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DIFFEOMORPHIC B-SPLINE VECTOR FIELDS WITH A
TRACTABLE SET OF INEQUALITIES

MICHAËL SDIKA

Abstract. B-spline diffeomorphic vector fields are objects of great interest in
image processing and analysis, more specifically for the registration of medical
images. In this paper, several conditions on the B-spline coefficients ensur-
ing that a given B-spline vector field is a diffeomorphism are proposed. Some
properties of vector fields satisfying these conditions are established show-
ing that they are not too restrictive while having a reasonable computational
complexity. This work opens the way to the development of practical image
registration algorithms in two and three dimensions whose unknowns would
be such diffeomorphic B-spline vector fields.

1. Introduction

Image registration is an image processing technique that, given two images, aims
at finding the geometric transformation that aligns one image to the other. It is
at the core of several medical analysis techniques such as atlas based segmentation
[31, 25, 15], heart or lung deformation analysis [17, 20, 29], computational anatomy
[10, 3] or slice interpolation [18, 22]. It is usually desired, and sometimes required,
that the nonlinear transformation of the space that align the images is invertible.

For the modelization and the implementation of registration algorithms, it is
necessary to have an adequate representation of diffeomorphic vector fields. In the
literature, numerous methods are based on the flow of diffeomorphism framework
[27, 26, 1]: the transformation is defined as the solution at t = 1 of the transport
equation ∂φ

∂t (x, t) = v (φ(x, t), t). When the new variable v is a Lipschitz function,
φ(., t) is a diffeomorphism for all t. The problem is then discretized and solved
numerically [2, 6, 4, 30, 1].

Other works [19, 11, 7] rely on hyperelastic regularization for diffeomorphic image
registration. Negative Jacobian determinants are avoided by including a barrier
function of the discretized Jacobian determinant term in the regularization. A
theorem of Ball [5] ensures the existence of solutions of such problems.

A different but yet popular approach is to assume that the transformation be-
longs to the vector space of uniform B-spline vector fields. As the analytical expres-
sions of the transformation and its derivatives are known, they can be computed
exactly and consistently. This can be of great importance for example if we need
to study the Jacobian map that no Jacobian is negative due to numerical errors.
The transformation resolution can also be chosen independently from the image
resolution. Finally, as we manipulate directly the transformation, additional con-
straints such as priors on local rigidity [23] or priors on the motion orientation [24]
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can be handled very easily. However, questions regarding invertibility of B-spline
vector fields have not been solved yet and, most works simply drop the invertibility
requirement. Some only use regularization as a cheap way to penalize singularities,
others constrain the Jacobian to be positive on the pixels to avoid strong folding
but without guaranteeing that the transformation is a diffeomorphism [21]. Few
sufficient conditions on the B-spline coefficients have been proposed: they guarantee
that the transformation is a diffeomorphism but are either too restrictive [8, 13, 9]
or subject to the curse of dimensionality and only usable on 2D images [22].

In this work, we show that a B-spline vector field can be made a diffeomor-
phism with a large deformation in R2 or R3 if its coefficients satisfy a finite and
computationally tractable set of inequalities.

The paper is organized as follows. In section 2, basic properties of B-spline
vector fields are reminded. In section 3, a new condition on the B-spline coefficients
guarantying the invertibility of the 2 dimensional vector field is proposed. The 3-
dimensional case is more involved and is studied in section 4. After a first general
result on the cross product of 3D cones given in section 4.1, an important object for
our derivation, the p-cone, is introduced and studied in section 4.2. A first set of
conditions using 1-cones is then proposed in section 4.3. A second set of conditions,
involving 2-cones is proposed in section 4.4. In section 3.3 and 4.5, parameters
of the conditions are discussed respectively for the 2D and 3D cases. Section 5 is
devoted to study the strength of the conditions: how large are the spaces of B-spline
vector fields satisfying the proposed conditions. Computational complexity of the
proposed condition is given and compared to the state of the art in section 6.

2. B-spline Vector Field

The following notations and definitions will be used throughout the paper.
In one dimension, the B-spline function of degree 0 is defined as the characteristic

function on the real interval ] − 1/2, 1/2]. The B-spline function of degree n is
the repeated convolution of the B-spline of degree 0 with itself n + 1 times. In
dimension D, the B-spline function of degree n, β, is defined as the tensor product
of 1-dimensional B-spline of degree n. Basic properties of B-spline functions can be
found in [28, 22].

In all this work, we will consider BD, the space of D-dimensional B-spline vector
field T defined by:

T (x) =
∑
i∈ZD

ciβ(x/h− i).

In this expression, x ∈ RD, ci ∈ RD are the B-spline coefficients, the node spacing
vector h is in RD and x/h is the component-wise division of x by h. The first order
finite difference coefficients in the direction l of the vector field play an important
role:

dli =
ci − ci−el

hl
∈ RD,

where el is the lth vector of the canonical basis.
To prove that a vector field is a diffeomorphism, we rely on the corollary 4.3 of [16]

saying that T is a diffeomorphism if and only if J(x) = det (T ′(x)) never vanishes
(where T ′(x) is the D×D Jacobian matrix at position x) and lim|x|→∞ |T (x)| =∞.
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A similar results was originally proved by Hadamard in [12] for continuous maps:
a locally invertible C0 map is a homeomorphism if and only if it is proper.

We assume that all the B-spline vector fields in this paper are in the set defined
below.

Definition 2.1. BDa is set of D-dimensional B-spline vector fields that are equal
to an affine function with positive determinant when |x| is large enough:

BDa =

{
T ∈ BD

∣∣∣∣ ∃K > 0, A ∈ GL+(D,R), b ∈ RDsuch that
∀x, |x| > K then T (x) = Ax+ b

}
.

In practice, this condition is not restrictive: as affine transform can be repre-
sented exactly using B-splines of degree one or more (with ci = A(hi) + b) and
as the vector fields of interest are usually considered over a bounded domain, an
extrapolation of the coefficients is often sufficient to fit in our framework. Note
that a similar assumption at infinity is also made with the flow of diffeomorphism
formalism: the diffeomorphism are assumed to converge to the identity at infinity
(see [1], section 2, page 143). B-spline vector fields T in BDa enjoy two interesting
properties. First, as T ′(x) = A ∈ GL+(D,R) is constant for x large enough, the dli
coefficients are also constant for i large enough and the values of dli are in a finite
set: this will be useful to prove strict inequalities. Second, lim|x|→∞ |T (x)| = ∞,
which is one of the requirement to prove they are a diffeomorphism.

We also define Jacobian coefficients as:

Ji1,...,iD = det
(
d1
i1 , . . . , d

D
iD

)
,

where for all (i1, . . . , iD) ∈
(
ZD
)D. The Ji1,...,iD are the coefficients of the B-

spline expansion of the Jacobian J(x). As B-splines have a compact support, this
expansion can be made only on a subset ED of

(
ZD
)D (see [22]). The expression of

the active indexes sets ED is given below: for a B-spline vector field of degree n, if
we define the two integer intervals I− = [−n, n− 1] and I = [−n, n], ED is the set
of index D-tuples i1, . . . , iD ∈ ZD×D such that for all (a, b) ∈ [1, D]2 with a 6= b:

ib − ia ∈
D∏
k=1

Ik,

where

Ik =

∣∣∣∣∣∣
I− if a = k
−I− if b = k
I otherwise.

Therefore, in 2-dimensions, the set of active indexes is

E2 =
{

(i, j) ∈ Z2 × Z2
∣∣j − i ∈ I− × (−I−)

}
.

In 3-dimensions, E3 is the set of triples (i, j, k) ∈ Z3 × Z3 × Z3 such that j − i ∈ I− × (−I−) × I
k − i ∈ I− × I × (−I−)
k − j ∈ I × I− × (−I−)

In [22], we derived a sufficient condition involving only the B-spline Jacobian
coefficients for the invertibility of the vector field T by bounding its Jacobian J(x) =
det(T ′(x)). The continuous set of inequalities J(x) > 0 has been replaced by a
discrete set. When T is in BDa , this set is finite.
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Theorem 2.2. Let T be a D-dimensional B-spline of degree n vector field and J
its Jacobian, then, for all x the following expression holds:

min
i1,...,iD∈ED

Ji1,...,iD ≤ J(x) ≤ max
i1,...,iD∈ED

Ji1,...,iD

Proof. See [22]. �

As discussed in [22], theorem 2.2 suffers from the curse of dimensionality and
in practice, the cardinality of ED restricts its use to 2-dimensional vector fields.
In this work, we use this theorem to derive conditions for the invertibility of T in
two or three dimensions. These conditions are computationally tractable while still
allowing large deformations.

