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Abstract11

We make progress on the fine-grained complexity of Maximum-Cardinality Matching on12

graphs of bounded clique-width. Quasi linear-time algorithms for this problem have been recently13

proposed for the important subclasses of bounded-treewidth graphs (Fomin et al., SODA’17) and14

graphs of bounded modular-width (Coudert et al., SODA’18). We present such algorithm for15

bounded split-width graphs — a broad generalization of graphs of bounded modular-width, of16

which an interesting subclass are the distance-hereditary graphs. Specifically, we solve Maximum-17

Cardinality Matching in O((k log2 k) ·(m+n) · logn)-time on graphs with split-width at most18

k. We stress that the existence of such algorithm was not even known for distance-hereditary19

graphs until our work. Doing so, we improve the state of the art (Dragan, WG’97) and we20

answer an open question of (Coudert et al., SODA’18). Our work brings more insights on the21

relationships between matchings and splits, a.k.a., join operations between two vertex-subsets in22

different connected components. Furthermore, our analysis can be extended to the more general23

(unit cost) b-Matching problem. On the way, we introduce new tools for b-Matching and24

dynamic programming over split decompositions, that can be of independent interest.25
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1 Introduction35

The Maximum-Cardinality Matching problem takes as input a graph G = (V,E) and36

it asks for a subset F of pairwise disjoint edges of maximum cardinality. This is a funda-37

mental problem with a wide variety of applications. Hence, the computational complexity38

of Maximum-Cardinality Matching has been extensively studied in the literature. For39

instance, this was the first problem shown to be solvable in polynomial-time [11]. Cur-40

rently, the best-known algorithms for this problem run in O(m
√
n)-time on n-vertex m-edge41
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122:2 The b-Matching problem in distance-hereditary graphs and beyond

graphs [22]. Such superlinear running times can be prohibitive for some applications. In-42

triguingly, Maximum-Cardinality Matching is one of the few remaining fundamental43

graph problems for which we neither have proved the existence of a quasi linear-time al-44

gorithm, nor a superlinear time complexity (conditional) lower-bound. This fact has renewed45

interest in understanding what kind of graph structure makes this problem difficult. Our46

present work is at the crossroad of two successful approaches to answer this above question,47

namely, the quest for improved graph algorithms on special graph classes and the much more48

recent program of “FPT in P”. We start further motivating these two approaches before we49

detail our contributions.50

1.1 Related work51

Algorithmic on special graph classes. One of our initial motivations for this paper was52

to design a quasi linear-time algorithm for Maximum-Cardinality Matching on distance-53

hereditary graphs [1]. – Recall that a graph G is called distance-hereditary if the distances54

in any of its connected induced subgraphs are the same as in G. – Distance-hereditary55

graphs have already been well studied in the literature [1, 8, 17]. In particular, we can56

solve Diameter in linear-time on this class of graphs [8]. For the latter problem on general57

graphs, a conditional quadratic lower-bound has been proved in [24]. This result suggests58

that several hard graph problems in P may become easier on distance-hereditary graphs.59

Our work takes a new step toward better understanding the algorithmic properties of this60

class of graphs. We stress that there exist linear-time algorithms for computing a maximum61

matching on several subclasses of distance-hereditary graphs, such as: trees, cographs [26]62

and (tent,hexahedron)-free distance-hereditary graphs [7]. However, the techniques used for63

these three above subclasses are quite different from each other. As a byproduct of our main64

result, we obtain an O(m logn)-time algorithm for Maximum-Cardinality Matching on65

distance-hereditary graphs. In doing so, we propose one interesting addition to the list of66

efficiently solvable special cases for this problem.67

Split Decomposition. In order to tackle with Maximum-Cardinality Matching on68

distance-hereditary graphs, we consider the relationship between this class of graphs and split69

decomposition. A split is a join that is also an edge-cut. By using pairwise non crossing splits,70

termed “strong splits”, we can decompose any graph into degenerate and prime subgraphs,71

that can be organized in a treelike manner. The latter is termed split decomposition [6],72

and it is our main algorithmic tool for this paper. The split-width of a graph is the largest73

order of a non degenerate subgraph in some canonical split decomposition. In particular,74

distance-hereditary graphs are exactly the graphs with split-width at most two [23].75

Many NP-hard problems can be solved in polynomial time on bounded split-width graphs76

(e.g., Graph Coloring, see [23]). Recently, with Coudert, we designed FPT algorithms for77

polynomial problems when parameterized by split-width [5]. It turns out that many “hard”78

problems in P such as Diameter can be solved in O(kO(1) · n + m)-time on graphs with79

split-width at most k. However, we left this open for Maximum-Cardinality Matching.80

