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Reconstructing Quantum Mechanics Without Foundational Problems

I present a reconstruction of quantum mechanics with a new interpretation of the wavefunction and the Schroedinger equation that eliminates all its foundational problems. The key …nding is that the wavefunction is a hybrid entity involving the ensemble average of particle dynamics, without superposition, while the phase-waves pertaining to the single quantum events reproduce all interference e¤ects. The reconstructed quantum mechanics without 'matter waves' eliminates the cardinal problem known as the collapse of the wavefunction and with that, the vexing issue of quantum measurement. Another signi…cant advance is the correct decoding of quantum entanglement and purging of inseparability and nonlocality in quantum correlations. The resulting picture is in complete agreement with all empirical requirements and in harmony with credible physical ontology. The reconstruction and interpretation dissolve the quantum-classical divide.

Introduction

Quantum mechanics is believed to be a universal theory of physical phenomena, with a simple mathematical structure that is well established. Its empirical success and reach are unprecedented. Yet, there is no consensus on a satisfactory interpretation and understanding of quantum mechanics [START_REF] Feynman | The Character of Physical Law -Probability and Uncertainty: The Quantum Mechanical View of Nature[END_REF][START_REF] Laloë | Do We Really Understand Quantum Mechanics[END_REF][START_REF] Weinberg | The Trouble with Quantum Mechanics[END_REF].

I present a reconstruction of quantum mechanics (QM) and the Schroedinger equation, with new physical input and interpretation of the wavefunction. The reconstruction is based on two distinct physical entities -the material particle, which is the carrier of dynamical quantities like energy and momentum, and the associated 'action-waves' (or 'phase-waves') that are the carriers of 'action', with no energy or momentum. The particle's dynamics is linked to the phase and its fundamental uncertainty, of the phase-waves in a wave-particle connection. Material particle does not behave as waves or superpose; there are no matter waves. I will show that the wavefunction of the Schroedinger dynamics is really a hybrid entity involving the ensemble averaged probability density for the material particle, without superposition, and phase-waves of quantum possibilities that can superpose and interfere, event by event. Thus, the probabilistic particle dynamics and the vital quantum interference are intact. There is a radical change in the physical basis and interpretation, while the mathematical super-structure and operations remain intact because the quantum mechanical calculations pertains to the averages over the (virtual) ensemble. This purges QM of all its foundational problems.

The conventional formalism of QM leads to several vexing problems, debated as its 'birth defects' [START_REF] Laloë | Do We Really Understand Quantum Mechanics[END_REF]4,[START_REF] Norsen | Foundations of Quantum Mechanics[END_REF]. Foremost is the core issue known as the collapse of the wavefunction during an observation. The quantum physical state is represented by a state vector in Hilbert space, ji. This can be linear superposition of component states ji = P   j  i, with P j  j 2 = 1. When a measurement is made, only one of the possible results  =  materializes, stochastically. The quantum state is said to collapse uniquely to j  i, with other components disappearing instantaneously.

The problem of collapse gets di¢cult for multi-particle systems. For a two-particle two-state system, with possibilities j+i and j¡i, the joint state may be a linear superposition  1 j+ 1 ij¡ 2 i +  2 j¡ 1 ij+ 2 i, called an entangled state. Then, the state is not separable into single particle states and there is no individual quantum state for either particle. Measurement on one particle returns a de…nite value of the observable, and endows a quantum state, say j¡ 1 i. Then, instantaneously, the other particle, which could be spatially widely separated, acquires a correlated state j+ 2 i, without any interaction. This nonlocal collapse is the basis of the Einstein-Podolsky-Rosen [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] discussion.

The ensuing quantum measurement problem [START_REF] Norsen | Foundations of Quantum Mechanics[END_REF][START_REF] Leggett | The Quantum Measurement Problem[END_REF] is closely linked to the collapse of the wavefunction. If two physical states of a system are represented as j1i  and j2i  the physical system can also be in the state  j1i  +  j2i  with jj 2 + jj 2 = 1 During a measurement, another physical system acting as the ideal measurement 'apparatus' with pointer states j1i  and j2i  interacts with the system and forms the correlated and entangled state

 j1i  j1i  +  j2i  j2i  (1) 
Then, neither the microscopic system nor the macroscopic apparatus has any independent physical state. This is the same as the much discussed problem of the Schroedinger's cat, where the 'apparatus system' is macroscopic and possibly living. The …nal (conscious) experience about the measurement is however, either the state j1i  j1i  or the state j2i  j2i   and not a superposition. The process by which this 'state reduction' and the appearance of a unique pointer state happens is a mystery. Finally, despite many proposals, there is no satisfactory understanding of the emergence of the classical macroscopic world from what is believed to be the more fundamental quantum world. The answer would lie in solving the measurement problem.

