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Abstract. In this paper, we introduce a new constraint solver aimed at
analyzing the round-off errors that occur in floating-point computations.
Such a solver allows reasoning on round-off errors by means of constraints
on ranges of error values. This new solver is built by incorporating in a
solver for constraints over the floating-point numbers the domain of er-
rors which is dual to the domain of values. Both domains, the domain of
values and the domain of errors, are associated with each variable of the
problem. Additionally, we introduce projection functions that filter these
domains as well as the mechanisms required for the analysis of errors.
Preliminary experiments are encouraging.
Numerous works, which are based on an overestimation of actual errors,
try to address similar issues. However, they do not provide critical in-
formation to reason on those errors, for example, by computing input
values that exercise a given error.
To our knowledge, our solver is the first constraint solver with such rea-
soning capabilities over round-off errors.

Keywords: floating-point numbers · round-off error · constraints over
floating-point numbers · domain of errors

1 Introduction

Floating-point computations induce errors due to rounding operations required
to close the set of floating-point numbers. These errors are symptomatic of the
distance between the computation over the floats and the computation over the
reals. Moreover, they are behind many problems, such as the precision or the
numerical stability of floating-point computation. Especially when users omit
to take into account the nature of floating-point arithmetic and use it directly
like real number arithmetic. Identifying, quantifying and localizing those errors
are tedious tasks that are difficult to achieve without tools automating it. A
well-known example of computations deviation due to errors on floating-point
numbers is Rump’s polynomial [15]:

333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
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where a = 77617 and b = 33096. The exact value of this expression, computed
using the GMP library, is − 54767

66192 ≈ −0.827396056.

However, when this expression is evaluated on simple floats with a rounding
mode set to the nearest even, the computed result is ≈ −6.3382530011411×1029,
which is far apart from the real value. The difference between these two results,
about −6.3382530011411×1029, emphasizes the need for round-off error analysis
tools.

Floating-point computation errors have been the subject of many works based
on an overestimation of actual errors. Let us mention the abstract interpreter
Fluctuat [6, 5] that combines affine arithmetic and zonotopes to analyze the ro-
bustness of programs over floating-point numbers. Another more recent work,
PRECiSA [17, 13], relies on static analysis to evaluate round-off errors in a pro-
gram. Nasrine Damouche [2] and Eva Darulova [3] have developed techniques for
the automatic enhancement of numerical code. Their approach is based on an
evaluation of round-off errors to estimate the distance between the expression
over floats and the expression over reals. These approaches compute an error
estimation which can be refined by splitting the search space into subdomains.
However, it is not possible to directly reason on those errors, for example, by
computing input values that exercise a given error. In order to overcome this
lack of reasoning capabilities and to enhance the analysis of errors, we propose
to incorporate in a constraint solver over floats [18, 10, 1, 11, 12], the domain of
errors which is dual to the domain of values. Both domains are associated with
each variable of the problem. Additionally, we introduce projection functions
that filter those domains as well as mechanisms required for the analysis of er-
rors. More precisely, we focus on the analysis of deviation between computations
over the floats and computations over the reals.

Our approach is based on interval arithmetic for approximating the domains
of errors. In addition, a search applied on reduced domains computes input
values that satisfy constraints on errors. We deliberately ignore the possibility
of an initial observational error on input data even though initial computational
errors are handled. Thus input data are assumed with an initial error of zero.
For the sake of simplicity, we restrain ourselves to the four classical arithmetic
operations. This simplification permits exact computation of values over reals1

for both values of expressions and computation of errors. Finally, the rounding
mode is left to default, i.e. a rounding to the nearest even.

2 Notation and definitions

2.1 Floating-point numbers

The set of floating-point numbers is a finite subset of the rationals that has been
introduced to approximate real numbers on a computer. The IEEE standard for

1 By using a rational arithmetic library for computation on the reals and down to the
memory limit.
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floating-point arithmetic [9] defines the format of the different types of floating-
point numbers as well as the behavior of arithmetic operations on these floating-
point numbers. In the sequel, floating-point numbers are restricted to the more
common one i.e. simple binary floating-point numbers represented using 32 bits
and double binary floating-point numbers represented using 64 bits.