3. 2D Diffeomorphic B-spline Vector Field Condition

3.1. Cone. To derive our new condition, we impose some constraints between
neighboring node coefficients and prove that these constraints imply the strict pos-
itivity of the Jacobian function using the theorem 2.2.

As this theorem relies on sign of determinants, which are invariant to positive
scaling, the neighborhood constraints should also be invariant to positive scaling
and cones are the object of choice to ensure this property. In short, we will show
that if the finite difference coefficients of neighboring nodes belong to the same cone,
then the vector field is a diffeomorphism. To do so, we first define the circular cone.

Definition 3.1. If u ∈ RD\{0} and θu ∈
[
0, π2

]
, we denote by Cu,θu the circular

cone of axis u and semi-angle θu:

Cu,θu =
{
x ∈ RD

∣∣x 6= 0 and xTu ≥ |x| |u| cos θu
}
.

Note that in our definition, the origin is excluded from the cone. We need also
the following technical lemma.

Lemma 3.2. Let (θ1, θ2) ∈
[
0, π2

]2, and u ∈ RD\{0}, if x ∈ Cu,θ1 and y ∈ Cu,θ2
then

xT y ≥ |x| |y| cos(θ1 + θ2)

Proof. see appendix A. �

3.2. The 2D Diffeomorphic B-spline Vector Field Condition. If the group
of invertible matrices with positive determinant is denoted as GL+(D,R), in two
dimension, the new condition is given by the following theorem.

Theorem 3.3. Let (θ1, θ2) ∈
[
0, π2

]2 such that θ1 + θ2 <
π
2 . Let’s consider T ∈ B

2
a(

dli
)
i,l

its finite difference coefficients and J its Jacobian. Let also (Mi)i be a set
of matrices in GL+(D,R). We define the two sets of indexes

L1 = {0} × I−
L2 = I− × {0}

and the matrix
R =

(
0 1
−1 0

)
.

If for all (a, l) ∈ Z2 × Z2:{
l − a ∈ L1 =⇒ Mad

1
l ∈ CMad1a,θ1

l − a ∈ L2 =⇒ RMad
2
l ∈ CMad1a,θ2
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then for all x ∈ R2, we have
J(x) > 0.

Proof. We first note that

∀x, ∀y det (x, y) = xTRy.

Let’s (i, j) ∈ E2. If we define a = a(i, j) = (i1, j2) ∈ Z2 then we have i − a ∈ L1

and j − a ∈ L2 which implies by hypothesis

Mad
1
i ∈ CMad1a,θ1

and
RMad

2
j ∈ CMad1a,θ2

.

But using lemma 3.2, this implies that

det
(
d1
i , d

2
j

)
=

det
(
Mad

1
i ,Mad

2
j

)
det(Ma)

,

=

(
Mad

1
i

)T
RMad

2
j

det(Ma)
,

≥ cos(θ1 + θ2)

∣∣Mad
1
i

∣∣ ∣∣Mad
2
j

∣∣
det(Ma)

,

Using theorem 2.2 and θ1 + θ2 <
π
2 we obtain:

J(x) ≥ min
i,j∈E2

det
(
d1
i , d

2
j

)
≥ cos(θ1 + θ2) min

i,j∈E2

∣∣Ma(i,j)d
1
i

∣∣ ∣∣Ma(i,j)d
2
j

∣∣
det
(
Ma(i,j)

)
> 0.

Note that as T is in BDa , there is a finite number of different dli and despite E2

is infinite, the min in the two lines above is indeed a minimum (and not only an
infimum). This allows to deduce the strict positivity of the Jacobian. �

Instead of ensuring the positivity of Ji,j for (i, j) ∈ E2, it is now sufficient to
ensure some constraints on neighborhoods defined by L1 and L2. The number
of constraint per node is cut down from 4n2 to 4n and we will see that large
deformations are still possible.

3.3. Choosing theMa matrices. The sufficient condition in theorem 3.3 depends
on a family of matrices in Ma ∈ GL+(D,R), where the index a corresponds to a
node index. Each of these matrices defines a metric near the corresponding B-
spline node that enables to enlarge the space of acceptable B-spline vector field
compared to the trivial case (chosing Ma as the identity). For example, if used
as an additional "slack" variable in an optimisation problem involving invertible
B-spline vector fields, it is expected that the Ma will be chosen by the algorithm
to make the condition as strong as possible, i. e. to enlarge the search space. An
interesting possibility is to fix Ma as Ma = J−1

a where Ja is the finite difference
B-spline Jacobian matrix on the node a: Ja = (d1

a, d
2
a). In this case, the additional

condition ∀a,det(Ja) > 0 is required. We will see in section 5 that with this choice
the set of B-spline diffeomorphism satisfying the invertibility condition is much
larger than with Ma = Id. The expressions involved in the invertibility theorems
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are also simplified. For example, Mad
l
a = el, the lth element of the canonical basis.

The following corollary summarize this case.

Corollary 3.4 (to theorem 3.3). Let (θ1, θ2) ∈
[
0, π2

]2 such that θ1 +θ2 <
π
2 . Let’s

consider T ∈ B2
a,
(
dli
)
i∈Z2,l∈{1,2} its finite difference coefficients and J its Jacobian.

If ∀a ∈ Z2, det (Ja) > 0 and for all (a, l) ∈ Z2 × Z2{
l − a ∈ L1 =⇒ J−1

a d1
l ∈ Ce1,θ1

l − a ∈ L2 =⇒ RJ−1
a d2

l ∈ Ce1,θ2
then for all x ∈ R2, we have

J(x) > 0.

4. 3D Diffeomorphic B-spline Vector Field

In 3D, the problem is more involved. Indeed, the determinant is no longer
bilinear but trilinear. As it can still be expressed using a dot product: det(x, y, z) =
(x ∧ y)T z, the problem is now to find a tractable expression of the cross product
of two cones in R3. This raises another question: what cone should we use? As
opposed to the 2-dimensional case, cones can have different shapes in R3.

The question of the cross product of convex cones will be solved in section 4.1, in
section 4.2, we will introduce p-cones, a family of cones with interesting properties
for the cross product operator. More specifically, we are able to derive the analytical
expression of the cross product of 1-cones under certain conditions. In sections 4.3
and 4.4, we propose two sets of conditions on the B-spline coefficients to guarantee
that the vector field is invertible.

4.1. The cross product of convex cones. In this section, we will find a pa-
rameterization of the cross product of two convex cones. Instead of an implicit
representation of the cross product of cones, we will find a three parameters ex-
plicit expression.

Theorem 4.1. Let f : R3 → R be a real homogeneous function of degree 1, convex
and continuous and the convex cone Cf = f−1 (R−) \ {0}, where R− = (−∞, 0].
We assume it exists u ∈ R3 such that Cf ⊂

{
x ∈ R3|uTx > 0

}
and we define the

directrix of Cf relative to u as the curve Df =
{
x ∈ R3

∣∣f(x) = 0 and uTx = 1
}
.

Let g and v be a function and a vector sharing the same properties as f and u and
let’s define the set Cg and Dg accordingly.

If Cf ∩ Cg = ∅ and Cf ∩ −Cg = ∅ then

Cf ∧ Cg = R+∗ Df ∧Dg.

Proof. The inclusion R+∗Df ∧Dg ⊂ Cf ∧ Cg is trivial.
To prove the opposite inclusion, let’s consider (a, b) ∈ Cf × Cg. The function

t 7→ f ((1− t)a+ tb) is continuous and it takes the value f(a) ≤ 0 for t = 0 and
f(b) > 0 for t = 1. So, using the intermediate value theorem, there exists ta ∈ [0, 1[
such that f(ã) = 0 with ã = (1− ta)a+ tab. Note that as Cf ∩−Cg = ∅, ã cannot
be null. Similarly, there exists tb ∈]0, 1] such that b̃ = (1− tb)a+ tbb is not null and
g(b̃) = 0.

As f(ã) = 0 and ã 6= 0 then ã ∈ Cf and consequently a1 = uT ã is strictly
positive. Similarly, b̃ ∈ Cg and b1 = vT b̃ is also strictly positive.
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We can compute the cross product of ã and b̃:

ã ∧ b̃ = [(1− ta)a+ tab] ∧ [(1− tb)a+ tbb]

= (tb − ta) a ∧ b.

If tb ≤ ta, then b̃ ∈ [a, ã] and as Cf is convex then b̃ ∈ Cf ∩Cg = ∅ so tb− ta > 0.
As a result, if we set λ = a1b1

tb−ta > 0, a′ = ã
a1
∈ Df and b′ = b̃

b1
∈ Dg, we have

a ∧ b = λa′ ∧ b′ which proves the second inclusion. �

This theorem provides a global parameterization of the cross product of two
convex cones once their directrixes are parameterized. The problem is now to find
two functions x(α) and y(β) to describe Df and Dg. In this case, the points of
Cf ∧ Cg are λx(α) ∧ y(β).