The Reconstructed Quantum Mechanics (RQM) eliminates all these foundational problems in one stroke.

Reconstruction of QM

In RQM, I carefully distinguish the three di¤erent notions -the material entity or particle, its physical state, and the representation of the state in the theory. Empirically we know that the 'particle' is indivisible. However, we also know from quantum interference of multiple paths in space that there seems some physical entity that responds to the multiple possibilities, event by event [START_REF] Unnikrishnan | Origin of quantum-mechanical complementarity without momentum back action in atom-interferometry experiments[END_REF].

In the reconstruction, the particle exists as a real undivided entity at all times, without superposition. The physical state of the particle, with its fundamental charges like electric charge, mass, spin etc., is characterized by a set of dynamical variables   (energy, momentum, angular momentum etc.) and associated coordinates   at all times. Associated with the particle is the distinct 'phase-wave', which is the physical entity that splits into multiple possibilities, recombine, and interfere, event by event. There is no matter wave; there are only the action-waves associated with matter. The phasewaves carry 'action' and they do not have energy or momentum. These are complex quadrature waves (sine and cosine) in general. They are 'waves' in the sense of a periodicity in phase, related to the quantum of action . Only the combinations of the dynamic variables and generalized coordinates in the form of a action-phase R     appear in the time evolution of the phase-wave. Then, dynamics is completely characterized by the coordinate derivatives of the phase function. The fundamental uncertainty in the action is the Plank quantum . Therefore, exact values cannot be assigned to the dynamical variables and associated coordinates simultaneously. It is the phase of the phase-wave that is directly linked to indeterminism and scatter in the observables of the particle. The quantum uncertainty is a scatter relation over the ensemble of events for the particle.

QM is then really the fusion of two fundamental features; stochastic particle dynamics and event by event quantum interference of phase-waves. The particle is in a de…nite physical state at every instant and does not partake in superposition. The ensemble average of the set of all possibilities of particle dynamics match the phase-wave superposition, as I will show. A hybrid function represents the physical state, which has a positive real part related to the ensemble average of the statistical behaviour of the particle and another part that is a pure phase-wave. Both the particle and its phase-waves exist in real space and time and the hybrid wavefunction is in the Hilbert space of QM. Thus, Schroedinger equation is a hybrid evolution equation. I stress that the phase-waves do not carry or exchange energy or momentum. The particle, on the other hand, has the usual dynamics, involving forces and exchange of energy and momentum. The fundamental trait of quantum dynamics is the relation between the two, where the value of the relative phase determines the probability for the particle to take di¤erent values of the dynamical variables from multiple possibilities. RQM based on this structure resolves all foundational problems. Before presenting the details, an example of a matter interferometer in RQM is depicted in …gure 1, as illustration.

The relation between the action function ( ) and dynamics is rooted in Hamilton's dynamics [START_REF] Hamilton | Second Essay on a General Method in Dynamics[END_REF], evolved from his 'general method of expressing the paths of light and of the planets', which guided Schroedinger as well [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF]. The fundamental relation is

( )  = ¡ ( 2 
)
where  is the Hamiltonian. The characteristic aspects of quantum dynamics is the existence of a minimum 'quantum of action', , and the phenomenon of quantum interference. Hamilton's fundamental relation can be incorporated in the dynamics of an entity capable of interference by writing the evolution equation for the complex action-wave (phase wave),  = exp(~). The phase  in the function exp() is R     where  stands for dynamical variables like momentum, energy, spin etc. and  are the associated coordi-nates.  is an elementary quantum of action, and …xed as ~from empirical data. Energy is the time derivative of the phase and the momentum is the gradient of the phase. With  = ( 2 2) +  and  = r, dynamics can be described in terms of the action-waves as

