ii) above and we obtain a term identical to the
first one on the right-hand side of (4.55). We are left with the contribution due to the region
{|vt− ξ| > 1} . We remark as before that∫

R3

dξ

(
θ ·
∫ T

0
∇xΦL (vt− ξ, ε)χ{|vt−ξ|>1}dt

)2

∼ ε2A2

∫ T

0
dt1

∫ T−t1

−t1
W̃ (t) dt (4.56)

where, using that s = 1, we get

W̃ (t) :=

∫
R2

dξ⊥(θ⊥ · ξ⊥)2

∫ ∞
−∞

dξ1

χ{|ξ|>1} χ{|ξ−vt|>1}(
(ξ1)2 + |ξ⊥|2

) 3
2
(

(ξ1 − t)2 + |ξ⊥|2
) 3

2

.

Arguing as in the derivation of (4.52) we see that the main contribution to (4.56) as T →
∞ is due to the regions where t1 � 1 and (T − t1) � 1. However we cannot derive an
approximation like (4.52) because the integral of W̃ is not finite. Indeed, proceeding as in
the proof of (4.45) we obtain the asymptotics

W̃ (t) ∼ C ′

|t|
as |t| → ∞ (4.57)

with

C ′ =

∫
R2

dη⊥
(η⊥ · θ⊥)2

|η⊥|5

∫ ∞
−∞

dη1(
(η1)2 + 1

) 3
2

((
η1 − 1

|η⊥|

)2
+ 1

) 3
2

.

Moreover, W̃ (t) is bounded if |t| is bounded. Writing∫ T

0
dt1

∫ T−t1

−t1
W̃ (t) dt = T 2

∫ 1

0
dτ1

∫ 1−τ1

−τ1
W̃ (Tτ) dτ ,

we obtain that the region where |τ | ≤ L
T with L large (independent of T ) yields a contribution

of order O(LT ). On the other hand, in the region where |τ | > L
T we can use (4.57). It follows

that

T 2

∫ 1

0
dτ1

∫ 1−τ1

−τ1
W̃ (Tτ) dτ

= C ′T

∫ 1

0
dτ1

∫ 1−τ1

−τ1
χ{|τ |>L

T }
dτ

|τ |
+O (T ) ∼ 2C ′T log (T ) +O (T ) as T →∞ . (4.58)

Therefore σ(T ; ε) is, up to a multiplicative constant, asymptotic to ε2T log T for T large,
whence the last statement of (iii) in Theorem 4.7 follows.

Proof of (iv).

We finally consider the case 1
2 < s < 1. Suppose first that r + 2s > 3. Then r > 3 − 2s > 1.

We use the splitting (4.42) and bound J1 using (4.43), (4.46) which are valid for 1
2 < s < 1.

We then obtain
J1 ≤ Cε2T 3−2s .
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We estimate J2 using (4.49) with r > 1, which yields J2 ≤ CTε
2
r

M2(r−1) . Using (4.40) we arrive to

σ (TBG; ε) ≤ Cε
2(r+2s−3)

r +
C

M2(r−1)

which proves the first statement of case (iv).

Suppose next that 1
2 < s < 1 and r + 2s ≤ 3. If r > 1 we can use (4.49) to prove

J2 ≤ CTε
2
r

M2(r−1) . If r = 1, (4.54) yields J2 ≤ CTε2 log
(

1
ε

)
. If r < 1 we argue as in the derivation

of (4.55) to obtain J2 ≤ CTε2. We combine all those estimates in a single formula:

J2 ≤ CT

(
ε

2
r

M2(r−1)
+ ε2 log

(
1

ε

))
. (4.59)

On the other hand, we can compute the contribution of the region {|vt− ξ| > 1} to σ (T ; ε)
using (4.56) with W̃ (t) replaced by

W̄ (t) :=

∫
R2

dξ⊥(θ⊥ · ξ⊥)2

∫ ∞
−∞

dξ1

χ{|ξ|>1} χ{|ξ−vt|>1}(
(ξ1)2 + |ξ⊥|2

) s+2
2
(

(ξ1 − t)2 + |ξ⊥|2
) s+2

2

.