4.2. p-cones and their cross product. In this section, we define and give some
properties of the family of cones we will use in the remainder of the paper. These
cones have interesting characteristics when it comes to the computation of their
cross product.

Definition 4.2 (p-cones). If U = (ui)i is an orthonormal basis of RD, we define
the p-cone of semi-angle θu ∈

[
0, π2

[
in the basis U by:

CpU,θu =

x =

D∑
i=1

xiui

∣∣∣∣∣∣x1 > 0 and

(∑
i>1

|xi|p
) 1
p

≤ tan(θu)x1

 .

Its directrix relative to u1 is the curve defined as:

Dp
U,θu

=

x = u1 +
∑
i>1

xiui

∣∣∣∣∣∣
(∑
i>1

|xi|p
) 1
p

= tan(θu)

 .

Note that 2-cones are simply circular cone, they do not depend on the basis U
but only on the direction of u1:

Cu,θu = C2
U,θu

where U = (ui)i, u1 = u
|u| and (ui)i>1 is any basis of the orthogonal space of

u ∈ RD\{0}.
In the proposition below, a few useful properties of p-cones are given.

Proposition 4.3 (p-cones properties). Let p ≤ q. Let U = (ui)i and V = (vi)i be
two orthonormal bases of RD, (θu, θv) ∈

[
0, π2

[2, θ′u = arctan
(

(D − 1)
1
p−

1
q tan(θu)

)
and let θuv = arccos

(
uT1 v1
|u1||v1|

)
be the angle between u1 and v1. The following

properties hold:
(1) when p ≥ 1, CpU,θu is convex.
(2) CqU,θu ⊂ C

p
U,θ′u

(3) CpU,θu ⊂ C
q
U,θu

(4) if p ≤ 2 and θu + θv < θuv then CpU,θu ∩ C
p
V,θv

= ∅
(5) if p ≤ 2 and θuv < π − (θu + θv) then CpU,θu ∩ −C

p
V,θv

= ∅

Proof. see appendix B �

In R3, we can apply theorem 4.1 to parameterize the cross product of p-cones.
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Theorem 4.4. Let’s (θu, θv) ∈ [0, π2 [, p ∈ [1, 2], let U = (ui)i and V = (vi)i be two

orthonormal bases of R3 and θuv = arccos
(

uT1 v1
|u1||v1|

)
be the angle between u1 and

v1.
If θu + θv < θuv < π − (θu + θv) then the cross product of the two p-cones CpU,θu

and CpV,θv can be parameterized by Dp
U,θu

and Dp
V,θv

, their directrixes relative to u1

and v1:
CpU,θu ∧ C

p
V,θv

= R+∗ Dp
U,θu
∧Dp

V,θv

Proof. As θu+θv < θuv < π− (θu+θv), using the properties 4 and 5 of proposition
4.3, we have CpU,θu ∩ C

p
V,θv

= ∅ and CpU,θu ∩ −C
p
V,θv

= ∅.

For x =
∑
xiui, we define f(x) =

(∑
i>1 |xi|

p) 1
p − tan(θu)x1. f is a continuous

real positive homogeneous function of degree 1. As p ≥ 1, it is also convex. We
have CpU,θu = f−1 (R−) \ {0} and if x ∈ CpU,θu then uT1 x = x1 > 0.

Defining similarly the g function for the CpV,θv p-cone, we apply theorem 4.1 and
we have

CpU,θu ∧ C
p
V,θv

= R+∗ Dp
U,θu
∧Dp

V,θv
.

�

The directrix of a p-cone can be easily parameterized using two functions cp and
sp by: x(α) = u1 + tan(θu) (u2cp(α) + u3sp(α))

For example, 2-cones can be parameterized using the functions c2(t) = cos(t) and
s2(t) = sin(t) on [−π, π] and 1-cones can be parameterized using the two 4-periodic
functions c1 and s1 defined on [−2, 2] by:

(4.1) c1(t) = 1− |t| ,

and

(4.2) s1(t) =

∣∣∣∣∣∣
−2− t if t ∈ [−2,−1]
t if t ∈ [−1, 1]

2− t if t ∈ [1, 2],

Note that using these definitions, for p ∈ {1, 2} and for all t we have: cp(t) ∈
[−1, 1] and sp(t) ∈ [−1, 1].

4.3. 3D Diffeomorphic B-spline Vector Field Condition with 1-cone.

4.3.1. The cross product of 1-cones. Results of the previous section enable the pa-
rameterization of the cross product of p-cones. However, we still need a more
explicit representation. In a specific case, the cross product of 1-cones have a
simple analytical expression. We first define, given two non zeros vectors, what we
called their associated bases and then the expression of the cross product of 1-cones
defined in these bases.

Definition 4.5. Let u ∈ R3 and v ∈ R3 be two linearly independent vectors, we
define U and V , the two orthonormal bases associated to u and v by

U = (u1, u2, u3) =

(
u

|u|
,
u ∧ v
|u ∧ v|

,
u ∧ (u ∧ v)

|u| |u ∧ v|

)
and

V = (v1, v2, v3) =

(
v

|v|
,
u ∧ v
|u ∧ v|

,
v ∧ (u ∧ v)

|v| |u ∧ v|

)
.
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Lemma 4.6. Let (θu, θv) ∈
[
0, π4

[2, and u and v be two vectors in R3\{0} such
that

θu + θv < θuv < π − (θu + θv).

where θuv = arccos
(
uT v
|u||v|

)
is the angle between u and v. Let U and V be the

orthonormal bases associated to u and v.
If we set cuv = cos θuv, suv = sin θuv, tu = tan θu and tv = tan θv, and if we

define the two positive numbers MX and MY by

MX = max

{
tv
suv

,
tutv

suv(suv − tv |cuv|)

}
,

MY = max

{
tu
suv

,
tutv

suv(suv − tu |cuv|)

}
and the cone Bu,v,θu,θv by

Bu,v,θu,θv = {au2 + bu3 + cv3 |a > 0 and |b| ≤MXa and |c| ≤MY a}
then, we have

C1
U,θu ∧ C

1
V,θv ⊂ Bu,v,θu,θv .

If MX = tv
suv

and MY = tu
suv

then

C1
U,θu ∧ C

1
V,θv = Bu,v,θu,θv .

Proof. As θu + θv < θuv < π − (θu + θv), we can apply theorem 4.4 and we have

C1
U,θu ∧ C

1
V,θv = R+∗ D1

U,θu ∧D
1
V,θv .

Using the function c1 and s1 defined by the expressions 4.1 and 4.2, we param-
eterize the directrix D1

U,θu
in the basis U with

x(α) = u1 + tu (u2c1(α) + u3s1(α))

and D1
V,θv

in the basis V with

y(β) = v1 + tv (v2c1(β) + v3s1(β))

and define the cross product

z(α, β) = x(α) ∧ y(β).

To derive an explicit expression of z(α, β), one can first remark that cuv = uT v
|u||v|

and suv = |u∧v|
|u||v| and that using the double cross product formula, we have:

u3 = u
(uT v)

|u| |u ∧ v|
− v |u|2

|u| |u ∧ v|

= u1
cuv
suv
− v1

1

suv
and

v3 = u
|v|2

|v| |u ∧ v|
− v (uT v)

|v| |u ∧ v|

= u1
1

suv
− v1

cuv
suv

One can also notice that:

(4.3) uT1 v1 = uT3 v3 = cuv.
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We now write the cross product of the vectors of the two bases U and V :

(4.4)
u1 ∧ v1 = suvu2 u2 ∧ v1 = −v3 u3 ∧ v1 = cuvu2

u1 ∧ v2 = u3 u2 ∧ v2 = 0 u3 ∧ v2 = −u1

u1 ∧ v3 = −cuvu2 u2 ∧ v3 = v1 u3 ∧ v3 = suvu2

and express z in the (non orthonormal) basis (u2, u3, v3):

z(α, β) = x(α) ∧ y(β)

= zu2
(α, β)u2 + zu3

(α, β)u3 + zv3(α, β)v3

= (suv − tvcuvs1(β) + tucuvs1(α) + tutvsuvs1(α)s1(β))u2

+

(
tvc1(β)− tutv

1

suv
c1(α)s1(β) + tutv

cuv
suv

s1(α)c1(β)

)
u3

−
(
tuc1(α)− tutv

cuv
suv

c1(α)s1(β) + tutv
1

suv
s1(α)c1(β)

)
v3

Let’s prove now that for all α and β, zu2
(α, β) is strictly positive. We have:

zu2(α, β) = (suv − tvcuvs1(β) + tucuvs1(α) + tutvsuvs1(α)s1(β)) ,

≥ (suv − tv |cuv| − tu |cuv| − tutvsuv) ,

= suv (1− tutv)
(

1− tv + tu
1− tutv

|cuv|
suv

)
,

= suv (1− tutv)
(

1− |cot(θuv)|
cot(θu + θv)

)
.

