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B-spline diffeomorphic vector fields are objects of great interest in image processing and analysis, more specifically for the registration of medical images. In this paper, several conditions on the B-spline coefficients ensuring that a given B-spline vector field is a diffeomorphism are proposed. Some properties of vector fields satisfying these conditions are established showing that they are not too restrictive while having a reasonable computational complexity. This work opens the way to the development of practical image registration algorithms in two and three dimensions whose unknowns would be such diffeomorphic B-spline vector fields.

Introduction

Image registration is an image processing technique that, given two images, aims at finding the geometric transformation that aligns one image to the other. It is at the core of several medical analysis techniques such as atlas based segmentation [START_REF] Warfield | Nonlinear registration and template driven segmentation[END_REF][START_REF] Thirion | Image matching as a diffusion process: an analogy with maxwell's demons[END_REF][START_REF] Miller | Mathematical textbook of deformable neuroanatomies[END_REF], heart or lung deformation analysis [START_REF] Park | Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM[END_REF][START_REF] Schaerer | A dynamic elastic model for segmentation and tracking of the heart in mr image sequences[END_REF][START_REF] Vandemeulebroucke | Spatio-temporal motion estimation for respiratory-correlated imaging of the lungs[END_REF], computational anatomy [START_REF] Chung | A unified statistical approach to deformation-based morphometry[END_REF][START_REF] Ashburner | Identifying global anatomical differences: deformation-based morphometry[END_REF] or slice interpolation [START_REF] Penney | Registration-based interpolation[END_REF][START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF]. It is usually desired, and sometimes required, that the nonlinear transformation of the space that align the images is invertible.

For the modelization and the implementation of registration algorithms, it is necessary to have an adequate representation of diffeomorphic vector fields. In the literature, numerous methods are based on the flow of diffeomorphism framework [START_REF] Trouvé | Action de groupe de dimension infinie et reconnaissance de formes[END_REF][START_REF] Trouvé | Diffeomorphisms groups and pattern matching in image analysis[END_REF][START_REF] Sylvain Arguillère | Shape deformation analysis from the optimal control viewpoint[END_REF]: the transformation is defined as the solution at t = 1 of the transport equation ∂φ ∂t (x, t) = v (φ(x, t), t). When the new variable v is a Lipschitz function, φ(., t) is a diffeomorphism for all t. The problem is then discretized and solved numerically [START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF][START_REF] Beg | Computing large deformation metric mappings via geodesic flows of diffeomorphisms[END_REF][START_REF] Bb Avants | Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain[END_REF][START_REF] Vercauteren | Diffeomorphic demons: Efficient non-parametric image registration[END_REF][START_REF] Sylvain Arguillère | Shape deformation analysis from the optimal control viewpoint[END_REF].

Other works [START_REF] Richard D Rabbitt | Mapping of hyperelastic deformable templates using the finite element method[END_REF][START_REF] Droske | A variational approach to nonrigid morphological image registration[END_REF][START_REF] Burger | A hyperelastic regularization energy for image registration[END_REF] rely on hyperelastic regularization for diffeomorphic image registration. Negative Jacobian determinants are avoided by including a barrier function of the discretized Jacobian determinant term in the regularization. A theorem of Ball [START_REF] John | Global invertibility of Sobolev functions and the interpenetration of matter[END_REF] ensures the existence of solutions of such problems.

A different but yet popular approach is to assume that the transformation belongs to the vector space of uniform B-spline vector fields. As the analytical expressions of the transformation and its derivatives are known, they can be computed exactly and consistently. This can be of great importance for example if we need to study the Jacobian map that no Jacobian is negative due to numerical errors. The transformation resolution can also be chosen independently from the image resolution. Finally, as we manipulate directly the transformation, additional constraints such as priors on local rigidity [START_REF] Staring | A rigidity penalty term for nonrigid registration[END_REF] or priors on the motion orientation [START_REF] Stoica | Integrating fiber orientation constraint into a spatio-temporal fem model for heart borders and motion tracking in dynamic MRI[END_REF] can be handled very easily. However, questions regarding invertibility of B-spline vector fields have not been solved yet and, most works simply drop the invertibility requirement. Some only use regularization as a cheap way to penalize singularities, others constrain the Jacobian to be positive on the pixels to avoid strong folding but without guaranteeing that the transformation is a diffeomorphism [START_REF] Sdika | A fast nonrigid image registration with constraints on the jacobian using large scale constrained optimization[END_REF]. Few sufficient conditions on the B-spline coefficients have been proposed: they guarantee that the transformation is a diffeomorphism but are either too restrictive [START_REF] Choi | Injectivity conditions of 2d and 3d uniform cubic b-spline functions[END_REF][START_REF] Kim | Intensity based image registration using robust similarity measure and constrained optimization: applications for radiation therapy[END_REF][START_REF] Chun | A Simple Regularizer for B-spline Nonrigid Image Registration That Encourages Local Invertibility[END_REF] or subject to the curse of dimensionality and only usable on 2D images [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF].

In this work, we show that a B-spline vector field can be made a diffeomorphism with a large deformation in R 2 or R 3 if its coefficients satisfy a finite and computationally tractable set of inequalities.

The paper is organized as follows. In section 2, basic properties of B-spline vector fields are reminded. In section 3, a new condition on the B-spline coefficients guarantying the invertibility of the 2 dimensional vector field is proposed. The 3dimensional case is more involved and is studied in section 4. After a first general result on the cross product of 3D cones given in section 4.1, an important object for our derivation, the p-cone, is introduced and studied in section 4.2. A first set of conditions using 1-cones is then proposed in section 4.3. A second set of conditions, involving 2-cones is proposed in section 4. [START_REF] Bb Avants | Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain[END_REF]. In section 3.3 and 4.5, parameters of the conditions are discussed respectively for the 2D and 3D cases. Section 5 is devoted to study the strength of the conditions: how large are the spaces of B-spline vector fields satisfying the proposed conditions. Computational complexity of the proposed condition is given and compared to the state of the art in section 6.

B-spline Vector Field

The following notations and definitions will be used throughout the paper. In one dimension, the B-spline function of degree 0 is defined as the characteristic function on the real interval ] -1/2, 1/2]. The B-spline function of degree n is the repeated convolution of the B-spline of degree 0 with itself n + 1 times. In dimension D, the B-spline function of degree n, β, is defined as the tensor product of 1-dimensional B-spline of degree n. Basic properties of B-spline functions can be found in [START_REF] Unser | B-spline signal processing: Part I -theory; and part II -efficient design and applications[END_REF][START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF].

In all this work, we will consider B D , the space of D-dimensional B-spline vector field T defined by:

T (x) = i∈Z D c i β(x/h -i).
In this expression, x ∈ R D , c i ∈ R D are the B-spline coefficients, the node spacing vector h is in R D and x/h is the component-wise division of x by h. The first order finite difference coefficients in the direction l of the vector field play an important role:

d l i = c i -c i-e l h l ∈ R D ,
where e l is the l th vector of the canonical basis.

To prove that a vector field is a diffeomorphism, we rely on the corollary 4.3 of [16] saying that T is a diffeomorphism if and only if J(x) = det (T (x)) never vanishes (where T (x) is the D ×D Jacobian matrix at position x) and lim |x|→∞ |T (x)| = ∞.

A similar results was originally proved by Hadamard in [START_REF] Hadamard | Sur les correspondances ponctuelles[END_REF] for continuous maps: a locally invertible C 0 map is a homeomorphism if and only if it is proper.

We assume that all the B-spline vector fields in this paper are in the set defined below.

Definition 2.1. B D a is set of D-dimensional B-spline vector fields that are equal to an affine function with positive determinant when |x| is large enough:

B D a = T ∈ B D ∃K > 0, A ∈ GL + (D, R), b ∈ R D such that ∀x, |x| > K then T (x) = Ax + b .
In practice, this condition is not restrictive: as affine transform can be represented exactly using B-splines of degree one or more (with c i = A(hi) + b) and as the vector fields of interest are usually considered over a bounded domain, an extrapolation of the coefficients is often sufficient to fit in our framework. Note that a similar assumption at infinity is also made with the flow of diffeomorphism formalism: the diffeomorphism are assumed to converge to the identity at infinity (see [START_REF] Sylvain Arguillère | Shape deformation analysis from the optimal control viewpoint[END_REF], section 2, page 143). B-spline vector fields T in B D a enjoy two interesting properties. First, as T (x) = A ∈ GL + (D, R) is constant for x large enough, the d l i coefficients are also constant for i large enough and the values of d l i are in a finite set: this will be useful to prove strict inequalities. Second, lim |x|→∞ |T (x)| = ∞, which is one of the requirement to prove they are a diffeomorphism.

