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Abstract. Program verification is a key issue for critical applications
such as aviation, aerospace, or embedded systems. Bounded model check-
ing (BMC) and constraint programming (CBMC, CBPV, ...) approaches
are based on counter-examples that violate a property of the program to
verify. Searching for such counter-examples can be very long and costly
when the programs to check contains floating point computations. This
stems from the fact that existing search strategies have been designed
for discrete domains and, to a lesser extent, continuous domains. In [12],
we have introduced a set of variable choice strategies that take advan-
tages of the specificities of the floats, e.g., domain density, cancellation
and absorption phenomena. In this paper we introduce new sub-domain
selection strategies targeting domains involved in absorption and using
techniques derived from higher order consistencies. Preliminary experi-
ments on a significant set of benchmarks are very promising.

1 Introduction
Programs with floating-point computations control complex and critical systems
in numerous domains, including cars and other transportation systems, nuclear
energy plants, or medical devices. Floating-point computations are derived from
mathematical models on real numbers [8], but computations on floating-point
numbers are different from computations on real numbers. For instance, with
binary floating-point numbers, some real numbers cannot be represented (e.g.,
0.1 does not have an exact representation). Floating point arithmetic opera-
tors are neither associative nor distributive, and may be subject to phenomena
such as absorption and cancellation. Furthermore, the behavior of programs con-
taining floating-point computations varies with the programming language, the
compiler, the operating system, or the hardware architecture.

Figure 1 illustrates how the flow of a very simple program over the floats
(F) can differs from the expected flow over the reals (R). When interpreting the
program over reals, the instruction doThenPart should be executed. However,
an absorption on the floats (the value 1 is absorbed by 1e8f3) leads the program
through the else branch.
? This work was partially supported by ANR COVERIF (ANR-15-CE25-0002).
3 On simple precision and with rounding set to “to the nearest even”.



void f oo ( ){
f loat a = 1 e8 f ;
f loat b = 1 .0 f ;
f loat c = −1e8 f ;
f loat r = a + b + c ;
i f ( r >= 1 .0 f ){

doThenPart ( ) ;
} else {

doElsePart ( ) ;
}

}

Fig. 1. Motivation example

In [12], we have introduced a set of variable selection strategies based on
specific properties of floats like domain density, cancellation and absorption phe-
nomena. The resulting search strategies are much more efficient but do not really
scale for harder and more realistic benchmarks. Indeed, like in other applications
of constraint techniques, efficient solvers not only requires appropriate variable
selection strategies but also need relevant value selection strategies. So, this pa-
per focuses on value selection strategies for floating-point constraint solvers ded-
icated to the search of counter-examples in program verification applications.

Standard value selection strategies over the floats are derived from sub-
domain selection strategies used over the reals; sub-domains being generated
by using various splitting techniques, eg, x ≤ v or x > v with v = x+x

2 .

In this paper we introduces four new sub-domain selection strategies. The
first one, exploits absorption phenomena, the second one embraces ideas derived
from strong consistency and the two last ones extend strategies introduced in
[12]. We have evaluated these new sub-domain selection strategies on a significant
set of benchmarks originate with program verification. We implemented a set of
over 300 search strategies that are combinations of variable selection strategies
previously introduced, sub-domain selection strategies presented in the follow-
ing pages and variations of different criteria like filtering. All strategies were
implemented in Objective-CP, the optimization tool introduced in [11].

In summary, the contributions are new sub-domain selection strategies dedi-
cated to float system.

The rest of this article is organized as follows. Section 2 presents some no-
tations, and definitions necessary for understanding this document. Section 3
provides a brief reminder of the strategies presented in [12]. Section 4 explains
the new splitting strategies we propose. Section 5 is devoted to an analysis of
the experimental results. Finally, Section 6 discusses the work in progress and
the perspectives.



2 Notations and definitions

2.1 Floating point numbers

Floating point numbers approximate real numbers. The IEEE754-2008 standard
for floating point numbers [9] sets floating point formats, as well as, some float-
ing point arithmetic properties. The two most common formats defined in the
IEEE754 standard are simple and double floating point number precision which,
respectively, use 32 bits and 64 bits. A floating point number is a triple (s,m, e)
where s ∈ {0, 1} represents the sign, the mantissa m (also called significant),
which is p bits long, and, e the exponent [8]. A normalized floating point num-
ber is defined by:

(−1)s1.m× 2e

To allow gradual underflow, IEEE754 introduces denormalized numbers whose
value is given by:

(−1)s0.m× 20

Note that simple precision are represented with 32 bits and a 23 bits mantissa
(p = 23) while doubles use 64 bits and a 52 bits mantissa (p = 52).