As (θu, θv) ∈
[
0, π4

[2, tu and tv are in [0, 1[ and as θu + θv < θuv < π − (θu + θv)
|cot(θuv)| < cot(θu + θv) and then ∀α∀β zu2(α, β) > 0

We can now define

Xθu,θv (α, β) =
zu3

(α, β)

zu2
(α, β)

=
tvc1(β)− tutv 1

suv
c1(α)s1(β) + tutv

cuv
suv

s1(α)c1(β)

suv − tvcuvs1(β) + tucuvs1(α) + tutvsuvs1(α)s1(β)

and

Y θu,θv (α, β) = − zv3(α, β)

zu2(α, β)

=
tuc1(α)− tutv cuvsuv

c1(α)s1(β) + tutv
1
suv

s1(α)c1(β)

suv − tvcuvs1(β) + tucuvs1(α) + tutvsuvs1(α)s1(β)
.

As c1 is even and s1 is odd, one can first notice that

Y θu,θv (α, β) = Xθv,θu(−β,−α)(4.5)

and consequently, we can restrict our analysis to the study of Xθu,θv . To simplify
the notation, we write X for Xθu,θv when there is no ambiguity.

As both c1 and s1 are 4-periodic, so is X: the analysis of X can be restricted
to (α, β) ∈ [−2, 2]2. To find the extrema of the X function, let’s define K =
{−2,−1, 0, 1} and Ki,j = [i, i+1]× [j, j+1]. As c1 and s1 are both piecewise affine,
for (i, j) ∈ K2, X/Ki,j is the ratio of two bilinear functions. The denominator being
strictly positive, X/Ki,j (α, .) and X/Ki,j (., β) have no pole and are both monotonic
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on [i, i + 1] and [j, j + 1]. Consequently, the extrema of X/Ki,j are on the corners
of Ki,j and

max
(α,β)∈[−2,2]2

X(α, β) = max
(i,j)∈K2

max
(α,β)∈Ki,j

X(α, β) = max
(i,j)∈K2

X(i, j).

We can compute the values of X(i, j) for (i, j) ∈ K2 (again, the 4-periodicity of
X allows to avoid computing X(., 2) and X(2, .)):

X(.,−2) X(.,−1) X(., 0) X(., 1)

X(−2, .) − tv
suv

− tutv
1
suv

suv+tvcuv
tv
suv

+
tutv

1
suv

suv−tvcuv

X(−1, .) − tv
suv

0 tv
suv

0

X(0, .) − tv
suv

+
tutv

1
suv

suv+tvcuv
tv
suv

− tutv
1
suv

suv−tvcuv

X(1, .) − tv
suv

0 tv
suv

0

As tu > 0, tv > 0 and the denominator is always strictly positive, the sign of the
values of X(i, j) can be easily deduced. When X(i, j) is strictly positive, it takes
its values in the set:{

tutv
suv(suv − tvcuv)

,
tv
suv

,
tutv

suv(suv + tvcuv)

}
So if MX = max

{
tv
suv

, tutv
suv(suv−tv|cuv|)

}
, we have

max
(α,β)∈[−2,2]2

X(α, β) = MX ,

and similarly, we prove that

min
(α,β)∈[−2,2]2

X(α, β) = −MX .

Using the equation 4.5, we also prove that

max
(α,β)∈[−2,2]2

Y (α, β) = MY

and
min

(α,β)∈[−2,2]2
Y (α, β) = −MY ,

with MY = max
{
tu
suv

, tutv
suv(suv−tu|cuv|)

}
.

We can conclude that

C1
U,θu ∧ C

1
V,θv ⊂ Bu,v,θu,θv .

Let’s now make the additional asumption that MX = tv
suv

and MY = tv
suv

. In
this case, one can notice that for all α:

X(α, 0) =
tv
suv

= MX

and

X(α, 2) = − tv
suv

= −MX
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Using the equation 4.5, we also prove that Y (0, β) = MY and Y (2, β) = −MY .
With these results on the [0, 2]2 square border, the Poincaré-Miranda theorem can
be use to prove that for all (x, y) ∈ [−MX ,MX ]× [−MY ,MY ], there exists (α, β) ∈
[0, 2]2 such that X(α, β) = x and Y (α, β) = y and consequently, when MX = tv

suv

and MY = tv
suv

, we have C1
U,θu
∧ C1

V,θv
= Bu,v,θu,θv .

�

Once we know Bu,v,θu,θv , the cross product of two 1-cones, we need to find the
vectors having a positive dot product with all the elements of Bu,v,θu,θv . This is by
definition the dual cone of Bu,v,θu,θv and its expression is given below.

Lemma 4.7. Let u, v, θu, θv, MX and MY defined as in lemma 4.6, the dual cone
of Bu,v,θu,θv is given by

B+
u,v,θu,θv

=
{
z
∣∣ zT (u2 ±MXu3 ±MY v3) ≥ 0

}
Proof. Bu,v,θu,θv is a polyhedral cone with its four edges generated by u2±MXu3±
MY v3. Its dual cone is given by the vectors z such that the scalar products between
z and the four edges are positives. �

4.3.2. The θu = θv case. When θu = θv, the different mathematical expressions
involved can be considerably simplified.

Proposition 4.8. For θu = θv ∈
[
0, π4

[
, we have

MX = MY =
tu
suv

.

Proof. see appendix C. �

4.3.3. 3 Dimensional Diffeomorphic Condition with 1-cone. In 3-dimension, ac-
cording to theorem 2.2, diffeomorphicity can be obtained by ensuring the positivity
of the Jacobian coefficients Ji,j,k for (i, j, k) ∈ E3. We will see in the theorem below
that the positivity condition of Ji,j,k on E3 can be replaced by constraints between
each node and its neighbors. The neighborhoods in question are defined by the
three squares P 1, P 2 and P 3:

P 1 = {0} × I− × I−
P 2 = I− × {0} × I−
P 3 = I− × I− × {0}

Theorem 4.9. Let T ∈ B3
a,
(
dli
)
i,l

its finite difference coefficients and J its Jaco-
bian.

Let (θ1, θ2) ∈
[
0, π4

[2, (Ma)a∈Z3 a set of matrices in GL+(D,R) and let Ua and
Va be the bases associated with Mad

1
a and Mad

2
a according to definition 4.5.

If ∀a ∈ Z3,
θ1 + θ2 < θMad1a,Mad2a

< π − (θ1 + θ2)

and ∀(a, l) ∈ Z3 × Z3
l − a ∈ P 1 =⇒ Mad

1
l ∈ C1

Ua,θ1

l − a ∈ P 2 =⇒ Mad
2
l ∈ C1

Va,θ2

l − a ∈ P 3 =⇒ Mad
3
l ∈ B̊

+
Mad1a,Mad2a,θ1,θ2
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where B̊+
Mad1a,Mad2a,θ1,θ2

is the interior of the dual cone of BMad1a,Mad2a,θ1,θ2
then for

all x ∈ R3

J(x) > 0.

Proof. Let (i, j, k) ∈ E3. If we define a = (i1, j2, k3) ∈ Z3 then we have i− a ∈ P 1,
j − a ∈ P 2 and k − a ∈ P 3. Consequently, we have Mad

1
i ∈ C1

Ua,θ1
, Mad

2
j ∈ C1

Va,θ2

and Mad
3
k ∈ B̊

+
Mad1a,Mad2a,θ1,θ2

.

But using lemma 4.6,Mad
1
i∧Mad

2
j ∈ BMad1a,Mad2a,θ1,θ2

and asMad
3
k ∈ B̊

+
Mad1a,Mad2a,θ1,θ2

,
lemma 4.7 implies

det
(
d1
i , d

2
j , d

3
k

)
=

det
(
Mad

1
i ,Mad

2
j ,Mad

3
k

)
det(Ma)

,

=

(
Mad

1
i ∧Mad

2
j

)
)TMad

3
k

det(Ma)
,

> 0.

Using theorem 2.2, we have ∀x ∈ R3:

J(x) ≥ min
i,j,k∈E3

det
(
d1
i , d

2
j , d

3
k

)
> 0.

As T is in BDa , there is a finite number of different dli and despite E3 is infinite,
the min in the lines above is indeed a minimum (and not only an infimum). This
allows to deduce the strict positivity of the Jacobian.

�

4.4. 3D Diffeomorphic B-spline Vector Field Condition with 2-cone. In
this section, we derive a set of conditions valid for 2-cones. 2-cones have the advan-
tages over others p-cones that they can be defined using a single smooth inequality
constraint and are symmetric about their axis. These properties can be useful when
the conditions are used within a numerical algorithm.