We also define Jacobian coefficients as:

J i1,...,i D = det d 1 i1 , . . . , d D i D ,
where for all (i 1 , . . . , i D ) ∈ Z D D . The J i1,...,i D are the coefficients of the Bspline expansion of the Jacobian J(x). As B-splines have a compact support, this expansion can be made only on a subset E D of Z D D (see [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF]). The expression of the active indexes sets E D is given below: for a B-spline vector field of degree n, if we define the two integer intervals

I -= [-n, n -1] and I = [-n, n], E D is the set of index D-tuples i 1 , . . . , i D ∈ Z D×D such that for all (a, b) ∈ [1, D] 2 with a = b: i b -i a ∈ D k=1 I k ,
where

I k = I - if a = k -I - if b = k I
otherwise. Therefore, in 2-dimensions, the set of active indexes is

E 2 = (i, j) ∈ Z 2 × Z 2 j -i ∈ I -× (-I -) . In 3-dimensions, E 3 is the set of triples (i, j, k) ∈ Z 3 × Z 3 × Z 3 such that    j -i ∈ I -× (-I -) × I k -i ∈ I -× I × (-I -) k -j ∈ I × I - × (-I -)
In [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF], we derived a sufficient condition involving only the B-spline Jacobian coefficients for the invertibility of the vector field T by bounding its Jacobian J(x) = det(T (x)). The continuous set of inequalities J(x) > 0 has been replaced by a discrete set. When T is in B D a , this set is finite.

Theorem 2.2. Let T be a D-dimensional B-spline of degree n vector field and J its Jacobian, then, for all x the following expression holds:

min i1,...,i D ∈E D J i1,...,i D ≤ J(x) ≤ max i1,...,i D ∈E D J i1,...,i D
Proof. See [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF].

As discussed in [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF], theorem 2.2 suffers from the curse of dimensionality and in practice, the cardinality of E D restricts its use to 2-dimensional vector fields. In this work, we use this theorem to derive conditions for the invertibility of T in two or three dimensions. These conditions are computationally tractable while still allowing large deformations.

3. 2D Diffeomorphic B-spline Vector Field Condition 3.1. Cone. To derive our new condition, we impose some constraints between neighboring node coefficients and prove that these constraints imply the strict positivity of the Jacobian function using the theorem 2.2.

As this theorem relies on sign of determinants, which are invariant to positive scaling, the neighborhood constraints should also be invariant to positive scaling and cones are the object of choice to ensure this property. In short, we will show that if the finite difference coefficients of neighboring nodes belong to the same cone, then the vector field is a diffeomorphism. To do so, we first define the circular cone. Note that in our definition, the origin is excluded from the cone. We need also the following technical lemma.

Lemma 3.2. Let (θ 1 , θ 2 ) ∈ 0, π 2 2 , and u ∈ R D \{0}, if x ∈ C u,θ1 and y ∈ C u,θ2 then x T y ≥ |x| |y| cos(θ 1 + θ 2 )
Proof. see appendix A.

3.2. The 2D Diffeomorphic B-spline Vector Field Condition. If the group of invertible matrices with positive determinant is denoted as GL + (D, R), in two dimension, the new condition is given by the following theorem.

Theorem 3.3. Let (θ 1 , θ 2 ) ∈ 0, π 2 
2 such that θ 1 + θ 2 < π 2 . Let's consider T ∈ B 2
a d l i i,l its finite difference coefficients and J its Jacobian. Let also (M i ) i be a set of matrices in GL + (D, R). We define the two sets of indexes

L 1 = {0} × I - L 2 = I -× {0}
and the matrix

R = 0 1 -1 0 . If for all (a, l) ∈ Z 2 × Z 2 : l -a ∈ L 1 =⇒ M a d 1 l ∈ C Mad 1 a ,θ1 l -a ∈ L 2 =⇒ RM a d 2 l ∈ C Mad 1 a ,θ2
then for all x ∈ R 2 , we have J(x) > 0.

Proof. We first note that ∀x, ∀y det (x, y) = x T Ry.

Let's (i, j) ∈ E 2 . If we define a = a(i, j) = (i 1 , j 2 ) ∈ Z 2 then we have i -a ∈ L 1 and j -a ∈ L 2 which implies by hypothesis

M a d 1 i ∈ C Mad 1 a ,θ1
and RM a d 2 j ∈ C Mad 1 a ,θ2 . But using lemma 3.2, this implies that

det d 1 i , d 2 j = det M a d 1 i , M a d 2 j det(M a ) , = M a d 1 i T RM a d 2 j det(M a ) , ≥ cos(θ 1 + θ 2 ) M a d 1 i M a d 2 j det(M a ) ,
Using theorem 2.2 and θ 1 + θ 2 < π 2 we obtain:

J(x) ≥ min i,j∈E2 det d 1 i , d 2 j ≥ cos(θ 1 + θ 2 ) min i,j∈E2 M a(i,j) d 1 i M a(i,j) d 2 j det M a(i,j) > 0.
Note that as T is in B D a , there is a finite number of different d l i and despite E 2 is infinite, the min in the two lines above is indeed a minimum (and not only an infimum). This allows to deduce the strict positivity of the Jacobian.

Instead of ensuring the positivity of J i,j for (i, j) ∈ E 2 , it is now sufficient to ensure some constraints on neighborhoods defined by L 1 and L 2 . The number of constraint per node is cut down from 4n 2 to 4n and we will see that large deformations are still possible.

3.3.

Choosing the M a matrices. The sufficient condition in theorem 3.3 depends on a family of matrices in M a ∈ GL + (D, R), where the index a corresponds to a node index. Each of these matrices defines a metric near the corresponding Bspline node that enables to enlarge the space of acceptable B-spline vector field compared to the trivial case (chosing M a as the identity). For example, if used as an additional "slack" variable in an optimisation problem involving invertible B-spline vector fields, it is expected that the M a will be chosen by the algorithm to make the condition as strong as possible, i. e. to enlarge the search space. An interesting possibility is to fix M a as M a = J -1 a where J a is the finite difference B-spline Jacobian matrix on the node a: J a = (d 1 a , d 2 a ). In this case, the additional condition ∀a, det(J a ) > 0 is required. We will see in section 5 that with this choice the set of B-spline diffeomorphism satisfying the invertibility condition is much larger than with M a = I d . The expressions involved in the invertibility theorems are also simplified. For example, M a d l a = e l , the l th element of the canonical basis. The following corollary summarize this case.

Corollary 3.4 (to theorem 3.3). Let (θ 1 , θ 2 ) ∈ 0, π 2 2 such that θ 1 + θ 2 < π 2 . Let's consider T ∈ B 2
a , d l i i∈Z 2 ,l∈{1,2} its finite difference coefficients and J its Jacobian.

If ∀a ∈ Z 2 , det (J a ) > 0 and for all (a, l) ∈ Z 2 × Z 2 l -a ∈ L 1 =⇒ J -1 a d 1 l ∈ C e1,θ1 l -a ∈ L 2 =⇒ RJ -1 a d 2 l ∈ C e1,θ2 then for all x ∈ R 2 , we have J(x) > 0.

3D Diffeomorphic B-spline Vector Field

In 3D, the problem is more involved. Indeed, the determinant is no longer bilinear but trilinear. As it can still be expressed using a dot product: det(x, y, z) = (x ∧ y) T z, the problem is now to find a tractable expression of the cross product of two cones in R 3 . This raises another question: what cone should we use? As opposed to the 2-dimensional case, cones can have different shapes in R 3 .

The question of the cross product of convex cones will be solved in section 4.1, in section 4.2, we will introduce p-cones, a family of cones with interesting properties for the cross product operator. More specifically, we are able to derive the analytical expression of the cross product of 1-cones under certain conditions. In sections 4.3 and 4.4, we propose two sets of conditions on the B-spline coefficients to guarantee that the vector field is invertible.