Indeed, our main contribution in [5] was a Maximum-Cardinality Matching algorithm81

based on the more restricted modular decomposition. Given this previous result, it was82

conceivable that a Maximum-Cardinality Matching algorithm based on split decom-83

position could also exist. However, we need to introduce quite different tools than in [5] in84

order to prove in this work that it is indeed the case.85

Fully Polynomial Parameterized Algorithms. Our work with split-width fits in the re-86

cent program of “FPT in P”. Specifically, given a graph invariant denoted π (in our case, split-87
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width), we address the question whether there exists a Maximum-Cardinality Matching88

algorithm running in time O(kc · (n+m) · logO(1)(n)), for some constant c, on every graph G89

such that π(G) ≤ k. Note that such an algorithm runs in quasi linear time for any constant90

k, and that it is faster than the state-of-the art algorithm for Maximum-Cardinality91

Matching whenever k = O(n 1
2c−ε), for some ε > 0. This kind of FPT algorithms for92

polynomial problems have attracted recent attention [5, 16, 19, 20, 21]. We stress that93

Maximum-Cardinality Matching has been proposed in [21] as the “drosophila” of the94

study of these FPT algorithms in P. We continue advancing in this research direction.95

Note that another far-reaching generalization of distance-hereditary graphs are the graphs96

of bounded clique-width [17]. In [5], we initiated the complexity study of Maximum-97

Cardinality Matching – and other graph problems in P – on bounded clique-width98

graph classes. The latter research direction was also motivated by the recent O(k2 ·n logn)-99

time algorithm for Maximum-Cardinality Matching on graphs of treewidth at most k,100

see [13, 19]. Turning our attention on denser graph classes of bounded clique-width, we101

proved in [5] that Maximum-Cardinality Matching can be solved in O(k4 ·n+m)-time102

on graphs with modular-width at most k. We stress that distance-hereditary graphs have103

unbounded treewidth and unbounded modular-width. Furthermore, clique-width is upper-104

bounded by split-width [23], whereas split-width is upper-bounded by modular-width [5]. As105

our main contribution in this paper, we present a quasi linear-time algorithm in order to solve106

some generalization of Maximum-Cardinality Matching on bounded split-width graphs107

— thereby answering positively to the open question from [5], while improving the state-108

of-the-art. Our result shows interesting relationships between graph matchings and splits,109

the latter being an important particular case of the join operation that is used in order to110

define clique-width. The fine-grained complexity of Maximum-Cardinality Matching111

parameterized by clique-width, however, remains open.112

1.2 Our contributions113

We consider a vertex-weighted generalization for Maximum-Cardinality Matching that114

is known as the unit-cost b-Matching problem [12]. Roughly, every vertex v is assigned some115

input capacity bv, and the goal is to compute edge-weights (xe)e∈E so that: for every v ∈ V116

the sum of the weights of its incident edges does not exceed bv, and
∑

e∈E xe is maximized.117

We prove a simple combinatorial lemma that essentially states that the cardinality of a118

maximum b-matching in a graph grows as a piecewise linear function in the capacity bw119

of any fixed vertex w. This nice result (apparently never noticed before) holds for any120

graph. As such, we think that it could provide a nice tool for the further investigations on121

b-Matching. Then, we derive from our combinatorial lemma a variant of some reduction122

rule for Maximum-Cardinality Matching that we first introduced in the more restricted123

case of modular decomposition [5]. Altogether combined, this allows us to reduce the solving124

of b-Matching on the original graph G to solving b-Matching on supergraphs of every its125

split components. We expect our approach to be useful in other matching and flow problems.126

Overall, our main result is that b-Matching can be solved in O((k log2 k) · (m + n) ·127

log ||b||1)-time on graphs with split-width at most k (Theorem 12). It implies that Maximum-128

Cardinality Matching can be solved in O((k log2 k) · (m+n) · logn)-time on graphs with129

split-width at most k. Since distance-hereditary graphs have split-width at most two, we so130

obtain the first known quasi linear-time algorithms for Maximum-Cardinality Matching131

and b-Matching on distance-hereditary graphs.132

We introduce the required terminology and basic results in Section 2, where we also133

sketch the main ideas behind our algorithm (Section 2.3). Then, Section 3 is devoted to a134

ISAAC 2018



122:4 The b-Matching problem in distance-hereditary graphs and beyond

combinatorial lemma that is the key technical tool in our subsequent analysis. In Section 4,135

we present our algorithm for b-Matching on bounded split-width graphs. We conclude136

in Section 5 with some open questions. Due to space restrictions, some of the proofs are137

omitted. Full proofs can be found in our technical report [9].138

2 Preliminaries139

We use standard graph terminology from [3]. Graphs in this study are finite, simple (hence140

without loops or multiple edges), and connected – unless stated otherwise. Furthermore we141

make the standard assumption that graphs are encoded as adjacency lists. Given a graph142

G = (V,E) and a vertex v ∈ V , we denote its neighbourhood by NG(v) = {u ∈ V | {u, v} ∈143