We have the asymptotics

W̄ (t) ∼ C ′′

|t|2s−1 as |t| → ∞

with

C ′′ =

∫
R2

dη⊥
(η⊥ · θ⊥)2

|η⊥|2s+3

∫ ∞
−∞

dη1(
(η1)2 + 1

) s+2
2

((
η1 − 1

|η⊥|

)2
+ 1

) s+2
2

,

whence ∫ T

0
dt1

∫ T−t1

−t1
W̄ (t) dt ∼ C ′′T 3−2s

∫ 1

0
dτ1

∫ 1−τ1

−τ1

dτ

|τ |2s−1 .

Then, (4.56) and (4.59) imply

σ (T ; ε) ∼ ε2

(
T

C0

)3−2s

+O

(
Tε

2
r

M2(r−1)

)
+O

(
Tε2 log

(
1

ε

))
. (4.60)

Using that 3−2s > 1 and r+ 2s ≤ 3 we obtain that the solution of the equation σ (TL; ε) = 1
satisfies

TL ∼
C0

ε
2

3−2s

as ε→ 0 ,

whence case (iv) in Theorem 4.7 follows.

4.3.2 Computation of the correlations.

We now discuss under which conditions the correlations of deflections in times of order of TL
are negligible. We restrict our analysis to the case TL � TBG. We shall use the notation
(4.23) for the deflection vector.
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Theorem 4.8 Suppose that the assumptions of the Theorem 4.7 hold.

(i) Suppose that s > 1 and r ≤ 1. Let TL be as in Theorem 4.7, case (ii). Then

E
(
D
(
x0, v; T̃L

)
D
(
x0 + vT̃L, v; T̃L

))
�

√
E

((
D
(
x0, v; T̃L

))2
)

E

((
D
(
x0 + vT̃L, v; T̃L

))2
)

as ε→ 0. (4.61)

(ii) Suppose that s = 1 and r ≤ 1. Let TL be as in Theorem 4.7, case (iii). Then (4.61)
holds.

(iii) Suppose that s < 1 and r + 2s ≤ 3. Let TL be as in Theorem 4.7, case (iv). Then

lim inf
ε→0

E
(
D
(
x0, v; T̃L

)
D
(
x0 + vT̃L, v; T̃L

))
√

E

((
D
(
x0, v; T̃L

))2
)

E

((
D
(
x0 + vT̃L, v; T̃L

))2
) > 0

for each fixed h.

Proof. It is similar to the proof of Theorem 4.3 and we just sketch the details. In the case
(i) the main contribution to the deflections is due to the region where |ξ − vt| ≤ 1 or at least
the region where |ξ − vt| is bounded. On the other hand the computation of the correlations
requires to take into account the contribution to the integrals of regions where |ξ − vt| is large.
The latter are negligible and (4.61) follows. The case (ii) with r = 1 is similar to the case (i)
of Theorem 4.3. If r < 1 we can use analogous arguments to show that (4.61) holds, since
the contribution of the regions |ξ − vt| ≤ 1 is negligible. Finally, in the case (iii) we argue as
in the case (ii) of Theorem 4.3, since the largest contribution to the deflections is due to the
region |ξ − vt| > 1.

4.3.3 Kinetic equations.

Combining Theorems 4.7 and 4.8 we can write the kinetic equations yielding the evolution
of the distribution f using the arguments in Section 3. We then obtain the following list of
cases, assuming that Φ (x, ε) = εG (|x|) with G satisfying (4.36)-(4.37) and restricting for
simplicity to the case of one single charge.

• If s > 1 and r > 1 we claim that

fε (TBGt, TBGx, v)→ f (t, x, v) as ε→ 0 (4.62)

with TBG = 1

ε
2
r

where f solves the linear Boltzmann equation

(∂tf + v∂xf) (t, x, v) =

∫
S2

B (v;ω) [f (t, x, |v|ω)− f (t, x, v)] dω (4.63)

with B as in (3.30)-(3.31).
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• If s > 1 and r ≤ 1 we have

fε (TLt, TLx, v)→ f (t, x, v) as ε→ 0 (4.64)

where f solves the Landau equation

(∂tf + v∂xf) (t, x, v) = κ∆v⊥f (t, x, v) (4.65)

with κ as in (3.46) and where TL is as in Theorem 4.7, case (ii).