In the following lemma, we will find a circular cone enclosing the Bu,v,θu,θv cone.

Lemma 4.10. Let u and v be two vectors of R3\{0} and (θu, θv) ∈
[
0, π4

[2 where

θuv = arccos
(
uT v
|u||v|

)
such that θu + θv < θuv < π − (θu + θv). Let also MX and

MY be defined as in lemma 4.6. We have:

Bu,v,θu,θv ⊂ Cu∧v,θ̄uv
with

θ̄uv = θ̄(θu, θv, θuv)

= arctan

(√
M2
X +M2

Y + 2MXMY |cuv|
)
.

Proof. see appendix D. �

4.4.1. The cross product of circular cones.

Proposition 4.11. Let (θu, θv) ∈
[
0, π4

[2, θ′u = arctan
(√

2 tan θu
)
, θ′v = arctan

(√
2 tan θv

)
and let u and v be two non zero vectors such that

θ′u + θ′v < θuv < π − (θ′u + θ′v).
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where θuv = arccos
(
uT v
|u||v|

)
is the angle between u and v.

If we set θ̄′uv = θ̄(θ′u, θ
′
v, θuv), we have

Cu,θu ∧ Cv,θv ⊂ Cu∧v,θ̄′uv .

Proof. Let’s define the basis U = (u1, u2, u3) and V = (v1, v2, v3) as in the hypoth-
esis of the lemma 4.6. Using property 2 of proposition 4.3, the circular cone can be
bounded: Cu,θu = C2

U,θu
⊂ C1

U,θ′u
and Cv,θv = C2

V,θv
⊂ C1

V,θ′v
As θ′u + θ′v < θuv < π − (θ′u + θ′v), lemma 4.6 can be applied:

C1
U,θ′u
∧ C1

V,θ′v
⊂ Bu,v,θ′u,θ′v .

Using lemma 4.10, we have

Cu,θu ∧ Cv,θv ⊂ Bu,v,θ′u,θ′v ⊂ Cu∧v,θ̄′uv .
�

4.4.2. θ̄ extrema. The range of of θ̄ is important for the practical use of our condi-
tion. It is given by the following proposition.

Proposition 4.12 (θ̄ extrema). Let (θu, θv) ∈
[
0, π4

[2 then the function θ̄ (θv, θv, .)

is decreasing on
]
θu + θv,

π
2

]
and increasing on

[
π
2 , π − (θu + θv)

[
.

Proof. see appendix E �

The extrema of θ̄ can be deduced from the last proposition:

min
θuv∈]θu+θv,π−(θu+θv)[

θ̄ (θu, θv, θuv) = θ̄
(
θu, θv,

π

2

)
(4.6)

= arctan
(√

tan2 θu + tan2 θv

)
(4.7)

and

sup
θuv∈]θu+θv,π−(θu+θv)[

θ̄ (θu, θv, θuv) = θ̄ (θu, θv, θu + θv) .

4.4.3. The θu = θv case. When θu = θv, the different mathematical expressions
involved can be simplified. These expressions are given in the following proposition.

Proposition 4.13. For θu ∈
[
0, π4

[
We have

θ̄uv = θ̄(θu, θu, θuv)

= arctan

( √
2tu√

1− |cuv|

)
.

Proof. see appendix F. �

These expressions allow us for example to compute the extrema of the θ̄ function.

Corollary 4.14 (θ̄ extrema). For θ ∈
[
0, π4

[
, we have

min
2θ<t<π−2θ

θ̄(θ, θ, t) = θ̄
(
θ, θ,

π

2

)
= arctan

(√
2 tan θ

)
and

sup
2θ<t<π−2θ

θ̄(θ, θ, t) = θ̄ (θ, θ, 2θ) = arctan

(
tan θ

cos θ

)
.

Proof. These expressions are given by a direct application of propositions 4.12 and
4.13 and by using that 1− cos(2θ) = 2 cos2(θ). �
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4.4.4. 3D Diffeomorphic B-spline Vector Field Condition with 2-cone. The follow-
ing theorem is the 2-cone counterpart of theorem 4.9. It shows that, under con-
ditions, if neighbors node finite difference coefficients belong to the same circular
cone, invertibility can be guaranteed.

Theorem 4.15. Let (θ1, θ2) ∈
[
0, π4

[2, θ3 ∈
[
0, π2 − arctan

(√
2
√

tan2 θ1 + tan2 θ2

)[
,

and let’s define the angles θ′i = arctan
(√

2 tan(θi)
)
. Let T ∈ B3

a,
(
dli
)
i∈Z3,l∈{1,2,3}

its finite difference coefficients and J its Jacobian. We also consider (Mi)i∈Z3 , a
set of matrices in GL+(D,R).

If for all index (a, l) ∈ Z3 × Z3, we have
l − a ∈ P 1 =⇒ Mad

1
l ∈ CMad1a,θ1

l − a ∈ P 2 =⇒ Mad
2
l ∈ CMad2a,θ2

l − a ∈ P 3 =⇒ Mad
3
l ∈ CMad1a∧Mad2a,θ3

and if for all a ∈ Z3

θ′1 + θ′2 < θMad1a,Mad2a
< π − (θ′1 + θ′2)

and
θ̄(θ′1, θ

′
2, θMad1a,Mad2a

) <
π

2
− θ3

then for all x ∈ R3

J(x) > 0.

Proof. Let (i, j, k) ∈ E3. If we define a = (i1, j2, k3)Z3 then we have i − a ∈ P 1,
j − a ∈ P 2 and k − a ∈ P 3. Consequently, we have

Mad
1
i ∈ CMad1a,θ1

,
Mad

2
j ∈ CMad2a,θ2

,
Mad

3
k ∈ CMad1a∧Mad2a,θ3

By using proposition 4.11, if we set φa = θ̄(θ′1, θ
′
2, θMad1a,Mad2a

) we have

Mad
1
i ∧Mad

2
j ∈ CMad1a,θ1

∧ CMad2a,θ2
⊂ CMad1a∧Mad2a,φa

and Ji,j,k can be bounded below:

det
(
d1
i , d

2
j , d

3
k

)
=

det
(
Mad

1
i ,Mad

2
j ,Mad

3
k

)
det(Ma)

,

=

(
Mad

1
i ∧Mad

2
j

)
)TMad

3
k

det(Ma)
,

≥ cos(φa + θ3)

∣∣Mad
1
i ∧Mad

2
j

∣∣ ∣∣Mad
3
k

∣∣
det(Ma)

,

> 0

where lemma 3.2 was used on the third line. Consequently, using theorem 2.2, one
can deduce that ∀x ∈ R3:

J(x) ≥ min
i,j,k∈E3

det
(
d1
i , d

2
j , d

3
k

)
> 0

As T is in BDa , there is a finite number of different dli and despite E3 is infinite,
the min in the lines above is indeed a minimum (and not only an infimum). This
allows to deduce the strict positivity of the Jacobian. �
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The condition θ3 ∈
[
0, π2 − arctan

(√
2
√

tan2 θ1 + tan2 θ2

)[
is an admissibility

condition for the values of the θi. Indeed, to be able to find coefficients satisfying
the condition

θ̄(θ′1, θ
′
2, θMad1a,Mad2a

) <
π

2
− θ3

of the hypothesis, θ3 should be chosen at least such that

min
θ
θ̄(θ′1, θ

′
2, θ) = arctan

(√
2
√

tan2(θ1) + tan2(θ2)

)
<
π

2
− θ3.

The three angles θ1, θ2 and θ3 enable to control the degree of regularization in
a direction or another. When there is no known anisotropy in the problem the
B-spline vector field is involved in, the three θi should be equal. The value of the
angle should in this case be strictly lower than θmax, defined as the solution of the
equation:

θmax =
π

2
− arctan

(√
2
√

2 tan2 θmax
)
,

which is given by θmax = arctan
(

1√
2

)
.

4.5. Choosing the Ma matrices. Similarly to the 2D case presented in section
3.3, the matrices Ma can be let as free variables or fixed. If they are fixed, we
will consider the possibility to choose them all equal to the 3D identity matrix
or as Ma = J−1

a where Ja = (d1
a, d

2
a, d

3
a). As we will see in section 5, choosing

Ma = J−1
a the set of B-spline diffeomorphisms satisfying the invertibility condition

is much larger than Ma = Id. Furthermore, as Mad
l
a = el, the lth element of the

canonical basis, the angle between Mad
1
a and Mad

2
a is constant and equal to π

2 and
consequently, the angular conditions can be removed from theorems 4.9 and 4.15
hypothesis. One can also note that the bases associated with Mad

1
a and Mad

2
a are

constant and composed of vectors of the canonical basis. Regarding lemma 4.6,
one can remark that MX = tv and MY = tu and consequently that we are in the
equality case of the lemma: lemma 4.6 gives the exact expression of two cones cross
products.