E} and the set of its incident edges by Ev(G) = {{u, v} | u ∈ NG(v)}. When G is clear144

from the context we write N(v) and Ev instead of NG(v) and Ev(G). Similarly, we define145

the neighbourhood of any vertex-subset S ⊆ V as NG(S) =
(⋃

v∈S NG(v)
)
\ S.146

2.1 Split-width147

Let a split in a graphG = (V,E) be a partition V = U∪W such that: min{|U |, |W |} ≥ 2; and148

there is a complete join between the vertices of NG(U) and NG(W ). A simple decomposition149

of G takes as input a split (U,W ), and it outputs two subgraphs GU = G[U ∪ {w}] and150

GW = G[W ∪ {u}] where u,w /∈ V are fresh new vertices such that NGU
(w) = U and151

NGW
(u) = W . The vertices u,w are termed split marker vertices. A split decomposition152

of G is obtained by applying recursively some sequence of simple decompositions (e.g., see153

Fig. 1). We name split components the subgraphs in a given split decomposition of G.154
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Figure 1 A graph and its split decomposition. Split marker vertices that correspond to a same
simple decomposition are identified by two rectangles with the same color.

It is often desirable to apply simple decompositions until all the subgraphs obtained155

cannot be further decomposed. In the literature there are two cases of “indecomposable”156

graphs. Degenerate graphs are such that every bipartition of their vertex-set is a split. They157

are exactly the complete graphs and the stars [6]. A graph is prime for split decomposition158

if it has no split. We can define the following two types of split decomposition:159

Canonical split decomposition. Every graph has a canonical split decomposition160

where all the subgraphs obtained are either degenerate or prime and the number of161

subgraphs is minimized. Furthermore, the canonical split decomposition of a given graph162

can be computed in linear-time [4].163

Minimal split decomposition. A split-decomposition is minimal if all the subgraphs164

obtained are prime. A minimal split-decomposition can be computed from the canonical165

split-decomposition in linear-time [6]. Doing so, we avoid handling with the particular166

cases of stars and complete graphs in our algorithms. The set of prime graphs in any167

minimal split decomposition is unique up to isomorphism [6].168

For instance, the split decomposition of Fig. 1 is both minimal and canonical.169
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I Definition 1. The split-width of G, denoted by sw(G), is the minimum k ≥ 2 such that170

any prime subgraph in the canonical split decomposition of G has order at most k.171

We refer to [23] for some algorithmic applications of split decomposition. In particu-172

lar, graphs with split-width at most two are exactly the distance-hereditary graphs, a.k.a173

the graphs whose all connected induced subgraphs are distance-preserving [1]. Distance-174

hereditary graphs contain many interesting subclasses of their own such as cographs (a.k.a.,175

P4-free graphs) and 3-leaf powers. Furthermore, since every degenerate graph has a split176

decomposition where all the components are either triangles or paths of length three, every177

component in a minimal split decomposition of G has order at most max{3, sw(G)}.178

Split decomposition tree. A split decomposition tree of G is a tree T where the179

nodes are in bijective correspondance with the subgraphs of a given split decomposition180

of G, and the edges of T are in bijective correspondance with the simple decompositions181

used for their computation. More precisely, if the considered split decomposition is reduced182

to G then T is reduced to a single node; Otherwise, let (U,W ) be a split of G and let183

GU = (U ∪ {w}, EU ), GW = (W ∪ {u}, EW ) be the corresponding subgraphs of G. We184

construct the split decomposition trees TU , TW for GU and GW , respectively. Furthermore,185

the split marker vertices u and w are contained in a unique split component of GW and186

GU , respectively. We obtain T from TU and TW by adding an edge between the two nodes187

that correspond to these subgraphs. The split decomposition tree of the canonical split188

decomposition, resp. of a minimal split decomposition, can be constructed in linear-time [23].189

2.2 Matching problems190

A matching in a graph is a set of edges with pairwise disjoint end vertices.191

I Problem 1 (Maximum-Cardinality Matching).
Input: A graph G = (V,E).
Output: A matching of G with maximum cardinality.

192

The Maximum-Cardinality Matching problem can be solved in O(m
√
n)-time [22].193

We do not use this result directly in our paper. However, we do use in our analysis the194

notion of augmenting paths, that is a cornerstone of most matching algorithms. Namely,195

let G = (V,E) be a graph and F ⊆ E be a matching of G. A vertex is termed matched196

if it is incident to an edge of F , and exposed otherwise. An F -augmenting path is a path197

where the two ends are exposed, all edges {v2i, v2i+1} are in F and all edges {v2j−1, v2j}198

are not in F . We can observe that, given an F -augmenting path P = (v1, v2, . . . , v2`), the199

matching E(P )∆F (obtained by replacing the edges {v2i, v2i+1} with the edges {v2j−1, v2j})200

has larger cardinality than F .201

I Lemma 2 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is202

no F -augmenting path.203

It is folklore that the proof of Berge’s lemma also implies the existence of many vertex-204