• If s = 1 and r > 1 we obtain (4.62) with TBG = 1

ε
2
r

where f solves (4.63) and B is as

in (3.30)-(3.31).

• If s = 1 and r ≤ 1 we obtain (4.64) where f solves (4.65) and TL is as in Theorem 4.7,
case (iii).

• Suppose that s < 1 and r + 2s > 3. Then r > 1 and we obtain (4.62) with TBG = 1

ε
2
r

where f solves the linear Boltzmann equation (4.63) with the kernel B given by (3.30)-
(3.31).

• Suppose that s < 1 and r + 2s < 3. Then the paths yielding the trajectories are given
by a probability measure with correlations as described in Section 3.3. If r + 2s = 3,
the trajectories would be given by a measure with correlations plus pointwise large
deflections described by the Boltzmann equation.

Notice that in all the examples mentioned above where the dynamics is given by the
Boltzmann equation we only need to compute the collision kernel for cross sections associated
to the potential 1

|x|r with r > 1.

We could use similar methods to study more complicated classes of potentials, for instance

Φ (x, ε) = εa1Ψ1 (x) + εa2Ψ2 (x) or Φ (x, ε) = Ψ1

(
x
λ1,ε

)
+ εΨ2

(
x
λ2,ε

)
. However, we will not

continue with a further analysis of these cases or similar generalizations.

Remark 4.9 We have found examples of families of potentials for which the resulting kinetic
equation contains both Boltzmann and terms associated to correlations over distances of order
TL. This phenomenon takes place when the time scale TL associated to the deflections produced
by the collective effect of many scatterers is similar to the Boltzmann-Grad time scale TBG.
In the family of potentials (4.35)-(4.37) we have obtained that all the potentials satisfying
r + 2s = 3, 1

2 < s < 1 yield such evolution. In the case of Coulomb potentials the Landau
term is the only one which appears in the limit ε→ 0, due to the presence of a logarithmically
small factor in the Boltzmann type term. It might be possible to modify the Coulomb potential,
replacing it by terms like 1

|x|(log(1+|x|))α to obtain an evolution equation for the tagged particle

described by an equation containing both Boltzmann and Landau terms.

Remark 4.10 It is interesting to remark that the fact that the dynamics is described by a
Landau or a Boltzmann equation does not depend only on the decay properties of the potential
but also on the size of the coefficients describing such decay. Suppose for instance that we
consider the family of potentials Φ (x, ε) = εr

|x|r + εα

|x|s where r > 1, α + 2s > 3, 1
2 < s < 1.

Then, TBG = 1
ε2
. Arguing as in the derivation of (4.4) it might be seen that the possible
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contribution to the Landau time of εr

|x|r would be much larger than 1
ε2
. On the other hand the

Landau time scale associated to εα

|x|s is of order 1

(ε)
2α

3−2s
which is much larger than 1

ε2
since

2α
3−2s > 2. Therefore the dynamics of f (t, x, v) is given by the linear Boltzmann equation with

the cross section associated to the scattering potential 1
|x|r in spite of the fact that the potential

Φ (x; ε) behaves for large values of |x| as εα

|x|s with s < 1.

Remark 4.11 Let us consider the domain of influence as defined in Remark 4.5. For the
potentials with the form (4.35) considered in this section, assuming v = (1, 0, 0) and that the
tagged particle is in the origin at time zero, we obtain that in the case s = 1, r < 1 the domain
of influence are the scatterers located in (x1, x⊥) with x1 ∈ [0, TL] and k1 ≤ |x⊥| ≤ TL

k1
, where

k1 is a large number. If s > 1, r < 1, the domain of influence is given by x1 ∈ [0, TL] and
|x⊥| ≤ k1. Finally if s < 1 and r < 3− 2s, then |x⊥| ≤ k1TL.

Remark 4.12 In the two-dimensional case, similar computations lead to kinetic equations
as established in this section, with the following differences. The Boltzmann-Grad time scale
is TBG = 1

ε
1
r

. The critical value of r separating the Boltzmann and the Landau behaviour is

r = 1
2 (instead of 1) for s ≥ 1

2 . For 0 < s < 1
2 and r > 1− s, a linear Boltzmann equation is

expected to hold, while for r ≤ 1 − s we find that TL grows as ε−
1

1−s and the correlations do
not vanish on the macroscopic scale.