The case Ma = J−1
a is given by the following corollaries.

Corollary 4.16 (to theorem 4.9). Let T ∈ B3
a,
(
dli
)
i∈Z3,l∈{1,2,3} its finite difference

coefficients and J its Jacobian.
Let (θ1, θ2) ∈

[
0, π4

[2, U = (e1, e3,−e2) and V = (e2, e3, e1) be the basis associ-
ated with e1 and e2 and B̊+ = {z =

∑
i ziei |z3 > max(tu |z1| , tv |z2|)}.

If ∀a ∈ Z3, det(Ja) > 0 and for all (a, l) ∈ Z3 × Z3
l − a ∈ P 1 =⇒ J−1

a d1
l ∈ C1

U,θ1

l − a ∈ P 2 =⇒ J−1
a d2

l ∈ C1
V,θ2

l − a ∈ P 3 =⇒ J−1
a d3

l ∈ B̊+

then for all x ∈ R3

J(x) > 0.

Corollary 4.17 (to theorem 4.15). Let (θ1, θ2) ∈
[
0, π4

[2 and the angle θ3 ∈[
0, π2 − arctan

(√
2
√

tan2 θ1 + tan2 θ2

)[
such that

arctan
(√

2 tan(θ1)
)

+ arctan
(√

2 tan(θ2)
)
<
π

2
.
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Let T ∈ B3
a,
(
dli
)
i,l

its finite difference coefficients and J its Jacobian.
If ∀a ∈ Z3, det(Ja) > 0 and for all (a, l) ∈ Z3 × Z3 l − a ∈ P 1 =⇒ J−1

a d1
l ∈ Ce1,θ1

l − a ∈ P 2 =⇒ J−1
a d2

l ∈ Ce2,θ2
l − a ∈ P 3 =⇒ J−1

a d3
l ∈ Ce3,θ3

then for all x ∈ R3

J(x) > 0.

5. Analysis of the conditions

Choi, Lee [8] Kim, Chun, Sdika [22] New
Fessler [13, 9] Id J−1

a

A ' Id, b ' 0 A ' Id det(A) > 0 A ' QΛ det(A) > 0
Table 1. Restrictions when the transformation is the affine trans-
form T (x) = Ax+b. Q is a rotation matrix, Λ is a diagonal matrix
with strictly positive diagonal coefficients.

As in [22], we will use affine transforms to compare the sharpness of our condi-
tion to the state of the art. As it does not investigate nonlinear transforms, this
criterion is not fully satisfying. However, the analysis using affine transforms is still
interesting. First, affine transforms can be exactly represented by B-splines:

Ax+ b =
∑
i

ciβ
(x
h
− i
)

when the B-spline coefficients are ci = A(hi)+b. Finite difference coefficients in the
direction l are dli =

ci−ci−el
hl

= Ael = Al, the lth column vector of the matrix A. The
other reason is that, as B-splines have a local support, our analysis also provides an
insight on the local behavior allowed for more general nonlinear transforms. The
results of this section are summarized in the table 1.

In the literature, three other sufficient conditions have been proposed.
In [8], Choi and Lee proposed to bound the displacement coefficients:∣∣cli − ilhl∣∣ < hl

K
,

where K is a given constant. This condition constrains A to be close to the identity
and b to be very small.

In [13, 9], Kim, Chun and Fessler guaranteed the invertibility by keeping the
finite differences coefficients close to the canonical basis:

‖dli − el‖∞ < K,

where K = 1
D . When applied to the affine transform Ax+b, the condition becomes

‖(A− I)el‖∞ < K.

All translations are now accepted, however, A must be close enough to the identity.
In [22], the invertibility is guaranteed by keeping the Jacobian coefficients posi-

tive:
Ji1,...,iD > 0.
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When applied to Ax + b, this last condition simply becomes det(A) > 0 and is
satisfied by all the affine transforms of interest. While this last condition is sharp
within the affine transform subspace, it has a very high complexity.

The conditions proposed in this work are studied below. We will differentiate
the cases Ma = Id from the case Ma = J−1

a .

5.1. Case Ma = Id.

5.1.1. Analysis of the 2D conditions. According to theorem 3.3, a 2-dimensional
B-spline vector field T (x) = Ax+ b is a diffeomorphism when for given θ1 +θ2 <

π
2 :

A1 ∈ CA1,θ1

RA2 ∈ CA1,θ2

and one can see that the first condition is always true when A1 6= 0. The second
condition can be expressed as

det(A) ≥ |A1| |A2| cos θ2

or ∣∣∣θA1,A2
− π

2

∣∣∣ ≤ θ2.

The two column vectors of the matrix A should be sufficiently orthogonal. One can
remark that if T (x) = QΛx + b with Q a rotation and Λ a diagonal matrix with
strictly positive diagonal coefficients, it always satisfies the hypothesis of theorem
3.3.

5.1.2. Analysis of the 3D condition with 1-cones. T (x) = Ax + b satisfies the hy-
pothesis of the theorem 4.9 when:

A1 ∈ C1
Ua,θ1(5.1)

A2 ∈ C1
Va,θ2(5.2)

A3 ∈ B̊+
A1,A2,θ1,θ2

.(5.3)

θ1 + θ2 < θA1,A2
< π − (θ1 + θ2)(5.4)

The conditions 5.1 and 5.2 are always true when A1 6= 0 and A2 6= 0. The two
other conditions constrain A1 and A2 to be sufficiently orthogonal and A3 to be
sufficiently collinear to A1 ∧ A2. In words, the matrix A should be sufficiently
invertible. As in the 2D case, transforms of the type T (x) = QΛx + b satisfy the
conditions.

5.1.3. Analysis of the 3D condition with 2-cones. When T (x) = Ax+ b, the condi-
tions of theorem 4.15 become:

A1 ∈ CA1,θ1(5.5)
A2 ∈ CA2,θ2(5.6)
A3 ∈ CA1∧A2,θ3(5.7)

θ′1 + θ′2 < θA1A2
< π − (θ′1 + θ′2)(5.8)

θ̄(θ′1, θ
′
2, θA1,A2

) <
π

2
− θ3.(5.9)

Conditions 5.5 and 5.6 are both always true when A1 6= 0 and A2 6= 0. Conditions
5.8 and 5.9 enforce the linear independence of A1 and A2. The condition 5.7 ensures
that A3 is sufficiently orthogonal to A1 and A2.
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5.2. CaseMa = J−1
a = A−1. WhenMa = J−1

a , we haveMaAl = el, the lth element
of the canonical basis. This makes almost all the hypothesis of the corollaries 3.4,
4.16 and 4.17 unconditionally satisfied. The only remaining condition is det (Ja) =
det(A) > 0.

When Ma = J−1
a , all the affine transforms with positive determinant satisfy the

proposed conditions set with either the 1-cone or the 2-cone.

6. Complexity

We define the complexity of a set of conditions as the number of smooth in-
equalities that need to be satisfied for each node. The complexity for the different
conditions proposed in this work as well as our previous condition given in [22] are
reported in the table 2 for dimension up to three and B-spline degree up to four for
a general Ma matrices family. When Ma = Id and 2-cone are used, the symmetry
of the relation uRv ⇔ v ∈ Cu,θ can be used to divide the number of constraint by
two.

Degree 1D
2D 3D

[22] New [22] 1-cone 2-cone
n 1 4n2 4n NA 48n2 + 1 12n2 + 2
1 1 4 4 64 49 13
2 1 16 8 2744 193 49
3 1 36 12 27000 433 109
4 1 64 16 140608 769 193

Table 2. Number of constraints per node for a general Ma given
the dimension and the degree of the vector field.

As one can see, if the complexity is noticeably reduced in 2D, the reduction is
very important in 3D. From the huge set of conditions of [22], we end up with a
tractable set of condition, opening the way to a practical software implementation.