4.1.

The cross product of convex cones. In this section, we will find a parameterization of the cross product of two convex cones. Instead of an implicit representation of the cross product of cones, we will find a three parameters explicit expression.

Theorem 4.1. Let f : R 3 → R be a real homogeneous function of degree 1, convex and continuous and the convex cone

C f = f -1 (R -) \ {0}, where R -= (-∞, 0]. We assume it exists u ∈ R 3 such that C f ⊂ x ∈ R 3 |u T x > 0 and we define the directrix of C f relative to u as the curve D f = x ∈ R 3 f (x) = 0 and u T x = 1 .
Let g and v be a function and a vector sharing the same properties as f and u and let's define the set C g and D g accordingly.

If

C f ∩ C g = ∅ and C f ∩ -C g = ∅ then C f ∧ C g = R + * D f ∧ D g . Proof. The inclusion R + * D f ∧ D g ⊂ C f ∧ C g is trivial. To prove the opposite inclusion, let's consider (a, b) ∈ C f × C g . The function t → f ((1 -t)a + tb
) is continuous and it takes the value f (a) ≤ 0 for t = 0 and f (b) > 0 for t = 1. So, using the intermediate value theorem, there exists

t a ∈ [0, 1[ such that f (ã) = 0 with ã = (1 -t a )a + t a b. Note that as C f ∩ -C g = ∅, ã cannot be null. Similarly, there exists t b ∈]0, 1] such that b = (1 -t b )a + t b b is not null and g( b) = 0.
As f (ã) = 0 and ã = 0 then ã ∈ C f and consequently a 1 = u T ã is strictly positive. Similarly, b ∈ C g and b 1 = v T b is also strictly positive.

We can compute the cross product of ã and b:

ã ∧ b = [(1 -t a )a + t a b] ∧ [(1 -t b )a + t b b] = (t b -t a ) a ∧ b. If t b ≤ t a , then b ∈ [a, ã] and as C f is convex then b ∈ C f ∩ C g = ∅ so t b -t a > 0. As a result, if we set λ = a1b1 t b -ta > 0, a = ã a1 ∈ D f and b = b b1 ∈ D g , we have a ∧ b = λa ∧ b which proves the second inclusion.
This theorem provides a global parameterization of the cross product of two convex cones once their directrixes are parameterized. The problem is now to find two functions x(α) and y(β) to describe D f and D g . In this case, the points of

C f ∧ C g are λx(α) ∧ y(β).
4.2. p-cones and their cross product. In this section, we define and give some properties of the family of cones we will use in the remainder of the paper. These cones have interesting characteristics when it comes to the computation of their cross product.

Definition 4.2 (p-cones). If U = (u i ) i is an orthonormal basis of R D , we define the p-cone of semi-angle θ u ∈ 0, π
2 in the basis U by:

C p U,θu =    x = D i=1 x i u i x 1 > 0 and i>1 |x i | p 1 p ≤ tan(θ u )x 1    .
Its directrix relative to u 1 is the curve defined as:

D p U,θu =    x = u 1 + i>1 x i u i i>1 |x i | p 1 p = tan(θ u )    .
Note that 2-cones are simply circular cone, they do not depend on the basis U but only on the direction of u 1 :

C u,θu = C 2 U,θu where U = (u i ) i , u 1 = u
|u| and (u i ) i>1 is any basis of the orthogonal space of u ∈ R D \{0}.

In the proposition below, a few useful properties of p-cones are given.

Proposition 4.3 (p-cones properties). Let p ≤ q. Let U = (u i ) i and V = (v i ) i be two orthonormal bases of R D , (θ u , θ v ) ∈ 0, π 2 2 , θ u = arctan (D -1) 1 p -1 q tan(θ u )
and let θ uv = arccos

u T 1 v1 |u1||v1|
be the angle between u 1 and v 1 . The following properties hold:

(1

) when p ≥ 1, C p U,θu is convex. (2) C q U,θu ⊂ C p U,θ u (3) C p U,θu ⊂ C q U,θu (4) if p ≤ 2 and θ u + θ v < θ uv then C p U,θu ∩ C p V,θv = ∅ (5) if p ≤ 2 and θ uv < π -(θ u + θ v ) then C p U,θu ∩ -C p V,θv = ∅ Proof. see appendix B
In R 3 , we can apply theorem 4.1 to parameterize the cross product of p-cones.

Theorem 4.4. Let's (θ u , θ v ) ∈ [0, π 2 [, p ∈ [1, 2], let U = (u i ) i and V = (v i ) i be two orthonormal bases of R 3 and θ uv = arccos u T 1 v1 |u1||v1|
be the angle between u 1 and v 1 .

If

θ u + θ v < θ uv < π -(θ u + θ v ) then the cross product of the two p-cones C p U,θu
and C p V,θv can be parameterized by D p U,θu and D p V,θv , their directrixes relative to u 1 and v 1 :

C p U,θu ∧ C p V,θv = R + * D p U,θu ∧ D p V,θv Proof. As θ u + θ v < θ uv < π -(θ u + θ v )
, using the properties 4 and 5 of proposition 4.3, we have

C p U,θu ∩ C p V,θv = ∅ and C p U,θu ∩ -C p V,θv = ∅. For x = x i u i , we define f (x) = i>1 |x i | p 1 p -tan(θ u )x 1 . f is a continuous real positive homogeneous function of degree 1. As p ≥ 1, it is also convex. We have C p U,θu = f -1 (R -) \ {0} and if x ∈ C p U,θu then u T 1 x = x 1 > 0.
Defining similarly the g function for the C p V,θv p-cone, we apply theorem 4.1 and we have

C p U,θu ∧ C p V,θv = R + * D p U,θu ∧ D p V,θv .
The directrix of a p-cone can be easily parameterized using two functions c p and s p by:

x(α) = u 1 + tan(θ u ) (u 2 c p (α) + u 3 s p (α))
For example, 2-cones can be parameterized using the functions c 2 (t) = cos(t) and s 2 (t) = sin(t) on [-π, π] and 1-cones can be parameterized using the two 4-periodic functions c 1 and s 1 defined on [-2, 2] by:

(4.1) c 1 (t) = 1 -|t| , and 
(4.2) s 1 (t) = -2 -t if t ∈ [-2, -1] t if t ∈ [-1, 1] 2 -t if t ∈ [1, 2],
Note that using these definitions, for p ∈ {1, 2} and for all t we have:

c p (t) ∈ [-1, 1] and s p (t) ∈ [-1, 1].
4.3. 3D Diffeomorphic B-spline Vector Field Condition with 1-cone.

4.3.1.

The cross product of 1-cones. Results of the previous section enable the parameterization of the cross product of p-cones. However, we still need a more explicit representation. In a specific case, the cross product of 1-cones have a simple analytical expression. We first define, given two non zeros vectors, what we called their associated bases and then the expression of the cross product of 1-cones defined in these bases. Definition 4.5. Let u ∈ R 3 and v ∈ R 3 be two linearly independent vectors, we define U and V , the two orthonormal bases associated to u and v by

U = (u 1 , u 2 , u 3 ) = u |u| , u ∧ v |u ∧ v| , u ∧ (u ∧ v) |u| |u ∧ v| and V = (v 1 , v 2 , v 3 ) = v |v| , u ∧ v |u ∧ v| , v ∧ (u ∧ v) |v| |u ∧ v| . Lemma 4.6. Let (θ u , θ v ) ∈ 0, π 4 
2 , and u and v be two vectors in

R 3 \{0} such that θ u + θ v < θ uv < π -(θ u + θ v ).
where θ uv = arccos u T v |u||v| is the angle between u and v. Let U and V be the orthonormal bases associated to u and v.