disjoint augmenting paths for small matchings. More precisely:205

I Lemma 3 (Hopcroft-Karp, [18]). Let F1, F2 be matchings in G = (V,E). If |F1| = r, |F2| =206

s and s > r, then there exist at least s− r vertex-disjoint F1-augmenting paths.207

b-Matching. More generally given a graph G = (V,E), let b : V → N assign a nonneg-208

ative integer capacity bv for every vertex v ∈ V . A b-matching is an assignment of nonneg-209

ative integer edge-weights (xe)e∈E such that, for every v ∈ V , we have
∑

e∈Ev
xe ≤ bv. We210

ISAAC 2018



122:6 The b-Matching problem in distance-hereditary graphs and beyond

define the x-degree of vertex v as degx(v) =
∑

e∈Ev
xe. Furthermore, the cardinality of a211

b-matching is defined as ||x||1 =
∑

e∈E xe. We will consider the following graph problem:212

I Problem 2 (b-Matching).
Input: A graph G = (V,E); an assignment function b : V → N.
Output: A b-matching of G with maximum cardinality.

213

For technical reasons, we will also use the following variant of b-Matching. Let c : E →214

N assign a cost to every edge. The cost of a given b-matching x is defined as c·x =
∑

e∈E cexe.215

I Problem 3 (Maximum-Cost b-Matching).
Input: A graph G = (V,E); assignment functions b : V → N and c : E → N.
Output: A maximum-cardinality b-matching of G where the cost is maximized.

216

I Lemma 4 ( [14, 15]). For every G = (V,E) and b : V → N, c : E → N, we can solve217

Maximum-Cost b-Matching in O(nm log2 n)-time.218

In particular, we can solve b-Matching in O(nm log2 n)-time.219

There is a nonefficient (quasi polynomial) reduction from b-Matching to Maximum-220

Cardinality Matching that we will use in our analysis (e.g., see [25]). More precisely,221

let G, b be any instance of b-Matching. The “expanded graph” Gb is obtained from G and222

b as follows. For every v ∈ V , we add the nonadjacent vertices v1, v2, . . . , vbv
in Gb. Then,223

for every {u, v} ∈ E, we add the edges {ui, vj} in Gb, for every 1 ≤ i ≤ bu and for every224

1 ≤ j ≤ bv. It is easy to transform any b-matching of G into an ordinary matching of Gb,225

and vice-versa.226

2.3 High-level presentation of the algorithm227

In order to discuss the difficulties we had to face on, we start giving an overview of the FPT228

algorithms that are based on split decomposition.229

We first need to define a vertex-weighted variant of the problem that needs to be solved230

for every component of the decomposition separately (possibly more than once). This231

is because there are split marker vertices in every component that substitute the other232

remaining components; intuitively, the weight of such a vertex encodes a partial solution233

for the union of split components it has substituted.234

Then, we take advantage of the treelike structure of split decomposition in order to solve235

the weighted problem, for every split component sequentially, using dynamic program-236

ming. Roughly, this part of the algorithm is based on a split decomposition tree. Starting237

from the leaves of that tree (resp. from the root), we perform a tree traversal. For every238

split component, we can precompute its vertex-weights from the partial solutions we239

obtained for its children (resp., for its father) in the split decomposition tree.240

Our approach. In our case, a natural vertex-weighted generalization for Maximum-241

Cardinality Matching is the unit-cost b-Matching problem [12]. Independently from242

this work1, the authors in [20] proposed a new Maximum-Cardinality Matching al-243

gorithm on graphs of bounded modular-width that is also based on a reduction to b-244

Matching. Unlike this work, the algorithm of [20] cannot be applied to the more gen-245

eral case of bounded split-width graphs. Indeed, the main technical difficulty for the latter246

1 Our preliminary version of this paper was released on arXiv one day before theirs.
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graphs – not addressed in [20] – is how to precompute efficiently, for every component of247

their split decomposition, the specific instances of b-Matching that need to be solved. To248

see that, consider the bipartition (U,W ) that results from the removal of a split. In order249

to compute the b-Matching instances on side U , we should be able (after processing the250

other side W ) to determine the number of edges of the split that are matched in a final251

solution. Guessing such number looks computationally challenging. We avoid doing so by252

storing a partial solution for every possible number of split edges that can be matched.253

However, this simple approach suffers from several limitations. For instance, we need a very254

compact encoding for partial solutions – otherwise we could not achieve a quasi linear-time255

complexity. Somehow, we also need to consider the partial solutions for all the splits that256

are incident to the same component all at once.257

This is where we use a result from Section 3, namely, that for every fixed vertex w258

in a graph, the maximum-cardinality of a b-matching is a piecewise-linear function in the259

capacity bw of this vertex. Roughly, in any given split component Ci, we consider all the260

vertices w substituting a union of other components. The latter vertices are in one-to-261

one correspondence with the strong splits that are incident to the component. We expand262

every such vertex w to a module that contains O(1) vertices for every straight-line section263

of the corresponding piecewise-linear function. We want to stress that to the best of our264

knowledge, the combination of dynamic programming over split decomposition with the265

recursive computation of some piecewise-linear functions is an all new algorithmic technique.266