2.2 Absorption

Absorption occurs when adding two floating point numbers with different order
of magnitude. The result of such an addition is the furthest from zero. For
instance, in C, using simple floating point numbers with a rounding mode set
“to the nearest even”, 108 + 1.0 evaluates to 108. Thus, 1.0 is absorbed by 108.

2.3 Notations

In the sequel, x, y and z denote variables and x, y and z, their respective
domains. When required, xF, yF and zF denote variables over F and xF, yF and
zF, their respective domains while xR, yR and zR denote variables over R and xR,
yR and zR, their respective domains. Note that xF = [xF, xF] = {xF ∈ F, xF ≤ xF ≤
xF} with xF ∈ F and xF ∈ F. Likewise, xR = [xR, xR] = {xR ∈ R, xR ≤ xR ≤ xR}
with xR ∈ F and xR ∈ F. Let xF ∈ F, then x+

F is the smallest floating point number
strictly superior to xF and x−

F is the biggest floating point number strictly inferior
to xF. In a similar way, x+[N ]

F is the N th floating point strictly superior to xF
and x−[N ]

F is the N th floating point strictly inferior to xF. In addition, given a
constraint c, vars(c) denotes the set of floating point variables appearing in c.
Finally, given a set s, |s| denotes the cardinality of s.

3 Search strategies based on floating-point properties

In [12], we have introduced a set of variable selection strategies based on specific
properties of floats like domain density, cancellation and absorption phenomena.
The resulting search strategies are much more efficient but do not really scale
for harder and more realistic benchmarks.



0 x x2ex

-�

0 y y2ex−p−1

-�

Fig. 2. Sub-domains generated by splitAbs (x > 0 and y > 0)

4 Sub-domain selection strategies

In this section we introduce four new sub-domain selection strategies. The first
one takes advantage of absorption, the second is derived from strong consistency
filtering techniques and tries to reduce the domain at a limited cost.The two last
ones generalize sub-domain selection strategies presented in [26].

4.1 Absorption-based strategy

Let’s recall that absorption occurs when adding two floating point numbers with
different order of magnitude. The result of such an addition is the number the
furthest from zero.

The objective of the splitAbs strategy is to concentrate on the most relevant
absorption phenomena, in other words, giving priority to the sub-domains of x
and y most likely to lead to an absorption.

Before going into the details of this absorption-based sub-domain selection
strategy, let us recall the key points ofMaxAbs, the variable strategy introduced
in [12].MaxAbs is a variable selection strategy that picks the variable "absorbing
the most". More precisely, this variable selection strategy needs to branch on two
variables involved in absorption. The first variable –represented by x in Figure 2–
must have the highest absorption rate. After selection of variable x, strategy
MaxAbs examines addition and subtraction constraints to select a variable y, the
values of which are most absorbed by the values of by x. Coordinated branching
on these variables is performed to exploit the latent absorption.

Sub-domain selection strategy : splitAbs Once these two variables are
selected, the sub-domain selection heuristic will perform at most three splits
on each variable. Figure 2 illustrates an instance where two sub-domains are
generated (match with the case where domains are positive). It’s easy to extend
it to the others cases by symmetry. In this Figure, most interesting sub-domains
are for x : [2ex , x] and for y : y ∩ [0, 2ex−p−1] (where p is the mantissa size).
The first represents the sub-domain of x values absorbing y values. The second
represents the sub-domain of y totally absorbed by x.

Example 1. Consider the function in Figure 3 and assume that inputs are com-
ing from sensors, and their ranges are [0.0, 1e+04] for x, and [−16.0, 4.0] for
y. The else branch corresponds to an unstable state of the system. Deter-
mining if this state is reachable and from which input values is a legitimate
question. This problem is reduced to identifying if z can be equal to x which
corresponds to absorption. Figure 4 shows resulting sub-domains. This strat-
egy focuses on [8.1920009765625000e+03, 1.0000000000000000e+04] for x and



void f oo ( f loat x , f loat y ){
f loat z = x + 2 ∗ y ;
i f ( z != x )

systemOK ( ) ;
else

systemNOK ( ) ;
}

Fig. 3. A program with absorptions
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Fig. 4. Resulting sub-domains of unstable example

[−4.8828122089616954e−04, 4.8828122089616954e−04] for y which correspond
to domains involved in absorption. No solutions involving a value belonging to
another sub-domain exist and the initial filtering has no impact on those do-
mains. The unstable state is reachable with, for instance, values 1e+04 for x
and 2.44140625e−04 for y.