4.4 Two different ways of deriving Landau equations with finite range po-
tentials.

We now discuss two classes of potentials which can be studied with the formalism developed
above yielding in both cases Landau kinetic equations, but for which the interaction has a
very different form. We consider

Φ (x, ε) = εΨ

(
x

Lε

)
with Lε ≥ 1, (4.66)

Φ (x, ε) = εΨ

(
x

Lε

)
with Lε → 0 as ε→ 0 (4.67)

and we assume that the functions Ψ are bounded and smooth in R3, so that the collision
length associated to {Φ (x, ε) ; ε > 0} is λε = 0 and

TBG =∞ .

For the sake of definiteness we assume also that the potentials Ψ (y) = Ψ (|y|) are compactly
supported or decay very fast (say exponentially) as |y| → ∞, but the results described in
the following would remain valid if Ψ (|y|) ∼ 1

|y|s at least if s > 1. Rigorous derivations of a

Landau equation in the case (4.66) have been obtained in [27] if Lε → ∞, as ε → 0, and in
[12, 18, 21] for Lε of order 1. The case (4.67) has been considered in [10].

Notice that there is a difference between the dynamics of the tagged particle in the cases
(4.66), (4.67). Indeed, in the case (4.66) the tagged particle interacts at any time with a
large number of scatterers (of the order of L3

ε). These interactions are very weak, but the
randomness in the distribution of scatterers has as a consequence that the force acting on the
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tagged particle at a given time is a random variable and this yields, under suitable assumptions
on ε, Lε a diffusive dynamics for the velocity, or more precisely a Landau equation for f.
In the case of potentials as in (4.67) the tagged particle does not interact with any scatterer
during most of the time, but meets one scatterer in times of order 1

L2
ε

much in the same

manner as in the Boltzmann-Grad limit. The main difference with the Boltzmann-Grad case
is that in these collisions the velocity of the tagged particle is deflected a very small amount.
The accumulation of many independent random deflections yields also a diffusive behaviour
for the velocity of the tagged particle due to the central limit theorem. In spite of these
differences, we obtain the same type of Landau equation in both cases. This is due to the
fact that the relevant variable is the deflection of the particle velocity. In the case in which
these deflections are small, they are additive, and there is no important difference if many
scatterers act on the particle at a given time or if only one of them acts rarely.

Theorem 4.13 We have the following cases.

(i) Suppose that we consider potentials with the form (4.66) with ε−
2
5 � Lε � ε−

2
3 as

ε→ 0. Then TL ∼ 1

ε(Lε)
3
2
→∞ as ε→ 0.

(ii) Suppose that we consider potentials with the form (4.66) with ε (Lε)
5
2 → C∗ ∈ (0,∞) .

Then TL ∼ 1

ε(Lε)
3
2

= Lε
C∗

as ε→ 0.

(iii) Suppose that we consider potentials with the form (4.66) or (4.67) and that Lε � ε−
2
5

(notice that this includes the case (4.67)). Then TL ∼ 1
ε2(Lε)

4 as ε→ 0.

Remark 4.14 The condition Lε � ε−
2
3 which is assumed in Theorem 4.13 is required in

order to have a kinetic limit. It is possible to have potentials for which this condition fails
and where TL ≤ C. Then (3.2) would also fail.

Proof. Using (4.66), (4.67) and the fact that Φ = ΦL, we can write the function σ (T ; ε) in
(3.15) as

σ (T ; ε) = ε2 sup
|θ|=1

∫
R3

dξ

(
θ ·
∫ T

0
∇xΨ

(
vt− ξ
Lε

)
dt

)2

= ε2 (Lε)
3 sup
|θ|=1

∫
R3

dη

(
Lεθ ·

∫ T
Lε

0
∇xΨ (vτ − η) dτ

)2

. (4.68)

As usual we assume v = (1, 0, 0) and study parallel and longitudinal components separately.
We have

θ1

∫ T
Lε

0

∂Ψ

∂x1
(vτ − η) dτ = θ1

[
Ψ

(
T

Lε
v − η

)
−Ψ (−η)

]
. (4.69)

The longitudinal contribution is

θ⊥ ·
∫ T

Lε

0
∇xΨ (vτ − η) dτ = − (θ⊥ · η⊥)

∫ T
Lε

0

∂Ψ

∂ (|x|)
(|vτ − η|) dτ

|vτ − η|
. (4.70)

The integral on the right of (4.70) can be approximated in the form T
Lε
Q (η) where Q (η)

decreases fast as |η| → ∞ if T
Lε
≤ 1. If T

Lε
≥ 1 we can approximate the integral by a function
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W = W (η⊥) which is rather independent of T
Lε

for the values of η1 in the interval
[
0, TLε

]
.