3 Changing the capacity of one vertex267

We first consider an auxiliary problem on b-matching that can be of independent interest.268

Let G = (V,E) be a graph, w ∈ V and b : V \w → N be a partial assignment. We denote µ(t)269

the maximum cardinality of a b-matching of G provided we set to t the capacity of vertex270

w. Clearly, µ is nondecreasing in t. Our main result in this section is that the function µ is271

essentially piecewise linear (Proposition 1). We start by introducing some useful lemmata.272

I Lemma 5. µ(t+ 1)− µ(t) ≤ 1.273

I Lemma 6. If µ(t+ 2) = µ(t) then we have µ(t+ i) = µ(t) for every i ≥ 0.274

I Lemma 7. If µ(t+ 1) = µ(t) then we have µ(t+ 3) = µ(t+ 2).275

These above results are obtained by studying vertex-disjoint augmenting paths in some276

“expanded graphs” Gb,t (cf. Lemmata 2 and 3).277

I Proposition 1. There exist integers c1, c2 such that:

µ(t) =


µ(0) + t if t ≤ c1

µ(c1) +
⌊

t−c1
2
⌋

= µ(0) + c1 +
⌊

t−c1
2
⌋
if c1 < t ≤ c1 + 2c2

µ(c1 + 2c2) = µ(0) + c1 + c2 otherwise.

Furthermore, the triple (µ(0), c1, c2) can be computed in O(nm log2 n log ||b||1)-time.278

Proof. Let c1 be the maximum integer t such that µ(t) = µ(0)+t. This value is well-defined279

since µ must stay constant whenever t ≥
∑

v∈NG(w) bv (saturation of all the neighbours).280

Furthermore, by Lemma 5 we have µ(t) = µ(0) + t for every 0 ≤ t ≤ c1. Then, let281

tmax be the least integer t such that, for every i ≥ 0 we have µ(tmax + i) = µ(tmax).282

Again, this value is well-defined since we have the trivial upper-bound tmax ≤
∑

v∈NG(w) bv.283
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Figure 2 An example with (µ(0), c1, c2) = (1, 1, 1). Vertices are labeled with their capacity.
Thin and bold edges have respective weights 0 and 1.

Furthermore, since µ is strictly increasing between 0 and c1, tmax ≥ c1. Let c′2 = tmax − c1.284

We claim that c′2 = 2c2 is even. For that, we need to observe that µ(c1) = µ(c1 + 1) by285

maximality of c1. Using Lemma 7, we prove by induction µ(c1 + 2i) = µ(c1 + 2i + 1) for286

every i ≥ 0. The latter proves, as claimed, c′2 = 2c2 is even by minimality of c′2. Moreover,287

for every 0 ≤ i < c2 we have by Lemma 6 µ(c1 + 2i) < µ(c1 + 2(i + 1)) (since otherwise288

tmax ≤ c1 +2i). By Lemma 7 we have µ(c1 +2i) = µ(c1 +2i+1). Finally, by Lemma 5 we get289

µ(c1 +2(i+1)) ≤ µ(c1 +2i+1)+1 = µ(c1 +2i)+1, therefore µ(c1 +2(i+1)) = µ(c1 +2i)+1.290

Altogether combined, it implies that µ(c1+2i) = µ(c1+2i+1) = µ(c1)+i for every 0 ≤ i ≤ c2,291

that proves the first part of our result.292

We can compute µ(0) with any b-Matching algorithm after we set the capacity of w to293

0. The value of c1 can be computed within O(log c1) calls to a b-Matching algorithm, as294

follows. Starting from c′1 = 1, we multiply the current value of c′1 by 2 until we reach a value295

c′1 > c1 such that µ(c′1) < µ(0) + c′1. Then, we perform a binary search between 0 and c′1 in296

order to find the largest value c1 such that µ(c1) = µ(0) + c1. Once c1 is known, we can use297

a similar approach in order to compute c2. Overall, since c1 + 2c2 = tmax ≤
∑

v∈NG(w) bv =298

O(||b||1), we are left with O(log ||b||1) calls to any b-Matching algorithm. Therefore, by299

Lemma 4, we can compute the triple (µ(0), c1, c2) in O(nm log2 n log ||b||1)-time. J300

