Towards Scalable, Efficient and Privacy Preserving Machine Learning
Rania Talbi, Sara Bouchenak

To cite this version:

HAL Id: hal-01956155
https://hal.science/hal-01956155
Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Towards Scalable, Efficient and Privacy Preserving Machine Learning
Rania Talbi, Sara Bouchenak
INSA Lyon, France
(firstname.lastname@insa-lyon.fr)

2018 ACM/IFIP International Middleware Conference, Doctoral Symposium,
December 10-14th 2018 – Rennes, France

Context and Motivation

- Minimize the computational costs incurred by privacy preservation.
- Provide an end-to-end privacy preserving outsourced data classification service.
- Enable a set of mutually untrusted data owners to have a global vision on the union of their data without breaching the privacy of each one of them.
- Enable dynamic data model updates when new training data samples are available.

Objectives

- Enable dynamic data model updates when new training data samples are available.

Related work

Different Ml algorithms
- Clustering (1)
- Classification (2)
- Association Rule Mining (3)

Different Privacy-preservation objectives
- ML output protection (4)
- Original data protection (5)

Design principles
- Cryptographic based protection (data model, training data, classification queries and responses)
- Partial homomorphic encryption (PHE ) based building blocks
- Combine PHE with cryptographic blinding (DTPKC cryptosystem [6])
- We implemented the VFDT incremental decision tree learning algorithm [7]

Naive approach: a combination of low level PP:
- Building blocks
- 1st optimization : use inline building blocks
- 2nd optimization : Parallel computing

References

1. X. Liu et al.: Privacy-Preserving K-Means Clustering Upon Negative Databases. ICINAP (4) 2018
3. L. Liu et al.: Privacy-Preserving Mining of Association Rule on Outsourced Data from Multiple Parties. ASIDP2018: 412-415
8. R. Bost et al.: Machine Learning Classification over Encrypted Data. NDSS 2015