A binary floating-point number v is represented by a triple (s, e,m) where s
is the sign of v, e, its exponent and m, its mantissa. When e > 0, v is normalized
and its value is given by :

(−1)s × 1.m× 2e−bias

where the bias allows us to represent negative values of the exponent. For in-
stance, for 32 bits floating-point numbers, the size of s is 1 bit, the size of e is 8
bits, the size of m is 23 bits and the bias is equal to 127.

x+ denotes the smallest floating-point number strictly larger than x while
x− denotes the largest floating-point number strictly smaller than x. In other
words, x+ is the successor of x while x− is its predecessor.

An Ulp, which stands for unit in the last place, is the distance which separate
two consecutive floating-point numbers. However, this definition is ambiguous
for floats that are a power of 2 like 1.0: in such a case, and if x > 0, then
x+ − x = 2 ∗ (x− x−). To make this point clear, an explicit formulation of this
distance is used whenever required.

3 Quantification of computation deviations

Computation on floating-point numbers is different from computation over real
numbers due to rounding operations. Since the set of floating-point numbers is a
finite subset of the real, in general, the result of an operation on the floats is not
a float. In order to close the set of floating-point numbers for those operations,
the result should be rounded to the nearest float according to a direction chosen
beforehand.

The IEEE 754 norm [9] defines the behavior of floating-point arithmetic.
For the four basic operations, it requires correct rounding, i.e. the result of an
operation over the floats must be equal to the rounding of the result of the
equivalent operation over the reals. More formally, z = x � y = round(x · y)
where z, x and y are floating-point numbers, � is one of the four basic arithmetic
operations on the floats, namely, ⊕, 	, ⊗, and �, · being the equivalent operation
on the reals, and round being the rounding function. This property bounds the
error introduced by an operation over floats to ± 1

2ulp(z) for correctly rounded
operations with a rounding mode set to round to the nearest even float, which
is the most frequent rounding mode.

When the result of an operation on the floats is rounded, it is different from
the one expected on the reals. Moreover, each operation that belongs to a com-
plex expression is likely to introduce a difference between the expected result on
the reals and the one computed on the floats. Whereas for a given operation,
the computed float is optimal in terms of rounding, the accumulation of these
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approximations can lead to significant deviations, like the one observed with
Rump’s polynomial.

Compared to its equivalent over the reals, the deviation of a computation
over the floats takes root in each elementary operation. Therefore, it is possi-
ble to rebuild it from the composition of each elementary operation behavior.
Input variables can come with errors attached due to previous computations.
For example, for the variable x, the deviation on the computation of x, ex, is
given by ex = xR− xF where xR and xF denote the expected results on the reals
and on the floats respectively. Contrary to an observational error, ex is signed.
This choice is required to capture correctly specific behaviors of floating-point
computations, such as error compensations.

As such, computation deviation due to a subtraction can be formulated as
follows: for z = x 	 y, the error on z, ez, is equal to (xR − yR) − (xF 	 yF). As
ex = xR − xF and ey = yR − yF, we have

ez = ((xF + ex)− (yF + ey))− (xF 	 yF)

The deviation between the result on the reals and the result on the floats for a
subtraction can then be computed by the following formula:

ez = ex − ey + ((xF − yF)− (xF 	 yF))

In this formula, the last term, ((xF − yF) − (xF 	 yF)), characterizes the error
produced by the subtraction operation itself. Let e	 denotes this subtraction
operation error. The formula can then be simplified to:

ez = ex − ey + e	

The formula comprises two elements: firstly the combination of deviations from
input values and secondly, the deviation introduced by the elementary operation.