~   µ = ¡   ¶ = ¡ ~2 2 ¡ r 2 +  ¢  = ¡2  r 2  + 1 2 (r) 2 (3)
Now, there is a pure imaginary 'quantum action' term, nonzero only when r¢ = r 2  is nonzero. The very existence of a scale for the action, necessary in the action-wave, manifests when a spatial distribution of momenta of the particles are present; this implies a multi-particle situation or a statistical ensemble of single particle dynamics. We will see the relevance of this term in the next step in the reconstruction. This term is not signi…cant for the dynamics of macroscopic objects with   ~. The probability density  of the intrinsically stochastic particle dynamics obeys a continuity (conservation) equation,

( )  = ¡r ¢ () (4) 
 is the ensemble averaged real quantity. If the positive real

( ) =  2 ( ), we get   = ¡  2 r ¢  ¡  ¢ r = ¡  2 r 2  ¡ 1  r ¢ r (5) 
We can recast this equation of constraint as a 'wave equation' by de…ning the pseudo-wave ( ) =  12 ® exp() ´ exp(). The time evolution  is represented in the real part of the evolution . The mathematical independence of  from the dummy phase is ensured with  =  2 = j ¤ j 12 . This is the exact Born's rule.

It is striking that the ensemble of particle dynamics and the continuity of its probability density can be combined if we elevate the dummy quantity  to the action ( ) in a hybrid function ( ) = ¹ ( ) exp(( )~). Here, ¹  ´ is an ensemble averaged quantity and ( )~is phase of the phase-wave of single particle dynamics. Thus, the wavefunction is not the matter-wave. Nor is it a probability wave.

Then,

~   = ¡   + ~    (6) 
What is really remarkable is that the di¤erential terms required for   as well as for   are obtained from the single quantity r 2 .

¡ ~2 2 r 2  =  2 (r) 2 + ~ 2    r 2  ¡ ~ 2 r 2  ¡    r ¢ r (7)
The last three terms are related to the ensemble averaged time evolution and they are not active in the single particle dynamics, because the quantity  is an ensemble average of all events. For a given single event, the particle state is well de…ned and there is no  and its derivatives. The characteristic feature of quantum dynamics is the Heisenberg uncertainty, encoded as the uncertainty in the phase ~as  ' ~. This manifests in the scatter in  and  in the statistical ensemble of particle events as ¢¢ ' ~. This is the source of the additional di¤usive and dissipationless ensemble uncertainty term (~2) r 2  in  that a¤ects the time evolution of the hybrid . It is entirely independent of  or its derivatives, and not relevant for single events, since  and its derivatives exist only as ensemble averages (we stress this vital di¤erence with the de Broglie-Bohm formulation where such a term is associated with a potential acting on single particle dynamics, resulting in nonlocal e¤ects). Combining all the terms we arrive at the hybrid equation for the ensemble averaged time evolution of the hybrid quantity ,

~   = ¡ ~2 2 r 2  +   (8) 
which generalizes to ~_  = , which is the Schroedinger equation, but with a radically new inner structure and interpretation. In this bottom up construction, we have discovered that the Schroedinger equation is an ensemble equation as well as a single particle equation. It is not an equation for matter waves or probability waves.

The particle is always in a unique physical state, as a single whole. In contrast, the phase-waves associated with the states j  i are present with every realization of the evolution in the ensemble, responsible for superposition and interference. They are necessarily in quadrature combination with uniform magnitude, or cos  +  sin  = exp(), because  =  ¤ is without real oscillations in space, in general. The hybrid wavefunction ji = hi 12 ji exp(~) is the entire representation of the physical state.

As an example, in a 70:30 beam splitter, or two slits with width ratio 07 : 03, the phase-wave splits in the ratio   :   = p 07 : p 03, in each event, with each particle, irrespective of whether the particle takes path 1 or 2, with probability (over the virtual ensemble) 07 : 03. Both the measurement results and e¤ect of quantum interference are then correctly reproduced for each particle.

The reconstructed quantum mechanics (RQM) solves all the foundational problems of conventional quantum mechanics in one stroke. 