This strategy can also be combined with another strategy, which is called
whenever x has no values that absorb y.

4.2 Splitting strategy inspired by 3B-consistency : 3BSplit

Our next sub-domain splitting strategy, called 3Bsplit, is inspired by a higher
consistency named 3B-consistency [10]. 3B-Consistency is a relaxation on con-
tinuous domains of path consistency, a higher order extension of arc-consistency.
Roughly speaking, 3B-Consistency checks whether 2B-consistency (or Hull con-
sistency) can be enforced when the domain of a variable is reduced to the value
of one of its bounds in the whole system [3]. 3B-consistency is in practice very
effective on problems with multiple occurrence variables. However, insuring such
consistency could be costly: the 3B-algorithm might attempt many times to un-
successfully refute sub-domains near the bounds of the initial domain by means
of a 2B-consistency.

The 3Bsplit sub-domain selection also attempts to enforce the consistency at
the bounds of a domain at a single variable level. A key observation here is that
if a small sub-domain at the bounds of the initial domain, e.g. sd = [x, x+ δ], is
immediately refuted in the next search node, then the resulting domain, [x+δ, x],
offers a better lower bound than the one of the initial domain. Moreover, there
is probably room to still improve this bound if the same step is reiterated using
a wider sub-domain like [x, x+2δ]. Indeed, such a process is similar to a shaving
applied to the initial domain but without requiring additional domain state
management: in the case of a 3Bsplit, the capability to return to the initial
state is naturally supported by the search.

A sub-domain split might not be refuted immediately in the next search
node. It might be refuted either after exploring a deeper search sub-tree or it



Fig. 5. Illustration of 3BSplit

might provide one or more solutions. Both cases underline some difficulties to
improve the bound under examination. The next step of the splitting strategy
thus switch to the next bound or, if both bounds have been checked, to another
search node or strategy. Figure 5 illustrates 3Bsplit behavior.

To summarize, 3Bsplit exploits information on the sub-tree to decide whether
enforcing the current bound has a chance to be done effortlessly or if it would
be wiser to go to the next step. As a result, this strategy dynamically splits the
current domain according to the behavior of the search in sub-trees. Note also
that choosing an initial small sub-domain at the bounds of the domain is similar
to the next strategy (Section 4.3), i.e., 3Bsplit also provides opportunities to
find solutions in the neighbourhood of the current bounds.

4.3 Mixing sub-domain and enumeration

This sub-domain selection strategy extends strategies from [4]. We propose two
ways to extend these strategies. The first one Enum-N, enumerates N values of
both bound and one in the middle before considering the rest of the domain.
The second one, Delta-N, instead of enumerating each N values of the bounds,
builds the sub-domains implied by N floating point numbers. Due to the huge
number of evaluated strategies, the value of N is arbitrarily limited to 5 in the
experiment part.

Enum-N
This sub-domain selection strategy is a direct generalization of [4]. Generally, the
filtering process tightens the bounds until a support is found. This sub-domain
selection strategy is optimistic and hope that filtering will lead to find a solution
close to the bounds. To achieve this goal, it enumerates few values at the bounds.
Figure 6a illustrates this strategy. The domains is split in 2∗N +3 sub domains.
For instance, with N = 5, the 13 following domains will be generated :

• [min,min]
• · · ·
• [min+[N ],min+[N ]]
• [min+[N+1],mid−]
• [mid,mid]

• [mid+,max−[N+1]]
• [max−[N ],max−[N ]]
• · · ·
• [max,max]

If the cardinality of the domain is lower than 2 ∗N + 3, all values will be enu-
merated.