Addition : z = x⊕ y → ez = ex + ey + e⊕

Subtraction : z = x	 y → ez = ex − ey + e	

Multiplication : z = x⊗ y → ez = xFey + yFex + exey + e⊗

Division : z = x� y → ez =
yFex − xFey
yF(yF + ey)

+ e�

Fig. 1. Computation of deviation for basic operations

Figure 1 formulates computation deviations for all four basic operations.
For each of these formulae, the error computation combines deviations from
input values and the error introduced by the current operation. Notice that, for
multiplication and division, this deviation is proportional to input values.

All these formulae compute the difference between the expected result on the
reals and the actual one on the floats for a basic operation. Our constraint solver
over the errors on the floats relies on these formulae.
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4 Domain of errors

In a classical CSP, to each variable x is associated x its domain of values. It
denotes the set of possible values that this variable can take. When the variable
takes values in F, its domain of values is represented by an interval of floats:

xF = [xF, xF] = {xF ∈ F, xF ≤ xF ≤ xF}

where xF ∈ F and xF ∈ F.
Computation errors form a new dimension to consider. They require a specific

domain in view of the distinct nature of elements to represent, but also, due to the
possible values of errors which belong to the set of reals. Therefore, we introduce
a domain of errors, which is associated with each variable of a problem. Since all
arithmetic constraints processed here are reduced to the four basic operations,
and since those four operations are applied over floats, i.e. a finite subset of
rationals, this domain can be defined as an interval of rationals with bounds in
Q:

ex = [ex, ex] = {ex ∈ Q, ex ≤ ex ≤ ex}

where ex ∈ Q and ex ∈ Q.
Another domain of errors is required for the smooth running of our system:

it is the domain of errors on operations, denoted by e�, that appears in the
computation of the deviations (see Figure 1). Contrary to previous domains, it
is not attached to each variable of a problem but to each instance of an arithmetic
operation of a problem.

Like the domain of errors attached to a variable, it takes values in the set of
rationals. Thus, we have:

e� = [e�, e�] = {e� ∈ Q, e� ≤ e� ≤ e�}

where e� ∈ Q and e� ∈ Q.
This triple, composed of the domain of values, the domain of errors, and the

domain of errors on operations, is required to represent the set of phenomena
due firstly to possible values on variables and secondly, to different errors that
come into play in computation over floats.

5 Projection functions

The filtering process of our solver is based on classical projection functions to
reduce the domains of variables. Domains of values can be computed by pro-
jection functions defined in [11] and extended in [1] and [10] but new ones are
required for the domains of errors.

Those projections on the domains of errors are made through an extension
over intervals of formulae from Figure 1. Since these formulae are written over
reals, they can naturally be extended to intervals. For example, in the case of
the subtraction, we get the four projection functions below:
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ez ← ez ∩ (ex − ey + e	)

ex ← ex ∩ (ez + ey − e	)

ey ← ey ∩ (−ez + ex + e	)

e	 ← e	 ∩ (ez − ex + ey)

where ex, ey, and ez are the domains of errors of variables x, y, and z respectively
and e	 is the domain of errors on the subtraction.

Figure 2 gives projection functions for the three other arithmetic operations.
Note that the projection on yF for the division requires solving a quadratic
equation and requires the computation of a square root. Thanks to outward
roundings, correct computation of such a square root on rationals is obtained
using floating-point square root at the price of an over-approximation. Note also
that these projections handle the general case. For the sake of simplicity, special
cases like a division by zero are not exposed here.