7. Numerical Experiments

The proposed condition has been visually evaluated on a classical 2D synthetic
image registration problem. The version with a fixed Ma = J−1 (corollary 3.4)
has been used for our implementation. A disk is deformed to match a C shape by
solving the following optimization problem:

(7.1) min
c∈C

1

N

∑
x

|Im(T (c, x))− If (x)|2 ,

where c are the B-spline coefficients, N the number of pixels, Im, the moving image,
If the fixed image and C, the domain of the B-spline coefficients. The problem was
solved for different C: in the first experiment, our condition is compared to other
sufficient conditions of the literature, in the second experiment, we observe the
behaviour of the registration when the θ1 and θ2 parameters vary. As in [22],
the problem 7.1 is solved by the multipliers method. The inequality constrained
problem is solved by solving a succession of unconstrained problems: alternatingly,
the augmented Lagragian is minimized with respect to the B-spline coefficients
and the Lagrange multipliers and the penalization coefficient are updated. The
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(a) Fixed Image (b) Moving Image (c) No Constraint (NO) (d) No Constraint (NO)

(e) Choi Lee (BC) (f) Choi Lee (BC) (g) Kim Chun Fessler
(DC)

(h) Kim Chun Fessler
(DC)

(i) Sdika [22] (CJ) (j) Sdika [22] (CJ) (k) New Constraint (l) New Constraint

Figure 1. Results of the registration for different methods: the
floating image and a grid are mapped through the transformation.
A contour image of the fixed image is overlaid on these images.

algorithm is run until convergence and the inequalities are strictly satisfied at the
end of the algorithm. The LBGFS algorithm [14], which is able to handle large
scale problems, is used for unconstrained minimization. More details can be found
in [22].

7.1. Comparison to state of the art. In this experiment, the problem was
solved for different C: without constraint (NO), with the bound constraints on
the displacement coefficients of [8] (BC), with the bound constraints on the finite
difference coefficients of [13, 9] (DC), our condition on the Jacobian coefficients
[22] (JC) and the proposed 2D condition (New). For the New condition, we used
θ1 = θ2 = π

4 − 0.001. For all the problems, the input images are both 300 × 300,
the node spacing is 6 pixels in each direction, the same multiresolution pattern is
used.

The fixed and moving images as well as the deformation of the moving image and
a regular grid for each C have been presented in figure 1. Without constraints, the
match is perfect but lots of folds are visible on the deformed grid. The unconstrained
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resolution gives Jacobian values as low as -7. As expected, for all other C, all the
Jacobian values are strictly positive. As one can see, BC and DC produce a very
regular deformation but are too restrictive to match the two shapes. In accordance
to the results of section 5, DC allows more freedom in the deformation than BC.
Both CJ and the new constraint enable a perfect match of the two shapes and
produce regular deformation. Note however that the new constraint produces a
grid that seems more distorted and less symetric than the grid produced with CJ in
the black region inside the C shape. As we are working with binary images, there
is not much information to drive the registration in regions away from image edges:
the cost function is flat in these regions which makes the output of the registration
somewhat variable.

7.2. θ1 and θ2 parameters. In this experiment, the same problem has been solved
using the corollary 3.4 to ensure invertibility. For the New condition, θ1 was set in
the range [0, π2 ] and θ2 was set as θ2 = π

2 − θ1 − 0.001.
The results of the registration are presented in figure 2. One can first notice

that the range of θ1 producing acceptable registration is quite large. As one can
see, for small θ1, not enough freedom is allowed for the deformation in the vertical
direction. For large θ1 (and small θ2), the opposite behaviour is obtained: the
constraint is too restrictive in the horizontal direction. These two parameters allow
to control the regularization in one direction or another in the very specific case
where something is known about the anisotropy of the problem.

8. Conclusion

In this work, we proposed several new sets of conditions on the coefficient of a
B-spline vector field to guarantee that it is a diffeomorphism. The new conditions,
while still allowing large deformations are now computationally tractable in 3D.
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Appendix A. Proof of lemma 3.2

We first prove a small lemma.

Lemma A.1. Let (θ1, θ2) ∈
[
0, π2

]2, and
f(λ) = λ cos θ1 −

√
1− 2λ cos θ2 + λ2

then
sup
λ≥0

f(λ) = cos(θ1 + θ2).

Proof. We will prove this lemma by first showing that cos(θ1 +θ2) is a upper bound
of f over R+ and then showing that this bound is either attained for a positive λ
when θ1 > 0 or is the limit of f at infinity when θ1 = 0. Note first that ∀θ2∀λ then
1− 2λ cos θ2 + λ2 ≥ 0 and f is well defined.
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θ1 = 10◦ θ1 = 20◦ θ1 = 30◦ θ1 = 40◦

θ1 = 50◦ θ1 = 60◦ θ1 = 70◦ θ1 = 80◦

Figure 2. Results of the registration for our new condition (corol-
lary 3.4) for different values of θ1 (in degree). A contour image of
the fixed image is overlaid on these images.

If there exists λ such that f(λ) > cos(θ1 + θ2) then

λ cos θ1 − cos(θ1 + θ2) >
√

1− 2λ cos θ2 + λ2

which implies

λ2 cos2 θ1 − 2λ cos(θ1) cos(θ1 + θ2) + cos2(θ1 + θ2) > 1− 2λ cos θ2 + λ2

λ2 sin2 θ1 + 2λ [cos θ1 cos(θ1 + θ2)− cos θ2] + sin2(θ1 + θ2) < 0

but as

cos θ1 cos(θ1 + θ2)− cos θ2 = cos2 θ1 cos θ2 − cos θ1 sin θ1 sin θ2 − cos θ2

= − sin2 θ1 cos θ2 − cos θ1 sin θ1 sin θ2

= − sin θ1 sin(θ1 + θ2),
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we have

λ2 sin2(θ1)− 2λ sin θ1 sin(θ1 + θ2) + sin2(θ1 + θ2) < 0

[λ sin θ1 − sin(θ1 + θ2)]
2

< 0

which is not possible. So ∀λ ≥ 0

f(λ) ≤ cos(θ1 + θ2).

Let’s now assume that θ1 > 0 and let’s define λ1 = sin(θ1+θ2)
sin(θ1) , then:

1− 2λ1 cos θ2 + λ2
1 = (λ1 − cos(θ2))

2
+ 1− cos2(θ2)

=

(
sin(θ1 + θ2)− cos(θ2) sin(θ1)

sin(θ1)

)2

+ sin2(θ2)

=
sin2(θ2) cos2(θ1)

sin2(θ1)
+ sin2(θ2)

=
sin2(θ2) cos2(θ1) + sin2(θ2) sin2(θ1)

sin2(θ1)

=
sin2(θ2)

sin2(θ1)
,

and consequently

f(λ1) =
sin(θ1 + θ2)

sin(θ1)
cos(θ1)− sin(θ2)

sin(θ1)

=
cos(θ1) sin(θ2) + sin(θ1) cos(θ2)

sin(θ1)
cos(θ1)− sin(θ2)

sin(θ1)

=

(
cos2(θ1)− 1

)
sin(θ2) + cos(θ1) sin(θ1) cos(θ2)

sin(θ1)

= − sin(θ1) sin(θ2) + cos(θ1) cos(θ2)

= cos(θ1 + θ2)

When θ1 = 0 and λ > 0 then f can be expressed as

f(λ) = λ−
√

1− 2λ cos θ2 + λ2

=
λ2 −

(
1− 2λ cos θ2 + λ2

)
λ+
√

1− 2λ cos θ2 + λ2

=
2λ cos θ2 − 1

λ+
√

1− 2λ cos θ2 + λ2

=
2 cos θ2 − 1

λ

1 +
√

1− 2
λ cos θ2 + 1

λ2

.

Consequently, when θ1 = 0, limλ→+∞ f(λ) = cos θ2 = cos(θ1 + θ2). �

We now prove proposition 3.2

Proof. Let’s assume first that |x| = |y| = |u| = 1, the general case can be easily
deduced from this case.
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For λ positive, we have

xT y = λxTu+ xT (y − λu)

≥ λxTu− |y − λu|
≥ λ cos θ1 −

√
1− 2λuT y + λ2

≥ λ cos θ1 −
√

1− 2λ cos θ2 + λ2.

As ∀λ ≥ 0 xT y ≥ f(λ) then xT y ≥ supλ f(λ) and finally, using lemma A.1

xT y ≥ cos(θ1 + θ2).

�

Appendix B. Proof of proposition 4.3

Proof. (1) This property is a simple consequence of the convexity of the p-norm
defining CpU,θu when p ≥ 1.

(2) If we apply the Hölder inequality

∑
i>1

|ai| |bi| ≤

(∑
i>1

|ai|r
) 1
r
(∑
i>1

|bi|
r
r−1

)1− 1
r

to ai = |xi|p, bi = 1 and r = q
p , we obtain

∑
i>1

|xi|p ≤

(∑
i>1

|xi|q
) p
q

(D − 1)
1− pq .

So if x ∈ CqU,θu , we have(∑
i>1

|xi|p
) 1
p

≤

(∑
i>1

|xi|q
) 1
q

(D − 1)
1
p−

1
q

≤ x1 tan(θu) (D − 1)
1
p−

1
q ,

which implies that x ∈ CpU,θ′u
(3) The case θu = 0 is obvious: CpU,0 = CqU,0. If θu > 0, let x ∈ CpU,θu . By

definition we have: ∑
i>1

(
|xi|

x1 tan(θu)

)p
≤ 1.