If we set c uv = cos θ uv , s uv = sin θ uv , t u = tan θ u and t v = tan θ v , and if we define the two positive numbers M X and M Y by

M X = max t v s uv , t u t v s uv (s uv -t v |c uv |) , M Y = max t u s uv , t u t v s uv (s uv -t u |c uv |) and the cone B u,v,θu,θv by B u,v,θu,θv = {au 2 + bu 3 + cv 3 |a > 0 and |b| ≤ M X a and |c| ≤ M Y a } then, we have C 1 U,θu ∧ C 1 V,θv ⊂ B u,v,θu,θv . If M X = tv suv and M Y = tu suv then C 1 U,θu ∧ C 1 V,θv = B u,v,θu,θv . Proof. As θ u + θ v < θ uv < π -(θ u + θ v )
, we can apply theorem 4.4 and we have

C 1 U,θu ∧ C 1 V,θv = R + * D 1 U,θu ∧ D 1 V,θv .
Using the function c 1 and s 1 defined by the expressions 4.1 and 4.2, we parameterize the directrix D 1 U,θu in the basis U with

x(α) = u 1 + t u (u 2 c 1 (α) + u 3 s 1 (α))
and

D 1 V,θv in the basis V with y(β) = v 1 + t v (v 2 c 1 (β) + v 3 s 1 (β))
and define the cross product

z(α, β) = x(α) ∧ y(β).
To derive an explicit expression of z(α, β), one can first remark that c uv = u T v |u||v| and s uv = |u∧v| |u||v| and that using the double cross product formula, we have:

u 3 = u (u T v) |u| |u ∧ v| -v |u| 2 |u| |u ∧ v| = u 1 c uv s uv -v 1 1 s uv and v 3 = u |v| 2 |v| |u ∧ v| -v (u T v) |v| |u ∧ v| = u 1 1 s uv -v 1
c uv s uv One can also notice that:

(4.3) u T 1 v 1 = u T 3 v 3 = c uv .
We now write the cross product of the vectors of the two bases U and V :

(4.4)

u 1 ∧ v 1 = s uv u 2 u 2 ∧ v 1 = -v 3 u 3 ∧ v 1 = c uv u 2 u 1 ∧ v 2 = u 3 u 2 ∧ v 2 = 0 u 3 ∧ v 2 = -u 1 u 1 ∧ v 3 = -c uv u 2 u 2 ∧ v 3 = v 1 u 3 ∧ v 3 = s uv u 2
and express z in the (non orthonormal) basis (u 2 , u 3 , v 3 ):

z(α, β) = x(α) ∧ y(β) = z u2 (α, β)u 2 + z u3 (α, β)u 3 + z v3 (α, β)v 3 = (s uv -t v c uv s 1 (β) + t u c uv s 1 (α) + t u t v s uv s 1 (α)s 1 (β)) u 2 + t v c 1 (β) -t u t v 1 s uv c 1 (α)s 1 (β) + t u t v c uv s uv s 1 (α)c 1 (β) u 3 - t u c 1 (α) -t u t v c uv s uv c 1 (α)s 1 (β) + t u t v 1 s uv s 1 (α)c 1 (β) v 3
Let's prove now that for all α and β, z u2 (α, β) is strictly positive. We have:

z u2 (α, β) = (s uv -t v c uv s 1 (β) + t u c uv s 1 (α) + t u t v s uv s 1 (α)s 1 (β)) , ≥ (s uv -t v |c uv | -t u |c uv | -t u t v s uv ) , = s uv (1 -t u t v ) 1 - t v + t u 1 -t u t v |c uv | s uv , = s uv (1 -t u t v ) 1 - |cot(θ uv )| cot(θ u + θ v )
.

As (θ u , θ v ) ∈ 0, π 4 
2 , t u and t v are in [0, 1[ and as

θ u + θ v < θ uv < π -(θ u + θ v )
|cot(θ uv )| < cot(θ u + θ v ) and then ∀α∀β z u2 (α, β) > 0

We can now define

X θu,θv (α, β) = z u3 (α, β) z u2 (α, β) = t v c 1 (β) -t u t v 1 suv c 1 (α)s 1 (β) + t u t v cuv suv s 1 (α)c 1 (β) s uv -t v c uv s 1 (β) + t u c uv s 1 (α) + t u t v s uv s 1 (α)s 1 (β) and Y θu,θv (α, β) = - z v3 (α, β) z u2 (α, β) = t u c 1 (α) -t u t v cuv suv c 1 (α)s 1 (β) + t u t v 1 suv s 1 (α)c 1 (β) s uv -t v c uv s 1 (β) + t u c uv s 1 (α) + t u t v s uv s 1 (α)s 1 (β)
.

As c 1 is even and s 1 is odd, one can first notice that

Y θu,θv (α, β) = X θv,θu (-β, -α) (4.5)
and consequently, we can restrict our analysis to the study of X θu,θv . To simplify the notation, we write X for X θu,θv when there is no ambiguity.

As both c 1 and s 1 are 4-periodic, so is X: the analysis of X can be restricted to (α, β) ∈ [-2, 2] 2 . To find the extrema of the X function, let's define K = {-2, -1, 0, 1} and K i,j = [i, i + 1] × [j, j + 1]. As c 1 and s 1 are both piecewise affine, for (i, j) ∈ K 2 , X /Ki,j is the ratio of two bilinear functions. The denominator being strictly positive, X /Ki,j (α, .) and X /Ki,j (., β) have no pole and are both monotonic on [i, i + 1] and [j, j + 1]. Consequently, the extrema of X /Ki,j are on the corners of K i,j and

max (α,β)∈[-2,2] 2 X(α, β) = max (i,j)∈K 2 max (α,β)∈Ki,j X(α, β) = max (i,j)∈K 2 X(i, j).
We can compute the values of X(i, j) for (i, j) ∈ K 2 (again, the 4-periodicity of X allows to avoid computing X(., 2) and X(2, .)): X(., -2) X(., -1) X(., 0) X(., 1) As t u > 0, t v > 0 and the denominator is always strictly positive, the sign of the values of X(i, j) can be easily deduced. When X(i, j) is strictly positive, it takes its values in the set:

X(- 2 
t u t v s uv (s uv -t v c uv ) , t v s uv , t u t v s uv (s uv + t v c uv ) So if M X = max tv suv , tutv suv(suv-tv|cuv|) , we have max (α,β)∈[-2,2] 2 X(α, β) = M X ,
and similarly, we prove that

min (α,β)∈[-2,2] 2 X(α, β) = -M X .
Using the equation 4.5, we also prove that

max (α,β)∈[-2,2] 2 Y (α, β) = M Y and min (α,β)∈[-2,2] 2 Y (α, β) = -M Y , with M Y = max tu suv , tutv suv(suv-tu|cuv|) . We can conclude that C 1 U,θu ∧ C 1 V,θv ⊂ B u,v
,θu,θv . Let's now make the additional asumption that M X = tv suv and M Y = tv suv . In this case, one can notice that for all α:

X(α, 0) = t v s uv = M X and X(α, 2) = - t v s uv = -M X
Using the equation 4.5, we also prove that Y (0,

β) = M Y and Y (2, β) = -M Y .
With these results on the [0, 2] 2 square border, the Poincaré-Miranda theorem can be use to prove that for all (x, y) Once we know B u,v,θu,θv , the cross product of two 1-cones, we need to find the vectors having a positive dot product with all the elements of B u,v,θu,θv . This is by definition the dual cone of B u,v,θu,θv and its expression is given below. Lemma 4.7. Let u, v, θ u , θ v , M X and M Y defined as in lemma 4.6, the dual cone of B u,v,θu,θv is given by

∈ [-M X , M X ] × [-M Y , M Y ], there exists (α, β) ∈ [0, 2]
B + u,v,θu,θv = z z T (u 2 ± M X u 3 ± M Y v 3 ) ≥ 0 Proof. B u,v,
θu,θv is a polyhedral cone with its four edges generated by u 2 ± M X u 3 ± M Y v 3 . Its dual cone is given by the vectors z such that the scalar products between z and the four edges are positives.

4.3.2.

The θ u = θ v case. When θ u = θ v , the different mathematical expressions involved can be considerably simplified. Proposition 4.8. For θ u = θ v ∈ 0, π 4 , we have

M X = M Y = t u s uv .
Proof. see appendix C.