On the other hand the right-hand side of (4.69) can be estimated by a function decreasing
fast if T

`ε
≥ 1 and as T

Lε
if T

Lε
≤ 1.

Suppose first that T
Lε
≤ 1. Then σ (T ; ε) can be approximated as Cε2 (Lε)

3 T 2. In order

to have a kinetic limit we need to have TL � 1, therefore 1 = σ (TL; ε) yields Lε � ε−
2
3 .

Moreover we have TL ∼ C

ε(Lε)
3
2

if T
Lε
∼ C

ε(Lε)
5
2
≤ 1. This gives the results in the cases (i) and

(ii) of the theorem.
If T

Lε
≥ 1, then the contribution to σ (T ; ε) of the term proportional to θ1 in (4.69) is

negligible and we obtain, using also (4.70), the following approximation for σ (T ; ε):

ε2 (Lε)
5 sup
|θ|=1

∫ T
Lε

0
dη1

∫
dη⊥(θ⊥ · η⊥)2 (Q (η⊥))2 = C1ε

2 (Lε)
5 T

Lε
= C1ε

2 (Lε)
4 T

whence TL ∼ C2

ε2(Lε)
4 as ε → 0. Notice that TL

Lε
≥ 1 if 1

ε2(Lε)
5 ≥ c0 > 0, whence case (iii)

follows.
We can now examine in which cases we can derive a Landau equation for f. This is not

possible if TL
Lε
≤ C because in that case the form of the interaction potential in (4.66) implies

that deflections separated by times of order TL have correlations of order one and (3.45)
would not be satisfied. In this case a correlated model in the spirit of the one discussed in
Section 3.3 would allow to describe the trajectories of the tagged particle. We then restrict
our attention to the case in which Lε � ε−

2
5 . Suppose that T = hTL, h > 0. In this case we

have the approximation

ε2 (Lε)
3
∫

R3

dη

(
Lεθ ·

∫ T
Lε

0
∇xΨ (vτ − η) dτ

)2

∼ ε2 (Lε)
3
∫ h

ε2(Lε)
5

0
dη1

∫
R2

dη⊥(Lεθ⊥ · η⊥)2 (Q (η⊥))2

→ h

∫
R2

dη⊥(θ⊥ · η⊥)2 (Q (η⊥))2 = 2κh |θ⊥|2

where κ > 0. Then, using the Claim 3.7 we obtain that f satisfies

(∂tf + v∂xf) (t, x, v) = κ∆v⊥f (t, x, v) .

Remark 4.15 Clearly it is possible to describe the difference between the cases Lε � 1 and
Lε & 1 in terms of the domain of influence as introduced in Remark 4.5. In the case of the
potentials having the forms (4.66), (4.67) this domain of influence are the points x = (x1, x⊥)
with x1 ∈ [0, TL] , |x⊥| ≤ C1Lε. In the first case the tagged particle interacts at any given time
with a large number of scatterers. On the contrary if we assume (4.67) the tagged particle at
a given time would interact typically with zero scatterers, and occasionally would interact with
one scatterer. These rare interactions are weak collisions, and the accumulation of many of
them yields the deflection of the particle velocity.

Remark 4.16 The impossibility to obtain a Landau equation if ε−
2
5 . Lε � ε−

2
3 can be seen

also in the fact that the characteristic function for the deflections takes the form

m
(ε)
hTL

(θ)→ exp

(
−h2

∫
R3

dη (θ · ∇xΨ (η))2

)
as ε→ 0 .
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The characteristic size of the deflections in this case is h instead of the parabolic rescaling
√
h

which takes place in the diffusive limit.