4 The algorithm301

We present in this section a quasi linear-time algorithm for computing a maximum-cardinality302

b-matching on any bounded split-width graph (Theorem 12). Given a graphG, our algorithm303

takes as input the split decomposition tree T of any minimal split decomposition of G. We304

root T in an arbitrary component C1. Then, starting from the leaves, we compute by305

dynamic programming on T the cardinality of an optimal solution. This first part of the306

algorithm is involved, and it uses the results of Section 3. It is based on a new reduction307

rule that we introduce in Definition 8. Finally, starting from the root component C1, we308

compute a maximum-cardinality b-matching of G, b by reverse dynamic programming on T .309

This second part of the algorithm is simpler than the first one, but we need to carefully310

upper-bound its time complexity. In particular, we also need to ensure that some additional311

property holds for the b-matchings we compute at every component.312

4.1 Reduction rule313

Recall that an edge between a rooted subtree and its parent in T corresponds to a split314

(U,W ) of G. After we processed the side U (corresponding to this subtree) we account315

for all the partial solutions found for GU by transforming the split marker vertex u into a316

module 2, as follows:317

2 Recall that M is a module if for every x, y ∈ M we have N(x) \M = N(y) \M .
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I Definition 8. For any instance G = (V,E), b and any split (U,W ) of G let C = NG(W ) ⊆318

U, D = NG(U) ⊆W . Let GU = (U ∪{w}, EU ), GW = (W ∪{u}, EW ) be the corresponding319

subgraphs of G. We define the pairs GU , b
U and HW , bW as follows:320

Du D
u

u

u

3

2

1

Figure 3 The reduction of Definition 8.

For every v ∈ U we set bU
v = bv; the capacity of the split marker vertex w is left321

unspecified. Let (µU (0), cU
1 , c

U
2 ) be as defined in Proposition 1 w.r.t. GU , b

U and w.322

The auxiliary graph HW is obtained from GW by replacing the split marker vertex u by323

a module Mu = {u1, u2, u3}, NHW
(Mu) = NGW

(u) = D; we also add an edge between324

u2, u3. For every v ∈W we set bW
v = bv; we set bW

u1
= cU

1 , b
W
u2

= bW
u3

= cU
2 .325

See Fig. 3 for an illustration. We will show throughout this section that our gadget326

somewhat encodes all the partial solutions for side U . Formally, the following relationship327

holds between solutions for G, b and solutions for HW , bW :328

I Proposition 2. Given a graph G = (V,E) and a capacity function b, let (U,W ) be a split of
G and let HW , bW be as in Definition 8. If x and xW are maximum-cardinality b-matchings
for the pairs G, b and HW , bW , respectively, then we have:

||x||1 = ||xW ||1 + µU (0)− cU
2

In what follows, we prove the first direction of Proposition 2 using classical flow tech-329

niques. We postpone the proof of the other direction since, for that one, we need to prove330

intermediate lemmata that will be also used in the proof of Theorem 12.331

I Lemma 9. Let x be a b-matching for G, b. There exists a b-matching xW for HW , bW
332

such that ||xW ||1 ≥ ||x||1 + cU
2 − µU (0).333

The following Sections 4.2 and 4.3 detail the intermediate results that we will use in334

order to prove the other direction of Proposition 2 (as well as Theorem 12).335

4.2 b-matchings with additional properties336

We consider an intermediate modification problem on the b-matchings of some “auxiliary337

graphs” that we define next. Let Ci be a split component in a given split decomposition338

of G. The subgraph Ci is obtained from a sequence of simple decompositions. For a given339

subsequence of the above simple decompositions (corresponding to the edges between Ci340

and its children in T ) we apply the reduction rule of Definition 8. Doing so, we obtain a pair341

Hi, b
i with Hi being a supergraph of Ci obtained by replacing some split marker vertices342

uit
, 1 ≤ t ≤ `, by the modules Mit

= {u1
it
, u2

it
, u3

it
}. By construction u2

it
, u3

it
are adjacent343

and they have the same capacity.344

We seek for a maximum-cardinality b-matching xi for the pair Hi, b
i such that the fol-345

lowing properties hold for every 1 ≤ t ≤ `:346

(symmetry) degxi(u2
it

) = degxi(u3
it

).347

(saturation) if degxi(u1
it

) < c1
it
then, degxi(u2

it
) = xi

{u2
it

,u3
it
}.348
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We prove next that for every fixed t, any xi can be processed in O(|Euit
(Ci)|)-time so that349

both the saturation property and the symmetry property hold for Mit
. However, ensuring350

that these two above properties hold simultaneously for every t happens to be trickier. We351

manage to do so by reducing to Maximum-Cost b-Matching (i.e., internal edges in the352

modules are assigned a larger cost than the other edges).353

I Lemma 10. In O(|V (Hi)| · |E(Hi)| · log2 |V (Hi)|)-time, we can compute a maximum-354

cardinality b-matching xi for the pair Hi, b
i such that both the saturation property and the355

symmetry property hold for every Mit , 1 ≤ t ≤ `.356

4.3 Merging the partial solutions together357

Finally, before we can describe our main algorithm (Theorem 12) we need to consider the358

intermediate problem of merging two partial solutions. Let (U,W ) be a split of G and359

let GU = (U ∪ {w}, EU ), GW = (W ∪ {u}, EW ) be the corresponding subgraphs of G.360