3 Dimensional Diffeomorphic

Condition with 1-cone. In 3-dimension, according to theorem 2.2, diffeomorphicity can be obtained by ensuring the positivity of the Jacobian coefficients J i,j,k for (i, j, k) ∈ E 3 . We will see in the theorem below that the positivity condition of J i,j,k on E 3 can be replaced by constraints between each node and its neighbors. The neighborhoods in question are defined by the three squares P 1 , P 2 and P 3 :

P 1 = {0} × I -× I - P 2 = I -× {0} × I - P 3 = I -× I -× {0}
Theorem 4.9. Let T ∈ B 3 a , d l i i,l its finite difference coefficients and J its Jacobian.

Let

(θ 1 , θ 2 ) ∈ 0, π 4 
2 , (M a ) a∈Z 3 a set of matrices in GL + (D, R) and let U a and V a be the bases associated with M a d 1 a and M a d 2 a according to definition 4.5.

If ∀a ∈ Z 3 , θ 1 + θ 2 < θ Mad 1 a ,Mad 2 a < π -(θ 1 + θ 2 ) and ∀(a, l) ∈ Z 3 × Z 3      l -a ∈ P 1 =⇒ M a d 1 l ∈ C 1 Ua,θ1 l -a ∈ P 2 =⇒ M a d 2 l ∈ C 1 Va,θ2 l -a ∈ P 3 =⇒ M a d 3 l ∈ B+ Mad 1 a ,Mad 2 a ,θ1,θ2
where B+ Mad 1 a ,Mad 2 a ,θ1,θ2 is the interior of the dual cone of B Mad 1 a ,Mad 2 a ,θ1,θ2 then for all x ∈ R 3 J(x) > 0.

Proof. Let (i, j, k) ∈ E 3 . If we define a = (i 1 , j 2 , k 3 ) ∈ Z 3 then we have i -a ∈ P 1 , j -a ∈ P 2 and k -a ∈ P 3 . Consequently, we have

M a d 1 i ∈ C 1 Ua,θ1 , M a d 2 j ∈ C 1 Va,θ2
and

M a d 3 k ∈ B+ Mad 1 a ,Mad 2 a ,θ1,θ2 . But using lemma 4.6, M a d 1 i ∧M a d 2 j ∈ B Mad 1 a ,Mad 2 
a ,θ1,θ2 and as

M a d 3 k ∈ B+ Mad 1 a ,Mad 2 
a ,θ1,θ2 , lemma 4.7 implies

det d 1 i , d 2 j , d 3 k = det M a d 1 i , M a d 2 j , M a d 3 k det(M a ) , = M a d 1 i ∧ M a d 2 j ) T M a d 3 k det(M a ) , > 0.
Using theorem 2.2, we have ∀x ∈ R 3 :

J(x) ≥ min i,j,k∈E3 det d 1 i , d 2 j , d 3 k > 0.
As T is in B D a , there is a finite number of different d l i and despite E 3 is infinite, the min in the lines above is indeed a minimum (and not only an infimum). This allows to deduce the strict positivity of the Jacobian. 4.4. 3D Diffeomorphic B-spline Vector Field Condition with 2-cone. In this section, we derive a set of conditions valid for 2-cones. 2-cones have the advantages over others p-cones that they can be defined using a single smooth inequality constraint and are symmetric about their axis. These properties can be useful when the conditions are used within a numerical algorithm.

In the following lemma, we will find a circular cone enclosing the B u,v,θu,θv cone.

Lemma 4.10. Let u and v be two vectors of R 3 \{0} and

(θ u , θ v ) ∈ 0, π 4 
2
where

θ uv = arccos u T v |u||v| such that θ u + θ v < θ uv < π -(θ u + θ v ).
Let also M X and M Y be defined as in lemma 4.6. We have:

B u,v,θu,θv ⊂ C u∧v, θuv with θuv = θ(θ u , θ v , θ uv ) = arctan M 2 X + M 2 Y + 2M X M Y |c uv | .
Proof. see appendix D.

4.4.1.

The cross product of circular cones.

Proposition 4.11.

Let (θ u , θ v ) ∈ 0, π 4 2 , θ u = arctan √ 2 tan θ u , θ v = arctan √ 2 
tan θ v and let u and v be two non zero vectors such that

θ u + θ v < θ uv < π -(θ u + θ v ).
where θ uv = arccos u T v |u||v| is the angle between u and v.

If we set θ uv = θ(θ u , θ v , θ uv ), we have C u,θu ∧ C v,θv ⊂ C u∧v, θ uv .
Proof. Let's define the basis U = (u 1 , u 2 , u 3 ) and V = (v 1 , v 2 , v 3 ) as in the hypothesis of the lemma 4.6. Using property 2 of proposition 4.3, the circular cone can be bounded:

C u,θu = C 2 U,θu ⊂ C 1 U,θ u and C v,θv = C 2 V,θv ⊂ C 1 V,θ v As θ u + θ v < θ uv < π -(θ u + θ v )
, lemma 4.6 can be applied:

C 1 U,θ u ∧ C 1 V,θ v ⊂ B u,v,θ u ,θ v . Using lemma 4.10, we have C u,θu ∧ C v,θv ⊂ B u,v,θ u ,θ v ⊂ C u∧v, θ uv .
4.4.2. θ extrema. The range of of θ is important for the practical use of our condition. It is given by the following proposition.

Proposition 4.12 ( θ extrema). Let (θ u , θ v ) ∈ 0, π 4 
2 then the function θ (θ v , θ v , .
)

is decreasing on θ u + θ v , π 2 and increasing on π 2 , π -(θ u + θ v ) . Proof. see appendix E
The extrema of θ can be deduced from the last proposition: Proof. see appendix F.

min θuv∈]θu+θv,π-(θu+θv)[ θ (θ u , θ v , θ uv ) = θ θ u , θ v , π 2 (4.6) = arctan tan 2 θ u + tan 2 θ v (4.7) and sup θuv∈]θu+θv,π-(θu+θv)[ θ (θ u , θ v , θ uv ) = θ (θ u , θ v , θ u + θ v ) .
These expressions allow us for example to compute the extrema of the θ function. Proof. These expressions are given by a direct application of propositions 4.12 and 4.13 and by using that 1 -cos(2θ) = 2 cos 2 (θ).

4.4.4. 3D Diffeomorphic B-spline Vector Field Condition with 2-cone. The following theorem is the 2-cone counterpart of theorem 4.9. It shows that, under conditions, if neighbors node finite difference coefficients belong to the same circular cone, invertibility can be guaranteed.

Theorem 4.15. Let (θ 1 , θ 2 ) ∈ 0, π 4 2 , θ 3 ∈ 0, π 2 -arctan √ 2 tan 2 θ 1 + tan 2 θ 2 ,
and let's define the angles

θ i = arctan √ 2 tan(θ i ) . Let T ∈ B 3 a , d l i i∈Z 3 ,l∈{1,2,3}
its finite difference coefficients and J its Jacobian. We also consider

(M i ) i∈Z 3 , a set of matrices in GL + (D, R). If for all index (a, l) ∈ Z 3 × Z 3 , we have    l -a ∈ P 1 =⇒ M a d 1 l ∈ C Mad 1 a ,θ1 l -a ∈ P 2 =⇒ M a d 2 l ∈ C Mad 2 a ,θ2 l -a ∈ P 3 =⇒ M a d 3 l ∈ C Mad 1 a ∧Mad 2 a ,θ3
and if for all a ∈ Z 3

θ 1 + θ 2 < θ Mad 1 a ,Mad 2 a < π -(θ 1 + θ 2 ) and θ(θ 1 , θ 2 , θ Mad 1 a ,Mad 2 a ) < π 2 -θ 3 then for all x ∈ R 3 J(x) > 0.
Proof. Let (i, j, k) ∈ E 3 . If we define a = (i 1 , j 2 , k 3 )Z 3 then we have i -a ∈ P 1 , j -a ∈ P 2 and k -a ∈ P 3 . Consequently, we have

M a d 1 i ∈ C Mad 1 a ,θ1 , M a d 2 j ∈ C Mad 2 a ,θ2 , M a d 3 k ∈ C Mad 1 a ∧Mad 2 a ,θ3
By using proposition 4.11, if we set

φ a = θ(θ 1 , θ 2 , θ Mad 1 a ,Mad 2 a ) we have M a d 1 i ∧ M a d 2 j ∈ C Mad 1 a ,θ1 ∧ C Mad 2 a ,θ2 ⊂ C Mad 1 a ∧Mad 2 a ,φa
and J i,j,k can be bounded below:

det d 1 i , d 2 j , d 3 k = det M a d 1 i , M a d 2 j , M a d 3 k det(M a ) , = M a d 1 i ∧ M a d 2 j ) T M a d 3 k det(M a ) , ≥ cos(φ a + θ 3 ) M a d 1 i ∧ M a d 2 j M a d 3 k det(M a ) , > 0 
where lemma 3.2 was used on the third line. Consequently, using theorem 2.2, one can deduce that ∀x ∈ R 3 :

J(x) ≥ min i,j,k∈E3 det d 1 i , d 2 j , d 3 k > 0
As T is in B D a , there is a finite number of different d l i and despite E 3 is infinite, the min in the lines above is indeed a minimum (and not only an infimum). This allows to deduce the strict positivity of the Jacobian.