5 Spacial nonhomogeneous distribution of scatterers

5.1 Dynamics of a tagged particle in a spherical scatterer cloud with New-
tonian interactions.

We have seen in Theorem 2.13 that it is not possible to have spatially homogeneous gen-
eralized Holtsmark fields for Newtonian scatterers, i.e. having just one sign for the charges
and generating potentials of the form Φ (x, ε) = ε

|x| . In this case it is natural to examine
the dynamics of a tagged particle in the field generated by random scatterer distributions in
bounded clouds. One of the simplest examples that we might consider is the dynamics of a
tagged particle in a spherical cloud of scatterers uniformly distributed. Theorem 2.12 ensures
that in this case we cannot ignore the macroscopic average force acting on the tagged particle
due to the overall mass distribution on the sphere. Let us assume that the cloud has a radius
R and that the tagged particle moves inside this cloud in an orbit with a characteristic semi-
axis of order R

2 . Then we shall argue that a kinetic description for the dynamics of the tagged
particle is not possible, due to the onset of correlations between the forces in macroscopic
times.

Assume that N = 4πR3

3 scatterers are distributed independently and uniformly in the ball
BR (0) , with density one. A scatterer located in xj yields a potential ε

|x−xj | . Since all the

forces are attractive, it follows that in the limit N → ∞ there is a mean force at each point
x ∈ BR (0) , directed towards the centre of the sphere and proportional to |x| = r. Let the
tagged particle have unit mass and move in an orbit around the center with characteristic
length r of order R, say R

2 . The orbit can be expected to experience random deflections due
to the discreteness of the scatterer distribution. To estimate the time scale in which these
deflections take place, we first remark that the potential energy is of order C1εr

2 where C1

is just a numerical constant. Since the kinetic energy is V 2

2 , it follows that the velocity of
the tagged particle is of order C2

√
εr. We recall that the Landau time scale TL is defined as

the time in which the velocity experiences a deflection comparable to itself. In the case of
Coulomb potentials, we have seen that TL differs from the Boltzmann-Grad time scale TBG
only by a logarithmic factor. The collision length λε for a particle with velocity V is given
by λε = ε

V 2 = C3
r2
, therefore TBG = 1

V (λε)
2 . Including the effect of the Coulombian logarithm

we would obtain TL = 1
V (λε)

2 log
(
R
λε

)
. The mean free path is then approximated if R → ∞

as `ε ' 1
(λε)

2 log
(
R
λε

)
= C4R

4 log (R) and

`ε
R
' C4R

3 log (R) ' C5N log (N) as N →∞ ,

where C5 is just a numerical constant (see [4] for a similar estimate). Namely the mean free
path is much larger than the length of the orbit.

If the deviations in one orbit were described by a Landau equation, then they should
be approximated by the sum of `ε

R ∼ N log (N) independent random deflections with zero
average. Denoting by σ the relative change of velocity in each deflection, we would need
N log (N)σ2 ∼ 1, whence the typical deviation in one orbit would be 1√

N log(N)
and the
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corresponding change of velocity V√
N log(N)

'
√
εr√

N log(N)
. But the period of the orbit is 1√

ε
and

then the typical change of position of the tagged particle in one period would be R√
R3 log(R)

→ 0.

We finally remark that the onset of large correlations in the forces acting on the tagged
particle in times of the order of the orbit period would also take place if the scatterers move,
since they would move in elliptical orbits with the same period, given that the density of
scatterers is constant in the cloud. The situation could change, however, for a nonspherical
cloud, but we will not pursue this analysis here.

5.2 On the derivation of kinetic equations with a Vlasov term.

If we assume that the scatterers are not distributed in a spatially homogeneous way, then it
is possible to obtain limit equations for f containing Vlasov terms.

We will restrict here the analysis to particles interacting by means of Coulomb potentials
Φ (x, ε) = ε

|x| . We have shown that, in order to have random force fields which are spatially
homogeneous, we need to assume electroneutrality. Let us restrict ourselves to the case in
which there are only two types of charges +1 and −1 and that the scatterers have these
charges with probability 1

2 , independently on the probability measure yielding their spatial
distribution. We will assume that the two types of scatterers are distributed in space according
to inhomogeneous Poisson measures with densities

ρ+ (x) =
1

2
+ δεF+

(
x

`ε

)
, ρ− (x) =

1

2
+ δεF−

(
x

`ε

)
(5.1)

respectively. Here `ε denotes the corresponding mean free path for one tagged particle moving
in the field of scatterers with density approximately equal to one. By (3.17), (4.3) and (4.5)
we may assume

`ε =
1

ε2 log
(

1
ε

) .
Moreover, the parameter δε > 0 converges to zero as ε→ 0. Its precise dependence on ε will
be fixed below. Finally we assume also that the functions F+ (y) , F− (y) decay fast for large
values of |y| (we could assume for instance that these functions are compactly supported).