Addition :

ez ← ez ∩ (ex + ey + e⊕)

ex ← ex ∩ (ez − ey − e⊕)

ey ← ey ∩ (ez − ex − e⊕)

e⊕ ← e⊕ ∩ (ez − ex − ey)

Multiplication :

ez ← ez ∩ (xFey + yFex + exey + e⊗)

ex ← ex ∩
(

ez − xFey − e⊗

yF + ey

)
ey ← ey ∩

(
ez − yFex − e⊗

xF + ex

)
e⊗ ← e⊗ ∩ (ez − xFey − yFex − exey)

xF ← xF ∩
(

ez − yFex − exey − e⊗

ey

)
yF ← yF ∩

(
ez − xFey − exey − e⊗

ex

)

Division :

ez ← ez ∩
(

yFex − xFey

yF(yF + ey)
+ e�

)
ex ← ex ∩

(
(ez − e�)(yF + ey) +

xFey

yF

)
ey ← ey ∩

(
ex − ezyF + e�yF

ez − e� + xF
yF

)

e� ← e� ∩
(

ez −
yFex − xFey

yF(yF + ey)

)
xF ← xF ∩

(
(e� − ez)yF(yF + ey) + yFex

ey

)
yF ← yF ∩ [min(δ1, δ2),max(δ1, δ2)]

with

δ1 ←
ex − (ez − e�)ey −

√
∆

2(ez − e�)

δ2 ←
ex − (ez − e�)ey +

√
∆

2(ez − e�)

∆← [0,+∞) ∩ ((ez − e�)ey − ex)2

+ 4(ez − e�)eyxF

Fig. 2. Projection functions of arithmetic operation

Projection functions, on the domain of errors, support only arithmetic op-
erations and assignment, where the computation error from the expression is
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transmitted to the assigned variable. Since the error is not involved in compari-
son operators, their projection functions only manage domains of values.

The set of those projection functions is used to reduce all variables’ domains
until a fixed point is reached. For the sake of efficiency, but also to get around
potential slow convergence, the fixed point computation is stopped when no
domain reduction is greater than 5%.

6 Links between the domain of values and the domain of
errors

In order to take advantage of domain reductions of one domain in another do-
main, clear and strong links must be established between the domain of values
and the domain of errors. What naturally occurs for domains of values thanks
to constraints on values requires more attention when it comes to the relations
between dual domains.

A first relation between the domain of values and the domain of errors on
operations is based upon the IEEE 754 norm, which guarantees that basic arith-
metic operations are correctly rounded. Since the four basic operations are cor-
rectly rounded to the nearest even float, we have

(x� y)− (x� y)− (x� y)−

2
≤ (x · y) ≤ (x� y) +

(x� y)+ − (x� y)

2

where x− and x+ denote respectively, the greatest floating-point number strictly
smaller than x and the smallest floating-point number strictly larger than x. In
other words, the result over floats is, at a half-ulp, the distance between two
successive floats from the result over reals. Thus, the error on an operation is
contained in this ulp:

− (x� y)− (x� y)−

2
≤ e� ≤ +

(x� y)+ − (x� y)

2

This equation sets a relation between the domain of values and the domain of
errors on operations: operation errors can never be greater than the greatest
half-ulp of the domain of values on the operation result. The projection function
for the domain of errors on operations is obtained by extending this formula to
intervals:

e� ← e� ∩
[
−min((z − z−), (z − z−))

2
,+

max((z+ − z), (z+ − z))
2

]
Finally, these links are refined by means of other well-known properties of

floating-point arithmetic like the Sterbenz property of the subtraction [16] or
the Hauser property on the addition [7]. Both properties give conditions under
which these operations produce exact results. As is the well-known property that
2k ∗ x is exactly computed provided that no overflow occurs.
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7 Constraints over errors

Usually, constraints available in a solver establish relations between variables of
a problem. The duality of domains available in our solver requires introducing
a distinction between the domain of values and the domain of errors. In order
to preserve the current semantic of expressions, variables keep on representing
possible values. A dedicated function, err(x), makes it possible to express con-
straints over errors. For example, abs(err(x)) ≥ ε, denote a constraint which
demands that the error on variable x be, in absolute value, greater or equal to ε.
It should be noted that since errors are taking their values in Q, the constraint
is over rationals.