The condition θ

3 ∈ 0, π 2 -arctan √ 2 tan 2 θ 1 + tan 2 θ 2
is an admissibility condition for the values of the θ i . Indeed, to be able to find coefficients satisfying the condition

θ(θ 1 , θ 2 , θ Mad 1 a ,Mad 2 a ) < π 2 -θ 3
of the hypothesis, θ 3 should be chosen at least such that

min θ θ(θ 1 , θ 2 , θ) = arctan √ 2 tan 2 (θ 1 ) + tan 2 (θ 2 ) < π 2 -θ 3 .
The three angles θ 1 , θ 2 and θ 3 enable to control the degree of regularization in a direction or another. When there is no known anisotropy in the problem the B-spline vector field is involved in, the three θ i should be equal. The value of the angle should in this case be strictly lower than θ max , defined as the solution of the equation:

θ max = π 2 -arctan √ 2 2 tan 2 θ max ,
which is given by θ max = arctan 1 √ 2 .

4.5.

Choosing the M a matrices. Similarly to the 2D case presented in section 3.3, the matrices M a can be let as free variables or fixed. If they are fixed, we will consider the possibility to choose them all equal to the 3D identity matrix or as

M a = J -1 a where J a = (d 1 a , d 2 a , d 3 a 
). As we will see in section 5, choosing

M a = J -1
a the set of B-spline diffeomorphisms satisfying the invertibility condition is much larger than M a = I d . Furthermore, as M a d l a = e l , the l th element of the canonical basis, the angle between M a d 1 a and M a d 2 a is constant and equal to π 2 and consequently, the angular conditions can be removed from theorems 4.9 and 4.15 hypothesis. One can also note that the bases associated with M a d 1 a and M a d 2 a are constant and composed of vectors of the canonical basis. Regarding lemma 4.6, one can remark that M X = t v and M Y = t u and consequently that we are in the equality case of the lemma: lemma 4.6 gives the exact expression of two cones cross products.

The case M a = J -1 a is given by the following corollaries. Corollary 4.16 (to theorem 4.9). Let T ∈ B 3 a , d l i i∈Z 3 ,l∈{1,2,3} its finite difference coefficients and J its Jacobian.

Let

(θ 1 , θ 2 ) ∈ 0, π 4 
2 , U = (e 1 , e 3 , -e 2 ) and V = (e 2 , e 3 , e 1 ) be the basis associated with e 1 and e 2 and B+ = {z

= i z i e i |z 3 > max(t u |z 1 | , t v |z 2 |) }. If ∀a ∈ Z 3 , det(J a ) > 0 and for all (a, l) ∈ Z 3 × Z 3    l -a ∈ P 1 =⇒ J -1 a d 1 l ∈ C 1 U,θ1 l -a ∈ P 2 =⇒ J -1 a d 2 l ∈ C 1 V,θ2 l -a ∈ P 3 =⇒ J -1 a d 3 l ∈ B+ then for all x ∈ R 3 J(x) > 0.
Corollary 4.17 (to theorem 4.15). Let (θ 1 , θ 2 ) ∈ 0, π 4 2 and the angle

θ 3 ∈ 0, π 2 -arctan √ 2 tan 2 θ 1 + tan 2 θ 2 such that arctan √ 2 tan(θ 1 ) + arctan √ 2 tan(θ 2 ) < π 2 .
Let T ∈ B 3 a , d l i i,l its finite difference coefficients and J its Jacobian. If ∀a ∈ Z 3 , det(J a ) > 0 and for all (a, l)

∈ Z 3 × Z 3    l -a ∈ P 1 =⇒ J -1 a d 1 l ∈ C e1,θ1 l -a ∈ P 2 =⇒ J -1 a d 2 l ∈ C e2,θ2 l -a ∈ P 3 =⇒ J -1 a d 3 l ∈ C e3,θ3 then for all x ∈ R 3 J(x) > 0.

Analysis of the conditions

Choi, Lee [START_REF] Choi | Injectivity conditions of 2d and 3d uniform cubic b-spline functions[END_REF] Kim, Chun, Sdika [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF] New Fessler [START_REF] Kim | Intensity based image registration using robust similarity measure and constrained optimization: applications for radiation therapy[END_REF][START_REF] Chun | A Simple Regularizer for B-spline Nonrigid Image Registration That Encourages Local Invertibility[END_REF] 

I d J -1 a A I d , b 0 A I d det(A) > 0 A QΛ det(A) > 0 Table 1.
Restrictions when the transformation is the affine transform T (x) = Ax + b. Q is a rotation matrix, Λ is a diagonal matrix with strictly positive diagonal coefficients.

As in [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF], we will use affine transforms to compare the sharpness of our condition to the state of the art. As it does not investigate nonlinear transforms, this criterion is not fully satisfying. However, the analysis using affine transforms is still interesting. First, affine transforms can be exactly represented by B-splines:

Ax + b = i c i β x h -i
when the B-spline coefficients are c i = A(hi)+b. Finite difference coefficients in the direction l are d l i = ci-ci-e l h l = Ae l = A l , the l th column vector of the matrix A. The other reason is that, as B-splines have a local support, our analysis also provides an insight on the local behavior allowed for more general nonlinear transforms. The results of this section are summarized in the table 1.

In the literature, three other sufficient conditions have been proposed.

In [START_REF] Choi | Injectivity conditions of 2d and 3d uniform cubic b-spline functions[END_REF], Choi and Lee proposed to bound the displacement coefficients:

c l i -i l h l < h l K ,
where K is a given constant. This condition constrains A to be close to the identity and b to be very small. In [START_REF] Kim | Intensity based image registration using robust similarity measure and constrained optimization: applications for radiation therapy[END_REF][START_REF] Chun | A Simple Regularizer for B-spline Nonrigid Image Registration That Encourages Local Invertibility[END_REF], Kim, Chun and Fessler guaranteed the invertibility by keeping the finite differences coefficients close to the canonical basis:

d l i -e l ∞ < K, where K = 1 D .
When applied to the affine transform Ax + b, the condition becomes (A -I)e l ∞ < K.

All translations are now accepted, however, A must be close enough to the identity.

In [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF], the invertibility is guaranteed by keeping the Jacobian coefficients positive: J i1,...,i D > 0.

When applied to Ax + b, this last condition simply becomes det(A) > 0 and is satisfied by all the affine transforms of interest. While this last condition is sharp within the affine transform subspace, it has a very high complexity.

The conditions proposed in this work are studied below. We will differentiate the cases M a = I d from the case M a = J -1 a . 5.1. Case M a = I d .

5.1.1. Analysis of the 2D conditions. According to theorem 3.3, a 2-dimensional B-spline vector field T (x) = Ax + b is a diffeomorphism when for given

θ 1 + θ 2 < π 2 : A 1 ∈ C A1,θ1 RA 2 ∈ C A1,θ2
and one can see that the first condition is always true when A 1 = 0. The second condition can be expressed as

det(A) ≥ |A 1 | |A 2 | cos θ 2 or θ A1,A2 - π 2 ≤ θ 2 .
The two column vectors of the matrix A should be sufficiently orthogonal. One can remark that if T (x) = QΛx + b with Q a rotation and Λ a diagonal matrix with strictly positive diagonal coefficients, it always satisfies the hypothesis of theorem 3.3.

5.1.2.

