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DynAmic Privacy Preserving machine Learning Framework (DAPPLE)
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Incremental	update	
of	the	data	model

𝑫𝑶𝒊 :	Data	Owner	i
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[𝒘𝒌]	𝒑𝒌𝒘 :	Encrypted	data	model	

𝐂𝐒𝐏:	Classification	Service	Provider

[𝑿𝒋]	𝒑𝒌𝒋 :	Encrypted	classification	query

[𝑪𝒋]	𝒑𝒌𝒋 :	Encrypted	classification	response

[𝑺𝒌𝒊]	𝒑𝒌𝒊 :	Encrypted	local	training	data	chunk	
from	data	owner	𝐷𝑂+

§ Minimize	the	computational	costs	incurred	by	privacy	preservation.
§ Provide	an end-to-end	privacy	preserving	outsourced data	classification	service.
§ Enable	a	set	of	mutually	untrusted	data	owners	to	have	a	global	vision	on	the	union	of	their	data	

without	breaching	the	privacy	of	each	one	of	them.
§ Enable	dynamic	data	model	updates	when	new	training	data	samples	are	available.

§ We	have	used	a	synthetic	dataset	for	

fraud	detection	in	a	B2B	network.

§ This	dataset	contains	1000	bank	

transactions	with	9	attributes	each.

§ We	compare	our	work	to	the		

Ciphermed	framework	[8].

PPML

Different	ML	algorithms	

Different	Privacy-
preservation	objectives

Different	architectures	

- Clustering	[1]
- Classification	[2]
- Association	Rule	
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RuntimeUtility

§ Cryptographic	based	protection	(data	

model,	training	data,		classification	queries	

and	responses)	

§ Decent	privacy	and	utility	levels
§ Partial	homomorphic	encryption	(PHE	)	

based	building	blocks	
§ Efficient	runtime

§ Entirely	outsourced	ML	
computations	over	encrypted	
data	

§ Combine	PHE	with	cryptographic	blinding	

(DTPKC	cryptosystem	[6])		
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§ (1)	Blind	inputs

§ (2)	Partially	decrypt	
blinded	values

§ (3)	Decrypt	
blinded	values

§ (4)	Run	
operation	over	
blinded	values

§ (4)	remove	blinding	from	the		
result	

(2)	

(4)	

§ We	implemented	the	VFDT	incremental	

decision	tree	learning	algorithm	[7]

Naive	approach:	a	
combination	of	low	level	PP-

building	blocks	
1st optimization	:	use	
inline	building	blocks	

2nd optimization	:
Parallel	computing
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