RQM without foundational problems Particle dynamics and interference

In RQM, as the material particle encounters a fork of possibilities   , it takes exactly one  =  with the probability determined by the experimental set up (beam splitters, slits etc.) and the initial phase of the quantum state at that instant. The material particle is in one unique path (state) at any instant, in a given event. The phase-wave splits and propagates in all paths (…g. 1). The interference of phase-waves determine the subsequent probability of partition into other states. When a measurement is done in eigen-basis, the result is the factual state of the particle. When a measurement of position is done, the particle is found where it actually is. Born's rule is reproduced exactly by the ensemble average. There is no collapse of the wavefunction, because the phase-waves do not collapse and the amplitude of the hybrid wavefunction is an ensemble average. The phase-waves, which do not carry energy or momentum, continue their propagation, but it is irrelevant for further detail of the dynamics of the particle. The interactions of the phasewaves involve exchange of only phase. This is the essence of wave-particle connection in RQM. No conservation law is a¤ected. The superposition like  1 j 1 i +  2 j 2 i is only applicable to the phase-waves. For the particle,  1 and  2 refers to an ensemble with probability  2  =   in the state j  i. If particle is allowed to propagate without interruption by detection to the point where the phase-waves are recombined, the phase di¤erence after interference determines the subsequent probabilities.

Consider a generic symmetric interferometer for neutrons, …gure 2, with the …eld  and its gradient  0 in the z-direction. At the point of entry in the apparatus, the random initial phase of x-polarized neutrons results in the random choice of j+i or j¡i state and path a particular neutron actually takes. The particle propagates exactly in one of the paths and unique state (j+i or j¡i) in each event, with no superposition. Measurement before path closure results in the factual state of the particle state; there is no collapse. The phase-waves corresponding to both states are present in every event, accumulating the dynamical phase R , and the phase from the interaction  ()~=  ¢ ~. If there are spin ‡ippers in the paths, the actual spin ‡ip with the energy exchange ¢ = 2   happens only for the particle, where it is actually propagating. The phase-wave changes its phase by 2 as they pass the spin ‡ipper, but there is no energy exchange.

The initial phase-waves corresponding to the possibilities of the particle states are

j+i = 1 p 2 j+i + 1 p 2 j¡i j¡i = 1 p 2 j+i ¡ 1 p 2 j¡i (9) 
This is very similar to a Mach-Zehnder interferometer with a polarizing beamsplitter and two orthogonal input states. The time evolved phase-waves superpose at the exit as

j 0 +i = 1 p 2 j+i  +  + 1 p 2 j¡i  ¡  (10) 
The quantity  § ´ §  ~. Note that the probability for the particles to be in the j+i and j¡i does not change due to the phase evolution. Now the probability for getting the particle in the state j¡i can be calculated,

j h ¡ j 0 +i j 2 = ¯1 2 ¡   +  ¡   ¡  ¢ ¯2 = 1 2 µ 1 ¡ cos 2   ~ ¶ (11) 
We have reproduced the most important feature of quantum interference, while avoiding the collapse of the wavefunction. When the particle emerges out, the resultant phase of the phase-waves from both the paths determine the subsequent probability to be found in states j §i j §i etc.

As other examples, a massive neutrino of one ‡avour is in one of the three mass states and never in superposition of the three. The phase-waves corresponding to the mass states superpose and interfere, resulting in oscillations in the probabilities for di¤erent ‡avour states. Similarly, an atom is never in a superposition of two positions or energy states; the phase-waves are, which carry no energy. The reconstruction generalizes to the Dirac equation ~_  =  , with the same Hamilton's relation as the basis for relativistic particle dynamics as well. This resolves the foundational issue of 'zitterbewegung', identifying it as the ensemble average [START_REF] Unnikrishnan | Reconstructed Quantum Mechanics: Causal, Local, Universal, and Without the Collapse of the Wavefunction[END_REF].

A multi-particle 'entangled' system in RQM is equally simple. The superposition represented as  1 j+i 1 j¡i 2 +  2 j¡i 1 j+i 2 are applicable only to the associated phase-waves. The joint physical state of the two particles is always a unique unentangled state, like j+i 1 j¡i 2 or j¡i 1 j+i 2 . The probabilities for measurement results in a general basis are determined by the relative phase of the superposed phase-waves, now with the correlated pairs of phase-waves (see later). Hence there is no collapse of the state. Ensemble average gives j 1 j and j 2 j and determine the hybrid wavefunction; 'entanglement' is apparent and an ensemble statement. RQM deconstructs the enigma of quantum entanglement, restoring the physicality and separability of the particle states. I will show that the phase-waves interfere locally to give all correlations correctly, after addressing the vital quantum measurement problem.