When a constraint involves errors and variables, the latter, with domains
over floats, are promoted to rationals. Therefore, the constraint is converted to
a constraint over rationals.

8 Preliminary experiments

Projection functions and constraints over errors are being evaluated in a proto-
type based on Objective-CP [8], which already handles constraints over floats
thanks to the projection functions of FPCS [12]. All experiments are carried out
on a MacBook Pro i7 2,8GHz with 16GB of memory.

8.1 Predator prey

Predator prey [4] has been extracted from the FPBench test suite2:

double predatorPrey(double x) {

double r = 4.0;

double K = 1.11;

double z = (((r * x) * x) / (1.0 + ((x / K) * (x / K))));

return z;

}

When x ∈ [ 1
10 ,

3
10 ], Objective-CP using a simple and single filtering pro-

cess reduces the domain of z to [3.72770587e−02, 3.57101682e−01] and its error
domain to [−1.04160431e−16, 1.04160431e−16]. Fluctuat reduces the domain
of z to [3.72770601e−02, 3.44238968e−01] and its error to [−1.33729201e−16,
1.33729201e−16]. Thus, while Fluctuat provides better bounds for the domain
of values, Objective-CP provides better bounds for the domain of error. More-
over, our solver can use a search procedure to compute error values that are
reachable. For example, we can search for input values such that the error on z
will be strictly greater than zero.

With this constraint the solver output z = 3.354935286988540155128646e−01
with an error of 3.096612314293906301816432e−17.

2 See fpbench.org.
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Since rational numbers are used for computations of errors it is crucial to take
solving time into account. Table 1 shows times in seconds for the generation of
round-off error bounds on some benchmarks from FPBench. Solving time for
Objective-CP are correct, especially as a search procedure is done in addition of
filtering. Those times comfort us in the use of rational numbers for representing
errors.

Gappa Fluctuat Real2Float FPTaylor PRECiSA Objective-CP

carbonGas 0.152 0.025 0.815 1.209 3.830 0.060
verhulst 0.034 0.043 0.465 0.812 0.789 0.032
predPrey 0.052 0.031 0.735 0.916 0.477 0.050
turbine1 0.165 0.028 67.960 2.906 110.272 0.232

Table 1. Times in seconds for the generation of round-off error bounds. For Objective-
CP a searh is also used. (bold indicates the best approximation and italic indicates the
second best)

9 Conclusion

In this paper, we introduced a constraint solver capable of reasoning over compu-
tation errors on floating-point numbers. It is built over a system of dual domains,
the first one characterizing possible values that a variable of the problem can take
and the second one defining errors committed during computations. Moreover,
there are particular domains, bind to instances of arithmetic operations in nu-
merical expressions of the constraints, which represent errors in those operations.
Our solver, enhanced with projection functions and constraints over errors, offers
unique possibilities to reason on computation errors. Preliminary experiments
are promising and will naturally be reinforced with more benchmarks.

Such a solver might appear limited by the use of rational numbers and mul-
tiprecision integers. However, a thorough examination of the solver behavior has
shown that its main limit lies in its approximation of round-off errors. Firstly,
round-off errors are not uniformly distributed across input values. As a result,
finding input values that satisfy some error constraints has often to resort to an
enumeration of possible values. Secondly, round-off error of operations are over-
estimated. Such an overestimation does not perform the fine domain reductions
that would allow an efficient search. Therefore, a deeper understanding and a
tighter representation of the round-off error on an operation basis is a must to
actually improve the behavior of our solver.

Further work include extending support for a wider set of arithmetic func-
tions, improving the search to quickly find solutions in the presence of constraints
over errors and to add global optimization capabilities, for example, by using a
branch-and-bound method. Then, by formulating a problem as an optimization
problem, we should be in a position to determine for which input values the
error is maximal.

Another direction of improvement is the combination of CSP with other tools
dedicated to round-off error like abstract interpreter in an approach similar to
what has already been done for domains of values [14].
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