Analysis of the 3D condition with 1-cones. T (x) = Ax + b satisfies the hypothesis of the theorem 4.9 when:

A 1 ∈ C 1 Ua,θ1
(5.1)

A 2 ∈ C 1 Va,θ2 (5.2) 
A 3 ∈ B+ A1,A2,θ1,θ2 . (5.3)

θ 1 + θ 2 < θ A1,A2 < π -(θ 1 + θ 2 ) (5.4)
The conditions 5.1 and 5.2 are always true when A 1 = 0 and A 2 = 0. The two other conditions constrain A 1 and A 2 to be sufficiently orthogonal and A 3 to be sufficiently collinear to A 1 ∧ A 2 . In words, the matrix A should be sufficiently invertible. As in the 2D case, transforms of the type T (x) = QΛx + b satisfy the conditions. 5.1.3. Analysis of the 3D condition with 2-cones. When T (x) = Ax + b, the conditions of theorem 4.15 become:

A 1 ∈ C A1,θ1 (5.5) A 2 ∈ C A2,θ2 (5.6) A 3 ∈ C A1∧A2,θ3 (5.7) θ 1 + θ 2 < θ A1A2 < π -(θ 1 + θ 2 ) (5.8) θ(θ 1 , θ 2 , θ A1,A2 ) < π 2 -θ 3 .
(5.9) Conditions 5.5 and 5.6 are both always true when A 1 = 0 and A 2 = 0. Conditions 5.8 and 5.9 enforce the linear independence of A 1 and A 2 . The condition 5.7 ensures that A 3 is sufficiently orthogonal to A 1 and A 2 . A contour image of the fixed image is overlaid on these images.

algorithm is run until convergence and the inequalities are strictly satisfied at the end of the algorithm. The LBGFS algorithm [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF], which is able to handle large scale problems, is used for unconstrained minimization. More details can be found in [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF].

7.1. Comparison to state of the art. In this experiment, the problem was solved for different C: without constraint (NO), with the bound constraints on the displacement coefficients of [START_REF] Choi | Injectivity conditions of 2d and 3d uniform cubic b-spline functions[END_REF] (BC), with the bound constraints on the finite difference coefficients of [START_REF] Kim | Intensity based image registration using robust similarity measure and constrained optimization: applications for radiation therapy[END_REF][START_REF] Chun | A Simple Regularizer for B-spline Nonrigid Image Registration That Encourages Local Invertibility[END_REF] (DC), our condition on the Jacobian coefficients [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF] (JC) and the proposed 2D condition (New). For the New condition, we used θ 1 = θ 2 = π 4 -0.001. For all the problems, the input images are both 300 × 300, the node spacing is 6 pixels in each direction, the same multiresolution pattern is used.

The fixed and moving images as well as the deformation of the moving image and a regular grid for each C have been presented in figure 1. Without constraints, the match is perfect but lots of folds are visible on the deformed grid. The unconstrained resolution gives Jacobian values as low as -7. As expected, for all other C, all the Jacobian values are strictly positive. As one can see, BC and DC produce a very regular deformation but are too restrictive to match the two shapes. In accordance to the results of section 5, DC allows more freedom in the deformation than BC. Both CJ and the new constraint enable a perfect match of the two shapes and produce regular deformation. Note however that the new constraint produces a grid that seems more distorted and less symetric than the grid produced with CJ in the black region inside the C shape. As we are working with binary images, there is not much information to drive the registration in regions away from image edges: the cost function is flat in these regions which makes the output of the registration somewhat variable. 7.2. θ 1 and θ 2 parameters. In this experiment, the same problem has been solved using the corollary 3.4 to ensure invertibility. For the New condition, θ 1 was set in the range [0, π 2 ] and θ 2 was set as θ 2 = π 2 -θ 1 -0.001. The results of the registration are presented in figure 2. One can first notice that the range of θ 1 producing acceptable registration is quite large. As one can see, for small θ 1 , not enough freedom is allowed for the deformation in the vertical direction. For large θ 1 (and small θ 2 ), the opposite behaviour is obtained: the constraint is too restrictive in the horizontal direction. These two parameters allow to control the regularization in one direction or another in the very specific case where something is known about the anisotropy of the problem.

Conclusion

In this work, we proposed several new sets of conditions on the coefficient of a B-spline vector field to guarantee that it is a diffeomorphism. The new conditions, while still allowing large deformations are now computationally tractable in 3D. Let's now assume that θ 1 > 0 and let's define λ 1 = sin(θ1+θ2) sin(θ1) , then:

1 -2λ 1 cos θ 2 + λ 2 1 = (λ 1 -cos(θ 2 )) = cos(θ 1 ) sin(θ 2 ) + sin(θ 1 ) cos(θ 2 ) sin(θ 1 ) cos(θ 1 ) -sin(θ 2 ) sin(θ 1 ) = cos 2 (θ 1 ) -1 sin(θ 2 ) + cos(θ 1 ) sin(θ 1 ) cos(θ 2 ) sin(θ 1 ) = -sin(θ 1 ) sin(θ 2 ) + cos(θ 1 ) cos(θ 2 ) = cos(θ 1 + θ 2 )

When θ 1 = 0 and λ > 0 then f can be expressed as

f (λ) = λ -1 -2λ cos θ 2 + λ 2 = λ 2 -1 -2λ cos θ 2 + λ 2 λ + √ 1 -2λ cos θ 2 + λ 2 = 2λ cos θ 2 -1 λ + √ 1 -2λ cos θ 2 + λ 2 = 2 cos θ 2 -1 λ 1 + 1 -2 λ cos θ 2 + 1 λ 2 .
Consequently, when θ 1 = 0, lim λ→+∞ f (λ) = cos θ 2 = cos(θ 1 + θ 2 ).

We now prove proposition 3.2

Proof. Let's assume first that |x| = |y| = |u| = 1, the general case can be easily deduced from this case.

For λ positive, we have

x T y = λx T u + x T (y -λu)

≥ λx T u -|y -λu| ≥ λ cos θ 1 -1 -2λu T y + λ 2 ≥ λ cos θ 1 -1 -2λ cos θ 2 + λ 2 .
As ∀λ ≥ 0 x T y ≥ f (λ) then x T y ≥ sup λ f (λ) and finally, using lemma A.1

x T y ≥ cos(θ 1 + θ 2 ).

Appendix B. Proof of proposition 4.3

Proof.

(1) This property is a simple consequence of the convexity of the p-norm defining C p U,θu when p ≥ 1.

(2) If we apply the Hölder inequality

i>1 |a i | |b i | ≤ i>1 |a i | r 1 r i>1 |b i | r r-1 1-1 r to a i = |x i |
p , b i = 1 and r = q p , we obtain

i>1 |x i | p ≤ i>1 |x i | q p q (D -1) 1-p q .
So if x ∈ C q U,θu , we have

i>1 |x i | p 1 p ≤ i>1 |x i | q 1 q
(D -1)

1 p -1 q ≤ x 1 tan(θ u ) (D -1) 1 p -1 q ,
which implies that x ∈ C p U,θ u

(3) The case θ u = 0 is obvious: C p U,0 = C q U,0 . If θ u > 0, let x ∈ C p U,θu . By definition we have:

i>1 |x i | x 1 tan(θ u ) p ≤ 1.
This implies that for i > 1 we have |xi| x1 tan(θu) ≤ 1, consequently when p ≤ q

|x i | x 1 tan(θ u ) q ≤ |x i | x 1 tan(θ u ) p ,
which implies that x ∈ C q U,θu . (4) We consider only the case p = 2 as the case p < 2 can be easily deduced using the case p = 2 and the property 3. To prove 4, we assume that θ u + θ v < θ uv and try to find the "closest" point from C 2 V,θv in C 2 U,θu by solving max |x| 2 = 1 x T u 1 ≥ cos θ u x T v 1 .

Definition 3 . 1 .

 31 If u ∈ R D \{0} and θ u ∈ 0, π 2 , we denote by C u,θu the circular cone of axis u and semi-angle θ u : C u,θu = x ∈ R D x = 0 and x T u ≥ |x| |u| cos θ u .
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 2 such that X(α, β) = x and Y (α, β) = y and consequently, when M X = tv suv and M Y = tv suv , we have C 1 U,θu ∧ C 1 V,θv = B u,v,θu,θv .