Consider some partial solutions xU and xW obtained, respectively, for the pairs GU , b
U and361

GW , bW (for some bU , bW to be defined later). Assuming an appropriate data-structure for362

b-matchings, this merging stage can be solved with a greedy algorithm.363

I Lemma 11. Suppose that bU (resp., bW ) satisfies bU
v ≤ bv for every v ∈ U (resp., bW

v ≤ bv364

for every v ∈W ). Let xU , xW be b-matchings for, respectively, the pairs GU , b
U and GW , bW

365

such that degxU (w) = degxW (u) = d.366

Furthermore, for any graph H let ϕ(H) = |E(H)|+ 4 · (sc(H)− 1), with sc(H) being the367

number of split components in any minimal split decomposition of H 3.368

Then, in at most O(ϕ(G)− ϕ(GU )− ϕ(GW ))-time, we can obtain a valid b-matching x369

for the pair G, b such that ||x||1 = ||xU ||1 + ||xW ||1 − d.370

Overall, since there are at most n− 2 components in any minimal split decomposition of371

G [23], the merging stages take total time O(ϕ(G)) = O(n+m).372

4.4 Main result373

We are now ready to prove Proposition 2. This algorithmic proof is the cornerstone of our374

main result.375

Proof of Proposition 2. We have ||xW ||1 ≥ ||x||1 − µU (0) + cU
2 by Lemma 9. In order to

prove the converse inequality, we can assume w.l.o.g. that xW satisfies both the saturation
property and the symmetry property w.r.t. the module Mu (otherwise, by Lemma 10, we
can process xW so that it is the case). We partition ||xW ||1 as follows: µW =

∑
e∈E(W ) x

W
e ,

c′1 = degxW (u1) ≤ cU
1 and c′2 = degxW (u2)−xW

{u2,u3} = degxW (u3)−xW
{u2,u3} ≤ c

U
2 . Since we

assume that xW satisfies both the saturation property and the symmetry property w.r.t. Mu,
we have c′2 > 0 only if c′1 = cU

1 . Furthermore, we observe that u2 and u3 must be saturated
(otherwise, we could increase the cardinality of the b-matching by setting xW

{u2,u3} = cU
2 −c′2).

Therefore, we get:

||xW ||1 = µW + c′1 + 2c′2 + (cU
2 − c′2) = µW + c′1 + c′2 + cU

2 .

We define bW
u = bU

w = c′1+2c′2. Then, we proceed as follows (see Fig. 4 for an illustration).376

3 We recall that the set of prime graphs in any minimal split decomposition is unique up to isomorph-
ism [23].
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xW

2

2

saturation of u

2

2

1 symmetrization

2

2

xU

4

x

Figure 4 The construction of x′. Vertices with capacity greater than 1 are labeled with their
capacity. Thin and bold edges have respective weights 0 and 1.

We transform xW into a b-matching for the pair GW , bW by setting xW
{u,v′} = xW

{u1,v′} +377

xW
{u2,v′}+xW

{u3,v′} for every v′ ∈ NGW
(u) = D. Note that we have degxW (u) = bW

u = c′1 +378

2c′2. Furthermore, the cardinality of the b-matching has decreased by xW
{u2,u3} = cU

2 − c′2.379

Let xU be a b-matching for the pair GU , b
U of maximum cardinality µU (c′1 + 2c′2). Since380

c′1 ≤ cU
1 , c′2 > 0 only if c′1 = cU

1 , and c′2 ≤ cU
2 , the following can be deduced from381

Proposition 1: ||xU ||1 = µU (c′1 + 2c′2) = µU (0) + c′1 + c′2; and the split marker vertex w382

is saturated in xU , i.e., degxU (w) = bU
w = c′1 + 2c′2.383

Since we have degxW (u) = degxU (w) = c′1+2c′2, we can define a b-matching x′ for the pairG, b384

by applying Lemma 11. Doing so, we get ||x||1 ≥ ||x′||1 = ||xU ||1 +
(
||xW ||1 − (cU

2 − c′2)
)
−385

(c′1 + 2c′2) = µU (0) + c′1 + c′2 + ||xW ||1 − (cU
2 + c′1 + c′2) = ||xW ||1 + µU (0)− cU

2 . J386

We finally prove (in a similar way as above) the main result in this paper.387

I Theorem 12. For every pair G = (V,E), b with sw(G) ≤ k, we can solve b-Matching in388

O((k log2 k) · (m+ n) · log ||b||1)-time.389

Setting bv = 1 for every v ∈ V , we obtain the following implication of Theorem 12:390

I Corollary 13. For every graph G = (V,E) with sw(G) ≤ k, we can solve Maximum-391