Quantum measurement problem

A quantum system that can be in the superposition P   j  i, after interaction with an apparatus with pointer states j  i, is conventionally in the correlated entangled state

ji  = P   j  i j  i (12) 
However, in RQM, only the phase-waves superpose, and the matter states are unique and distinct at every event. Entanglement is an ensemble apparition. In each trial, a unique state of the system, determined by the local interference of the phase-waves, results in a unique correlated pointer state after the interaction. We already saw how the deterministic Schroedinger equation is related to (virtual) ensemble average of the indeterministic particle dynamics. Since there is no collapse of the state of either the system or the apparatus, the quantum measurement problem is solved completely. The joint state after interaction at any measurement event is exactly one of the possible j  i j  i. The ensemble average of such multiple measurements has the relative probability j  j 2 . The macroscopic apparatus is characterized by the stable phase of its state, because the quantum uncertainty in the phase amounting to a few ~is insigni…cant compared to the gross action of the large physical system. Otherwise, there is no di¤erence between macroscopic and microscopic matter, in RQM.

As we have already solved the problem of quantum measurement, there is no quantum-classical divide or transition in RQM. Neither is any involvement of 'consciousness', beyond what is obvious and familiar. The phase-waves of the macroscopic systems interfere over tiny spatio-temporal intervals, much smaller than atomic scales, and thus quantum interference is not e¤ective in determining their dynamics. 

Entanglement and Correlations

We conclude with the solution of the hard problem of the correlation of the two-particle entangled system in which the enigma of quantum mechanics appears in the most pronounced way. Consider a two-particle state that is correlated in momentum, but restricted to two possible values § (two paths) in an interference experiment, as shown in Fig. 2A. The particles are always in some de…nite correlated physical state, either j+i 1 j¡i 2 or j¡i 1 j+i 2 , in a given pair-event. There is no superposition of two-particle states. Two pairs of phase-waves, (+ 1  ¡ 1 ) and (+ 2  ¡ 2 ), associated with the two particles are present in each event. Phase-waves are correlated at the source (or interaction point) through the conservation laws [START_REF] Unnikrishnan | Correlation functions, Bell's inequalities and the fundamental conservation laws[END_REF][START_REF] Unnikrishnan | The incompatibility between local hidden variable theories and the fundamental conservation laws[END_REF][START_REF] Unnikrishnan | Is the quantum mechanical description of physical reality complete? Proposed resolution of the EPR puzzle[END_REF]. When the dynamical quantity   is conserved, it re ‡ects in the phase exp(    ), with

  =  1 +  2 .
The sum of the initial phases are …xed by the conservation constraint, but the individual phases are random. I will now derive the two-particle correlation from entirely local interference of phase-waves, retaining the independent physical states of the particles, eliminating nonseparability and nonlocality, and answering the EPR query.

Referring to Fig. 3A, the source emits the particles with opposite momenta ( ¥1   ¡2 ) or ( ¡1   +2 ). The source size has to be larger than  for getting correlated particles, where  signi…es the degree of the lack of correlation. Thus, the point of origin   of the particles varies by more than ¢ § event to event, stochastically. Two pairs of correlated phase-waves from   are present in each event;  ¥1 and  ¡1 associated with particle #1 and  +2 and  +2 with particle #2. They interfere locally at the detector D1 at  1 and at the detector D2 at  2 .

j1  1 i = 1 p 2   +1 ( 1 ¡  )~+ 1 p 2   ¡1 ( 1 ¡  )j 2  2 i = 1 p 2   ¡2 ( 2 ¡)~+ 1 p 2   +2 ( 2 ¡)~( 13)
The phase-waves  +1 wave is always coupled with the  ¡2 wave and the  ¡1 wave with  +2 wave; there are no ( +1   +2 ) or ( ¡1   ¡2 ) combinations. Because of the conservation constraint, the  +1   ¡2 phase-waves are like single coherent phase wave; so are  ¡1   +2 . Also,  + = ¡ ¡ . The detected intensity at detector #1 of area  is jj1

 1 ij 2 . jj1  1 ij 2 = 1 + 1 2   +1 ( 1 ¡)~¡ ¡1 ( 1 ¡)~+ 1 2   ¡1 ( 1 ¡)~¡ +1 ( 1 ¡)= 1 + 1 2  ( + ¡ ¡ )( 1 ¡)~+ 1 2  ¡( + ¡ ¡ )( 1 ¡)~= 1 + cos (¢ ( 1 ¡   )) (14) 
We have written ~= . For particle #2, we get a similar expression jj2  2 ij 2 = 1 + cos (¢ ( 2 +   )). Though these are the familiar cosine forms of interference, there is no single particle interference because the source point   is a stochastic quantity in the extended source, and   ¢ ¸2.