The force produced by a given configuration has the form

−ε
2

∑
j,k


(
x− x+

j

)
∣∣∣x− x+

j

∣∣∣3 −
(
x− x−k

)∣∣x− x−k ∣∣3
 ,

where x+
j , x

−
k are the locations of scatterers with charges +1, −1. These forces yield deflections

described by a Landau equation. In addition, the slight fluctuations of the density yield a
nonvanishing mean field which can be approximated by

− εδε
∫

R3

[
F+

(
y

`ε

)
− F−

(
y

`ε

)]
(x− y)

|x− y|3
dy

= −εδε`ε
∫

R3

[F+ (ξ)− F− (ξ)]

(
x
`ε
− ξ
)

∣∣∣ x`ε − ξ∣∣∣3 dξ .
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The mean field variation is of order one in regions with macroscopic size `ε. The macroscopic
time scale is also `ε. Therefore, the change induced by these terms in the macroscopic time
scale is of order εδε`

2
ε.

We select δε in order to make this quantity of order one, i.e. εδε`
2
ε = 1, whence:

δε = ε3

(
log

(
1

ε

))2

. (5.2)

We then obtain that fε (`εt, `εx, v)→ f (t, x, v) where f solves the Vlasov-Landau equation:

∂tf + v∂xf + g∂vf = κ∆v⊥f , κ > 0 (5.3)

g (x) := −
∫

R3

[F+ (ξ)− F− (ξ)]
(x− ξ)
|x− ξ|3

dξ . (5.4)

Notice that the distributions of charges F+, F− must be chosen in such a way that we do not
have periodic orbits for the tagged particle, since then there would be correlations and the
Landau equation would fail as in Section 5.1.

It is possible to derive Vlasov-Boltzmann or Vlasov-Landau equations for other types
of long range potentials like the ones considered in this paper. One obtains mean field
forces of the same order of magnitude as the Landau or Boltzmann terms if the size of the
inhomogeneities is chosen in a suitable way as indicated above. An attempt for a rigorous
derivation of this type of equations is provided in [11].

6 Concluding remarks.

We have developed a formalism which allows to obtain the kinetic equation describing the
evolution of a tagged particle moving in a field of fixed scatterers (Lorentz gas) distributed in
the whole three-dimensional space according to a Poisson measure with density of order one.
Each scatterer is the centre of an interaction potential which decays at infinity as a power
law 1

|x|s with s > 1
2 .

We have first studied the properties of the random force field generated by the scatterers
and, in particular, the conditions under which this field is invariant under translations. In
the case of potentials decreasing for large |x| as 1

|x|s with s ≤ 1 some “electroneutrality” of

the system must be imposed, either by means of the addition of a background with opposite
charge density or using charges with positive and negative signs.

We have then studied the conditions in the interactions which allow to obtain a kinetic
description for the dynamics of the tagged particle. To this end, the interaction between
the tagged particle and the scatterers must be weak enough to ensure that the mean free
path is much larger than the typical distance among the scatterers. Under this assumption,
we have three main possibilities. If the fastest process yielding particle deflections are binary
collisions with single scatterers, the resulting equation is the linear Boltzmann equation. If, on
the contrary, the deflections due to the accumulation of a large number of small interactions
yield a relevant change in the direction of the velocity before a binary collision takes place,
then we can have a Landau type dynamics. We have denoted as Landau time TL the time
scale in which such macroscopic deflections take place. In order to be able to describe the
evolution of the tagged particle by means of a Landau equation, we have shown also that
deflections experienced by the particle over times of order TL must be uncorrelated. We have
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provided examples of potentials for which this lack of correlations does not take place. In
such cases, we cannot expect to have a single PDE describing the probability distribution in
the particle phase space. Instead, the correlations between macroscopic deflections must be
taken into account.
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