Cardinality Matching in O((k log2 k) · (m+ n) · logn)-time.392

5 Open questions393

We presented an algorithm for solving b-Matching on distance-hereditary graphs, and394

more generally on any graph with bounded split-width. In contrast to our result, we stress395

that as already noticed in [20], Maximum-Weight Matching cannot be solved faster396

on complete graphs, and so, on distance-hereditary graphs, than on general graphs. An397

interesting open question would be to know whether b-Matching can be solved in linear398

time on bounded split-width graphs. In a companion paper [10], we prove with a completely399

different approach that Maximum-Cardinality Matching can be solved in O(n + m)-400

time on distance-hereditary graphs. However, it is not clear to us whether similar techniques401

can be used for bounded split-width graphs in general.402

References403

1 H.-J. Bandelt and H. Mulder. Distance-hereditary graphs. J. of Combinatorial Theory,404

Series B, 41(2):182–208, 1986.405

2 C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,406

43(9):842–844, 1957.407

3 J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.408

ISAAC 2018



122:12 The b-Matching problem in distance-hereditary graphs and beyond

4 P. Charbit, F. De Montgolfier, and M. Raffinot. Linear time split decomposition revisited.409

26(2):499–514, 2012.410

5 D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes411

of bounded clique-width graphs. In SODA’18, pages 2765–2784. SIAM, 2018.412

6 W. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic Discrete413

Methods, 3(2):214–228, 1982.414

7 F. Dragan. On greedy matching ordering and greedy matchable graphs. In WG’97, volume415

1335 of LNCS, pages 184–198. Springer, 1997.416

8 F. Dragan and F. Nicolai. LexBFS-orderings of distance-hereditary graphs with application417

to the diametral pair problem. Discrete Applied Mathematics, 98(3):191–207, 2000.418

9 G. Ducoffe and A. Popa. A quasi linear-time b-matching algorithm on distance-hereditary419

graphs and bounded split-width graphs. Technical Report arXiv:1804.09393, arXiv, 2018.420

10 G. Ducoffe and A. Popa. The use of a pruned modular decomposition for maximum match-421

ing algorithms on some graph classes. In ISAAC, 2018. To appear.422

11 J. Edmonds. Paths, trees, and flowers. Canadian J. of mathematics, 17(3):449–467, 1965.423

12 J. Edmonds and E. Johnson. Matching: A well-solved class of integer linear programs. In424

Combinatorial structures and their applications. Citeseer, 1970.425

13 F. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and M. Wrochna. Fully polynomial-426

time parameterized computations for graphs and matrices of low treewidth. In SODA’17,427

pages 1419–1432. SIAM, 2017.428

14 H. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected429

network flow problems. In STOC’83, pages 448–456. ACM, 1983.430

15 H. Gabow. Data structures for weighted matching and extensions to b-matching and f -431

factors. Technical report, 2016. arXiv preprint arXiv:1611.07541.432

16 A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. Polynomial fixed-parameter433

algorithms: A case study for longest path on interval graphs. Theoretical Computer Science,434

689:67–95, 2017.435

17 M. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. Interna-436

tional J. of Foundations of Computer Science, 11(03):423–443, 2000.437

18 J. Hopcroft and R. Karp. An nˆ5/2 algorithm for maximum matchings in bipartite graphs.438

SIAM Journal on computing, 2(4):225–231, 1973.439

19 Y. Iwata, T. Ogasawara, and N. Ohsaka. On the power of tree-depth for fully polynomial440

FPT algorithms. In STACS’18, 2018.441

20 S. Kratsch and F. Nelles. Efficient and adaptive parameterized algorithms on modular442

decompositions. In ESA’18. LIPIcs, 2018. To appear.443

21 G. Mertzios, A. Nichterlein, and R. Niedermeier. The power of linear-time data reduction444

for maximum matching. In MFCS’17, pages 46:1–46:14, 2017.445

22 S. Micali and V. Vazirani. An O(
√
V E) algorithm for finding maximum matching in general446

graphs. In FOCS’80, pages 17–27. IEEE, 1980.447

23 M. Rao. Solving some NP-complete problems using split decomposition. Discrete Applied448

Mathematics, 156(14):2768–2780, 2008.449

24 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter450

and radius of sparse graphs. In STOC’13, pages 515–524. ACM, 2013.451

25 W. Tutte. A short proof of the factor theorem for finite graphs. Canad. J. Math,452

6(1954):347–352, 1954.453

26 M.-S. Yu and C.-H. Yang. An O(n)-time algorithm for maximum matching on cographs.454

Information processing letters, 47(2):89–93, 1993.455


	Introduction
	Related work
	Our contributions

	Preliminaries
	Split-width
	Matching problems
	High-level presentation of the algorithm

	Changing the capacity of one vertex
	The algorithm
	Reduction rule
	b-matchings with additional properties
	Merging the partial solutions together
	Main result

	Open questions