Thus, jj1  1 ij 2 ® = jj2  2 ij 2 ® = 1
, a uniform intensity. However, for the two-particle coincidence detection in the two detectors involves simultaneous, but independent, local interference of the phase-waves at location 1 and 2,

j1  1 i j2  2 i = µ 1 p 2   +1 ( 1 ¡) + 1 p 2   ¡1 ( 1 ¡) ¶ 1 µ 1 p 2   ¡2 ( 2 ¡) + 1 p 2   +2 ( 2 ¡) ¶ 2 (15) Keeping in mind that there is no ( +1   +2 ) or ( ¡1   ¡2 ) combinations, j1  1 i j2  2 i = 1 p 2   +1 ( 1 ¡) 1 p 2   ¡2 ( 2 ¡) + 1 p 2   ¡1 ( 1 ¡) 1 p 2   +2 ( 2 ¡)
(16) The detected intensity-intensity correlation is

jj1  1 i j2  2 ij 2 = 1 2 + 1 4  ( ¡ ¡ + )( 1 ¡)  ¡( ¡ ¡ + )( 2 ¡) + 1 4  ¡( ¡ ¡ + )( 1 ¡)  ( ¡ ¡ + )( 2 ¡) = 1 2 + 1 4  ¢( 1 ¡ 2 ) + 1 4  ¡¢( 1 ¡ 2 ) = 1 2 (1 + cos (¢  ( 1 ¡  2 ))) (17) 
This is an interference pattern with 100% visibility, visible by …xing one detector and scanning the other. There is no wavefunction collapse and there is no nonlocality. Any mixture or lack of correlation in phase-waves results in the reduction of visibility, eventually dropping to 50% for the thermal state, as in the Hanburry Brown-Twiss correlation.

The correlation of the entangled spin singlet that epitomizes all the quantum mysteries is treated similarly in RQM. When the pair of particles emerge from the source with total spin zero, they are randomly but entirely in only one of the two possible joint states j § i = j+i 1 j¡i 2 or ¯0 ¨® = j¡i 1 j+i 2 , with no superposition. The phase-waves corresponding to both states are present in every event. The ensemble averaged hybrid wavefunction is hj = 0ii = (j+i 1 j¡i 2 ¡ j¡i 1 j+i 2 )  p 2 in any basis. This entanglement is not a statement on each pair, but over the ensemble.

For the case of spins, the initial random angular orientation  in …g. 3B is like the random origin   in …g. 3A. The spin analyzer orientation   corresponds to a stable phase, exactly as the detector position in the example of the interference. Phase-waves associated with each particle superpose and interfere, locally at analyzer 1 and 2 as

j1i = 1 p 2 j+i 1   +  1  ¡ +  + 1 p 2 j¡i 1   ¡  1  ¡ ¡  j2i = 1 p 2 j+i 2   +  2  ¡ +  + 1 p 2 j¡i 2   ¡  2  ¡ ¡  (18) 
For independent detection, say particle #1 in the state j+i, with spin analyzer oriented at  1 the situation is analogous to interferometer in …g. 2, but now with a random phase included. We get the probability

 (1+  1 ) = jh1+j j1ij 2 = ¯1 2   +  1  ¡ +  + 1 2   ¡  1  ¡ ¡  ¯2 = 1 2 + 1 2 cos (¢ ( 1 ¡ )) (19) 
Since  is stochastic in the interval (0 2), the average of cos ¢ ( ¡  1 ) is zero and there is uniform probability 12 for detecting +1 and ¡1 for the spin projections, for any setting of the apparatus.