This implies that for i > 1 we have |xi|
x1 tan(θu) ≤ 1, consequently when p ≤ q(

|xi|
x1 tan(θu)

)q
≤
(

|xi|
x1 tan(θu)

)p
,

which implies that x ∈ CqU,θu .
(4) We consider only the case p = 2 as the case p < 2 can be easily deduced

using the case p = 2 and the property 3. To prove 4, we assume that
θu + θv < θuv and try to find the "closest" point from C2

V,θv
in C2

U,θu
by

solving
max

|x|2 = 1
xTu1 ≥ cos θu

xT v1.
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As the domain of this problem is compact and the cost function is contin-
uous, the supremum is also a local maximum. The global maximal value
vopt is reached at xopt and satisfy Karush Kuhn Tucker conditions:

v1 + λx− µu1 = 0(B.1)
x2 = 1(B.2)

µ
(
cos θu − uT1 x

)
= 0,(B.3)

with µ ≥ 0.
In the case µ = 0, we have v1 = −λx which implies λ2 = 1 and con-

sequently xopt = v1. But this means that v1 ∈ C2
U,θu

which contradicts
θu + θv < θuv.

In the case µ > 0, we have xTu1 = cos(θu). Considering the dot product
of B.1 with successively u1, x and v1, we obtain the system of equations:

cos(θuv) + λ cos(θu)− µ = 0(B.4)
vopt + λ− µ cos(θu) = 0(B.5)

1 + λvopt − µ cos(θuv) = 0.(B.6)

Using B.4 to substitute µ in the equation B.5 and B.6, we obtain after
simplification:

vopt + λ sin2(θu)− cos(θu) cos(θuv) = 0(B.7)
sin2(θuv) + λvopt − λ cos(θu) cos(θuv) = 0.(B.8)

When sin(θu) = 0, the only admissible point is u1, so vopt = u1v1 =
cos(θuv) = cos (θuv − θu). Otherwise, solving for λ in equation B.7 and
substituting in B.8, we obtain:

v2
opt − 2 cos(θu) cos(θuv)vopt + cos2(θu) cos2(θuv)− sin2(θuv) sin2(θu) = 0

which is a quadratic equation in vopt which is solved by:

vopt = cos(θu) cos(θuv)± sin(θuv) sin(θu).

The maximal value is obtained with the plus sign and in this case we have:

vopt = cos (θuv − θu) .

But when θu + θv < θuv we have cos (θv) > cos (θuv − θu) so ∀x ∈ C2
U,θu

we
have xT v1 < cos (θv) and consequently C2

U,θu
∩ C2

V,θv
= ∅.

(5) As −CpV,θv = Cp−V,θv and the angle between u1 and −v1 is π − θuv, the
property 5 is a simple consequence of the property 4.

�

Appendix C. Proof of proposition 4.8

Proof. Let’s have a closer look to the second term in the MX expression. If ξ ∈
{−1, 1}, we have

tutv
suv(suv − ξtvcuv)

=
tusv

suv(cvsuv − ξsvcuv)

=
tusv

suv sin(θuv − ξθv)
.
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We also have:

(C.1)
θu + θv < θuv < π − (θu + θv)

θu < θuv − θv < π − (θu + 2θv) < π − θu
su < sin (θuv − θv) .

and

(C.2)
θu + θv < θuv < π − (θu + θv)

θu < θu + 2θv < θuv + θv < π − θu
su < sin (θuv + θv) .

Consequently, when θu = θv, we have
tutv

suv(suv − ξtvcuv)
=

tu
suv

su
sin(θuv − ξθv)

.

≤ tu
suv

,

which implies that MX = tu
suv

.
We prove similarly that when θu = θv, MY = tu

suv
= MX

�

Appendix D. Proof of lemma 4.10

Proof. First note that Bu,v,θu,θv is in the half space delimited by the plane orthog-
onal to u ∧ v. Thus, it is enclosed in a cone of axis u ∧ v:

Bu,v,θu,θv ⊂ Cu∧v,π2 .

Let’s now find the minimal enclosing circular cone of axis u∧ v. The semi-angle
of this cone is the maximal angle between u ∧ v and x ∈ Bu,v,θu,θv . Using the
parameterization of Bu,v,θu,θv , x = a′u2 + b′u3 + c′v3 ∈ Bu,v,θu,θv with |b′| ≤MXa

′

and |c′| ≤ MY a
′, we will minimize the cosine between x and u ∧ v which is given

by

uT2 x

|x|
=

a′√
a′2 + b′2 + c′2 + 2b′c′uT3 v3

=
1√

1 + b′2

a′2
+ c′2

a′2
+ 2cuv

b′c′

a′2

.

If we set b = b′

a′ and c = c′

a′ , this cosine is minimized over |b′| ≤ MXa
′ and

|c′| ≤MY a
′ when

b2 + c2 + 2bccuv

is maximal over |b| ≤ MX and |c| ≤ MY . For any fixed c, this second order
polynomial in b is maximal at one of the bounds of |b| ≤ MX , that is to say
b = ξbMX with ξb ∈ {−1, 1}. The same reasoning on c when b = ξbMX gives
c = ξcMY with ξc ∈ {−1, 1}. ξb and ξc are then chosen such that ξbξccuv is
positive.

So the optimal angle is

θ̄uv = arccos

(
1√

1 +M2
X +M2

Y + 2MXMY |cuv|

)
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But as

arccos

(
1√

1 + x2

)
= arctan(|x|),

we have

θ̄uv = arctan

(√
M2
X +M2

Y + 2MXMY |cuv|
)

�

Appendix E. Proof of proposition 4.12

Proof. As a function of θuv, θ̄ varies jointly to E = M2
X + M2

Y + 2MXMY |cuv|:
we can restrict the analysis to the study of E. One can also see that MX (θuv)
and MY (θuv) are symmetric about θuv = π

2 . So we can restrict the analysis to the
case θuv ∈

]
θu + θv,

π
2

]
. As MX and MY are both defined as the maximum of two

smooth functions of θuv,
]
θu + θv,

π
2

]
can be partitionned into a finite number of

intervals on which MX and MY are smooth. We will show below that on each of
these intervals E is always decreasing. The continuity of MX and MY with respect
to θuv (and consequently of E and θ̄) allows concluding on the decrease of θ̄ over
the whole interval

]
θu + θv,

π
2

]
. We split the analysis in four case depending on the

value of MX and MY .
case MX = tv

suv
,MY = tu

suv
. In this case we have:

E =
t2u + t2v + 2tutvcuv

s2
uv

=
(tu + tvcuv)

2

s2
uv

+ t2v.

So E varies jointly to (tu+tvcuv)
suv

. The derivative of this last expression with respect
to θuv is

− tv + tucuv
s2
uv

which is negative, so θ̄ is decreasing in this case.
case MX = tv

suv
,MY = tutv

suv(suv−tucuv) . In this case, we have:

E =
t2v
s2
uv

(
1 +

t2u

(suv − tucuv)2 +
2tucuv

suv − tucuv

)

=
t2v

s2
uv (suv − tucuv)2

(
s2
uv − 2tucuvsuv + t2uc

2
uv + t2u + 2tucuvsuv − 2t2uc

2
uv

)
=

t2v

s2
uv (suv − tucuv)2

(
s2
uv + t2us

2
uv

)
=

t2v
(
1 + t2u

)
(suv − tucuv)2

=
c2ut

2
v

(
1 + t2u

)
sin2 (θuv − θu)

.

In this case also, E is a decreasing function of θuv
case MX = tutv

suv(suv−tvcuv) ,MY = tu
suv

. This case is similar to the previous one and
here again, θ̄ is decreasing.
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case MX = tutv
suv(suv−tvcuv) ,MY = tutv

suv(suv−tucuv ). In this case we have

MX =
tutv

suv(suv − tvcuv)
≥ tv
suv

=⇒ tu ≥ suv − tvcuv
=⇒ cvtu ≥ sin (θuv − θv) .

But as θuv ∈
]
θu + θv,

π
2

]
, we have sin (θuv − θv) > su and consequently we must

have cv > cu. With the same reasoning on MY , we also prove that cu > cv.
Consequently, this case never happen when θuv ∈

]
θu + θv,

π
2

]
.

To conclude, θ̄ is a decreasing function of θuv on the interval
]
θu + θv,

π
2

]
. Using

the symmetry of θ̄, it is an increasing function of θuv on the interval
[
π
2 , π − (θu + θv)

[
.

�

Appendix F. Proof of proposition 4.13

Proof. When θu = θv, MX = MY = tu
suv

and we have

θ̄uv = arctan

(√
M2
X +M2

Y + 2MXMY |cuv|
)

= arctan

(√
2
t2u
s2
uv

(1 + |cuv|)

)

= arctan

( √
2tu√

1− |cuv|

)

�
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