Delta-N The first objective of this strategy is to find a solution at the bounds.
Enumerating can lead the search to explore a deep sub-tree before finding a
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Fig. 6. Illustration of new strategies

solution or performing reduction. Here, considering the sub-domain implied by
N floating-point numbers instead of a single value, gives opportunities to the
filtering process to operate some pruning through propagation. It also improves
the chance to find a solution or to remove all N values without enumerating any
of them. This sub-domain selection strategy is very flexible. Indeed, by adapting
the value of N , the whole strategy behavior change. For instance, if N = |α|,
with α = [x, x+x

2 ], this sub-domain strategy becomes a classic bisection. Finally,
a dynamic modification of the value of N during the search can be interesting.
Starting the search by a classic bisection (N = |α|) and reducing its value might
be a good idea. Figure 6b illustrates this strategy. Regardless the value of N
and the cardinality of the domain, at most the 5 following sub-domains will be
generated :

• [min,min+[N ]]
• [min+[N+1],mid−]
• [mid,mid]

• [mid+,max−[N+1]]
• [max−[N ],max]

If the cardinality of the domain is lower than 2∗N+3, the last two sub-domains
will not be generated, and the first two will be balanced with respect to the
middle of the domain.

5 Experimental Evaluation

The experiments combine different variable selection strategies with sub-domain
selection strategies on a set of 49 benchmarks. They also consider variations on
the type of consistency for the strategies, sub-cuts, and the reselection (or not)
of the same variable at the next node. Sub-cut corresponds to an alternative sub-
domain selection strategy and is relevant for splitAbs and 3Bsplit. For splitAbs,
sub-cut is called when no absorptions occur. For 3Bsplit, it is called to refute
small sub-domains. In the state of the art, the standard strategy is based on
lexicographic variable ordering, and a bisection based on 2B-consistency. These
options result in no less than 325 unique strategies evaluated on all 49 bench-
marks.

All experiments were performed on a Linux system, with an Intel Xeon pro-
cessor running at 2.40GHz and with 12GB of memory. All strategies have been
implemented into the Objective-CP solver. All the floating point computations
are performed in simple precision and with a rounding mode “to the nearest
even”.

5.1 Benchmarks

The benchmarks used in these experiments come from test and program verifi-
cation. SMTLib [1], FPBench [6], and CBMC [2] (but also [5, 4, 7]) are the main



sources. In each case, the goal is to find a counter-example, hence the major-
ity of instances are satisfiable. The number of constraints and variables varies
from 2 to about 3000. Table summarizes thoses results of all the strategies on
the satisfiable instances can be found at www.i3s.unice.fr/~hzitoun/dp18/
benchmark.html.

5.2 Analysis

In results Tables, the standard strategy (lexicographic order with bisection, 2B
filtering at 5% and reselection allowed) is at the 194th position on 325 strategies.
So, 193 strategies among those introduced, are clearly more efficient than the
standard strategy for solving this kind of problem. The Virtual Best Strategy
is 120 times faster than the reference strategy. The best strategy (column 1) is
4 times faster than the reference strategy. Using the specificities of floats to
guide the search has a clear impact on the resolution time. Among the strategies
that are efficient on this set of benchmarks, the variable selection strategies
are based on lexicographic order, number of occurrences, density or absorption.
While strategies based on width, a conventional variable selection strategy for
integer domains, struggle to solve problems as soon as it becomes a bit realistic.
Strategies based on cardinality are also in the same cases. The best search based
on MaxCard and MaxWidth are at 160th and 161th positions.

Sub-domain selection strategies introduced in this article are working well.
Indeed, the faster strategy exploiting Delta-N is in second position, whereas
Enum-N is at 6th position. The best 3BSplit is placed at 11th. SplitAbs, for
its part, is at 112th position. SplitAbs performance are clearly related to the
percentage of absorption of the problem. Indeed, as shown in the online tables,
the set of benchmarks limited to those with at least 5% of absorption are resolved
without timeout. All these strategies perform better than the standard one.

Eight of the 10 best strategies prohibit the repeated selection of a variable
at subsequent search nodes. Among the 10 worst, only one of them prohibits
reselection. It appears that “reselection” impacts the ability to deliver solutions
faster.

6 Conclusion

A previous article proposed a set of variable selection strategies using the speci-
ficities of floats to guide the search. These variable selection strategies improve
the search of a counter-example outlining a property violation in a program to
verify, but aren’t sufficient to scale for harder and more realistic benchmarks.
Dedicated sub-domain selection strategies for floats are needed. Contributions of
this article are a set of sub-domain selection strategies over floats. The first one,
exploits absorption phenomena, the second one embraces ideas derived from
strong consistency and the two last ones extend strategies introduced in [4].
These strategies are compared on a set of satisfiable benchmarks. Several strate-
gies presented, perform well, and obtain much better results than the standard
strategy used to solve this kind of problem.
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