The joint detection is with the constraint that j+i 1 phase-wave is correlated with the j¡i 2 wave and the j¡i 1 phase-wave is with the j+i 2 wave. This is analogous to a double-interferometer, as in …g. 3A. There are no j+i 1 j+i 2 wave or j¡i 1 j¡i 2 combinations.

j1 2i = 1 2 j+i 1   +  1  ¡ +  j¡i 2   ¡  2  ¡ ¡  + 1 2 j¡i 1   ¡  1  ¡ ¡  j+i 2   +  2  ¡ +  ( 
20) The probability for joint measurement of (+ ¡) or (¡ +) for the spin projections with their product ¡1 is

 +¡¡+ = jj1 + 2 ¡  1 ¡ 2 + ij 2 = 1 2 + 1 4  ¡( + ¡ ¡ )( 1 ¡ 2 ) + 1 4  ( + ¡ ¡ )( 1 ¡ 2 ) = 1 2 (1 + cos(¢ ( 1 ¡  2 ))) = cos 2 ( 1 ¡  2 ) 2 (21) 
Then the probability to get (+ +) or (¡ ¡) for the spin projections with their product +1 is

 ++¡¡ = jj1 + 2 +  1 ¡ 2 ¡ ij 2 i = 1 ¡ cos 2 ( 1 ¡  2 ) 2 = sin 2 ( 1 ¡  2 ) 2 (22)
The …nal spin correlation is

( 1 ¡  2 ) = ¡1 £  +¡¡+ + 1 £  ++¡¡ = ¡ cos ( 1 ¡  2 ) (23) 
I have derived the singlet correlation in the RQM without the wavefunction collapse or nonlocality, from local interference of the phase-waves. When ( 1 ¡  2 ) = 0, we get perfect anti-correlation event by event for every pair of particles, irrespective of the individual setting of the analyzers or the distance between the particles. Resolution of this problem, considered the greatest quantum mystery, shows the correctness and scope of the RQM. All familiar results involving bipartite correlations, like teleportation, are possible through the phase-wave correlation, while particle states remain separable and unentangled.

Concluding remarks

I have reconstructed quantum mechanics solving all its vexing foundational and conceptual problems. The key …nding is that the wavefunction of the Schroedinger equation is a hybrid quantity encoding the ensemble averaged stochastic dynamics of particles with real physical states and the phasewaves that accumulate the dynamical phases in all possibilities, event by event. This new wave-particle connection, rather than duality, in RQM eliminates the collapse of the wavefunction, the measurement problem, and the quantum-classical divide. It restores separable independent particle states in quantum entanglement and eliminates nonlocality. The reconstruction extends to relativistic QM, quantum optics, and the Dirac equation, enabling the resolution some foundational issues [START_REF] Unnikrishnan | Reconstructed Quantum Mechanics: Causal, Local, Universal, and Without the Collapse of the Wavefunction[END_REF]. With the waves as phase carriers, the divergent energy that is usually associated with the quantum vacuum modes is no more troublesome. It is hoped that RQM will result in the de…nite closure of the philosophical debates anchored on the conceptual issues of QM [START_REF] Wayne | Philosophical Issues in Quantum Theory, The Stanford Encyclopedia of Philosophy[END_REF]. RQM makes it clear that matter states and their long-range …elds do not superpose. The entity in superposition, the phase-waves, do not have energy-momentum. Also, there is no physical sense in the superposition of states when there is only single realization of a material system. Therefore, RQM will rechart the conceptual trajectory in the …elds of quantum gravity and quantum cosmology.
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 1 Figure 1: Matter dynamics and phase-wave interference in RQM, correctly reproducing statistical results of measurements as well as quantum interference, without collapse and other foundational issues. Particle dynamics has two distict possibilities inside the interferometer that do not superpose, and two at exit (B) Particle probabilities at exit are determined by the relative phase of the two interfering phase-waves (broken arrows), which are present in every event.

Figure 2 :

 2 Figure 2: The making of the hybrid wavefunction. A and B are two realizations of the spin-1/2 particle dynamics in a Stern-Gerlach device. The particle enters in a de…nite spin state and its dynamics continues in one of the two possibilities, Up or Down, in each run. There is no superposition of particle states. The ensemble average over all realizations gives the real positive part of the hybrid wavefunction. The phase-waves corresponding to both the possibilities (dashed arrows) are present in both A and B. Their relative phase at the end, where paths are recombined, determines to probabilities of subsequent spin projections.
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 3 Figure 3: Quantum correlations of entangled systems in RQM derived from the local and independent interference of the phase waves at the detectors. (The de…nite physical states of the particles are not shown). The uncertainty in the initial phase washes out interference at individual detectors, but their correlation is a de…nite function with 100% 'visibility'. For identical settings, we get perfect correlation without any nonlocality.