4. 4 . 3 .√ 2t u 1 -

 431 The θ u = θ v case. When θ u = θ v , the different mathematical expressions involved can be simplified. These expressions are given in the following proposition. Proposition 4.13. For θ u ∈ 0, π 4 We have θuv = θ(θ u , θ u , θ uv ) = arctan |c uv | .

Corollary 4 . 14 (

 414 θ extrema). For θ ∈ 0, π 4 , we have min2θ<t<π-2θ θ(θ, θ, t) = θ θ, θθ, t) = θ (θ, θ, 2θ) = arctan tan θ cos θ .

Figure 1 .

 1 Figure 1. Results of the registration for different methods: the floating image and a grid are mapped through the transformation.A contour image of the fixed image is overlaid on these images.

θ 1

 1 = 10 • θ 1 = 20 • θ 1 = 30 • θ 1 = 40 • θ 1 = 50 • θ 1 = 60 • θ 1 = 70 • θ 1 = 80 •

Figure 2 .+ λ 2 which implies λ 2 cos 2 θ 1 - 2 λ 2 2 = 2 =

 212222 Figure 2. Results of the registration for our new condition (corollary 3.4) for different values of θ 1 (in degree). A contour image of the fixed image is overlaid on these images.

  2 + 1 -cos 2 (θ 2 ) = sin(θ 1 + θ 2 ) -cos(θ 2 ) sin(θ 1 ) sin(θ 1 ) 2 + sin 2 (θ 2 ) = sin 2 (θ 2 ) cos 2 (θ 1 ) sin 2 (θ 1 ) + sin 2 (θ 2 ) = sin 2 (θ 2 ) cos 2 (θ 1 ) + sin 2 (θ 2 ) sin 2 (θ 1 ) sin 2 (θ 1 ) = sin 2 (θ 2 ) sin 2 (θ 1 ) ,

	and consequently			
	f (λ 1 ) =	sin(θ 1 + θ 2 ) sin(θ 1 )	cos(θ 1 ) -	sin(θ 2 ) sin(θ 1 )
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5.2.

Case M a = J -1 a = A -1 . When M a = J -1 a , we have M a A l = e l , the l th element of the canonical basis. This makes almost all the hypothesis of the corollaries 3.4, 4.16 and 4.17 unconditionally satisfied. The only remaining condition is det (J a ) = det(A) > 0.

When M a = J -1 a , all the affine transforms with positive determinant satisfy the proposed conditions set with either the 1-cone or the 2-cone.

Complexity

We define the complexity of a set of conditions as the number of smooth inequalities that need to be satisfied for each node. The complexity for the different conditions proposed in this work as well as our previous condition given in [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF] are reported in the table 2 for dimension up to three and B-spline degree up to four for a general M a matrices family. When M a = I d and 2-cone are used, the symmetry of the relation uRv ⇔ v ∈ C u,θ can be used to divide the number of constraint by two. 2. Number of constraints per node for a general M a given the dimension and the degree of the vector field.

As one can see, if the complexity is noticeably reduced in 2D, the reduction is very important in 3D. From the huge set of conditions of [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF], we end up with a tractable set of condition, opening the way to a practical software implementation.

Numerical Experiments

The proposed condition has been visually evaluated on a classical 2D synthetic image registration problem. The version with a fixed M a = J -1 (corollary 3.4) has been used for our implementation. A disk is deformed to match a C shape by solving the following optimization problem:

where c are the B-spline coefficients, N the number of pixels, I m , the moving image, I f the fixed image and C, the domain of the B-spline coefficients. The problem was solved for different C: in the first experiment, our condition is compared to other sufficient conditions of the literature, in the second experiment, we observe the behaviour of the registration when the θ 1 and θ 2 parameters vary. As in [START_REF] Sdika | A sharp sufficient condition for b-spline vector field invertibility. application to diffeomorphic registration and interslice interpolation[END_REF], the problem 7.1 is solved by the multipliers method. The inequality constrained problem is solved by solving a succession of unconstrained problems: alternatingly, the augmented Lagragian is minimized with respect to the B-spline coefficients and the Lagrange multipliers and the penalization coefficient are updated. The

We first prove a small lemma.

, and

Proof. We will prove this lemma by first showing that cos(θ 1 + θ 2 ) is a upper bound of f over R + and then showing that this bound is either attained for a positive λ when θ 1 > 0 or is the limit of f at infinity when θ 1 = 0. Note first that ∀θ 2 ∀λ then 1 -2λ cos θ 2 + λ 2 ≥ 0 and f is well defined.

As the domain of this problem is compact and the cost function is continuous, the supremum is also a local maximum. The global maximal value v opt is reached at x opt and satisfy Karush Kuhn Tucker conditions:

In the case µ = 0, we have v 1 = -λx which implies λ 2 = 1 and consequently

In the case µ > 0, we have x T u 1 = cos(θ u ). Considering the dot product of B.1 with successively u 1 , x and v 1 , we obtain the system of equations:

Using B.4 to substitute µ in the equation B.5 and B.6, we obtain after simplification:

When sin(θ u ) = 0, the only admissible point is u 1 , so v opt = u 1 v 1 = cos(θ uv ) = cos (θ uv -θ u ). Otherwise, solving for λ in equation B.7 and substituting in B.8, we obtain:

which is a quadratic equation in v opt which is solved by:

The maximal value is obtained with the plus sign and in this case we have:

and the angle between u 1 and -v 1 is π -θ uv , the property 5 is a simple consequence of the property 4.

Appendix C. Proof of proposition 4.8

Proof. Let's have a closer look to the second term in the M X expression. If ξ ∈ {-1, 1}, we have

.

We also have:

(C.1)

.

and (C.2)

.

Consequently, when θ u = θ v , we have

which implies that M X = tu suv . We prove similarly that when

Proof. First note that B u,v,θu,θv is in the half space delimited by the plane orthogonal to u ∧ v. Thus, it is enclosed in a cone of axis u ∧ v: B u,v,θu,θv ⊂ C u∧v, π 2 . Let's now find the minimal enclosing circular cone of axis u ∧ v. The semi-angle of this cone is the maximal angle between u ∧ v and x ∈ B u,v,θu,θv . Using the parameterization of B u,v,θu,θv , x = a u 2 + b u 3 + c v 3 ∈ B u,v,θu,θv with |b | ≤ M X a and |c | ≤ M Y a , we will minimize the cosine between x and u ∧ v which is given by

. So the optimal angle is θuv = arccos 1

Proof. As a function of θ uv , θ varies jointly to

we can restrict the analysis to the study of E. One can also see that M X (θ uv ) and M Y (θ uv ) are symmetric about θ uv = π 2 . So we can restrict the analysis to the case θ uv ∈ θ u + θ v , π 2 . As M X and M Y are both defined as the maximum of two smooth functions of θ uv , θ u + θ v , π 2 can be partitionned into a finite number of intervals on which M X and M Y are smooth. We will show below that on each of these intervals E is always decreasing. The continuity of M X and M Y with respect to θ uv (and consequently of E and θ) allows concluding on the decrease of θ over the whole interval θ u + θ v , π 2 . We split the analysis in four case depending on the value of M X and M Y . case M X = tv suv , M Y = tu suv . In this case we have:

So E varies jointly to (tu+tvcuv) suv . The derivative of this last expression with respect to θ uv is

which is negative, so θ is decreasing in this case. case M X = tv suv , M Y = tutv suv(suv-tucuv) . In this case, we have:

In this case also, E is a decreasing function of θ uv case M X = tutv suv(suv-tvcuv) , M Y = tu suv . This case is similar to the previous one and here again, θ is decreasing. case M X = tutv suv(suv-tvcuv) , M Y = tutv suv(suv-tucuv ). In this case we have

But as θ uv ∈ θ u + θ v , π 2 , we have sin (θ uv -θ v ) > s u and consequently we must have c v > c u . With the same reasoning on M Y , we also prove that c u > c v . Consequently, this case never happen when θ uv ∈ θ u + θ v , π 2 . To conclude, θ is a decreasing function of θ uv on the interval θ u + θ v , π 2 . Using the symmetry of θ, it is an increasing function of θ uv on the interval π 2 , π -(θ u + θ v ) .