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Abstract12

We address the following general question: given a graph class C on which we can solve Maximum13

Matching in (quasi) linear time, does the same hold true for the class of graphs that can be14

modularly decomposed into C ? As a way to answer this question for distance-hereditary graphs15

and some other superclasses of cographs, we study the combined effect of modular decomposition16

with a pruning process over the quotient subgraphs. We remove sequentially from all such17

subgraphs their so-called one-vertex extensions (i.e., pendant, anti-pendant, twin, universal and18

isolated vertices). Doing so, we obtain a “pruned modular decomposition”, that can be computed19

in quasi linear time. Our main result is that if all the pruned quotient subgraphs have bounded20

order then a maximum matching can be computed in linear time. The latter result strictly21

extends a recent framework in (Coudert et al., SODA’18). Our work is the first to explain why22

the existence of some nice ordering over the modules of a graph, instead of just over its vertices,23

can help to speed up the computation of maximum matchings on some graph classes.24
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1 Introduction34

Can we compute a maximum matching in a graph in linear-time? – i.e., computing a35

maximum set of pairwise disjoint edges in a graph. – Despite considerable years of research36

and the design of elegant combinatorial and linear programming techniques, the best-known37

algorithms for this fundamental problem have stayed blocked to anO(m
√
n)-time complexity38

on n-vertex m-edge graphs [22]. Nevertheless, we can use some well-structured graph classes39

in order to overcome this superlinear barrier for particular cases of graphs. Our work40

combines two successful approaches for this problem, namely, the use of a vertex-ordering41
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characterization for certain graph classes [5, 10, 21], and a recent technique based on the42

decomposition of a graph by its modules [9]. We detail these two approaches in what follows,43

before summarizing our contributions.44

1.1 Related work45

A cornerstone of most Maximum Matching algorithms is the notion of augmenting paths [2,46

15]. However, although we can compute a set of augmenting paths in linear-time [16], this47

is a tedious task that involves the technical notion of blossoms and this may need to be48

repeated Ω(
√
n) times before a maximum matching can be computed [19]. A well-known49

greedy approach consists in, given some total ordering (v1, v2, . . . , vn) over the vertices in50

the graph, to consider the exposed vertices vi by increasing order, then to try to match them51

with some exposed neighbour vj that appears later in the ordering [12]. The vertex vj can52

be chosen either arbitrarily or according to some specific rules depending on the graph class53

we consider. Our initial goal was to extend similar reduction rules to module-orderings.54

Modular decomposition. A module in a graph G = (V,E) is any vertex-subsetX such55

that every vertex of V \X is either adjacent to every of X or nonadjacent to every of X. The56

modular decomposition of G is a recursive decomposition of G according to its modules [18].57

We postpone its formal definition until Section 2. For now, we only want to stress that58

the vertices in the “quotient subgraphs” that are outputted by this decomposition represent59

modules of G (e.g., see Fig. 1 for an insightful illustration). Our main motivation for60

considering modular decomposition in this note is its recent use in the field of parameterized61

complexity for polynomial problems. More precisely, let us call modular-width of a graph G62

the minimum k ≥ 2 such that every quotient subgraph in the modular decomposition of G63

is either “degenerate” (i.e., complete or edgeless) or of order at most k. With Coudert, we64

proved in [9] that many “hard” graph problems in P – for which no linear-time algorithm is65

likely to exist – can be solved in kO(1)(n+m)-time on graphs with modular-width at most66

k. In particular, we proposed an O(k4n+m)-time algorithm for Maximum Matching.67

One appealing aspect of our approach in [9] was that, for most problems studied, we68

obtained a linear-time reduction from the input graph G to some (smaller) quotient subgraph69

G′ in its modular decomposition. – We say that the problem is preserved by quotient. – This70

paved the way to the design of efficient algorithms for these problems on graph classes with71

unbounded modular-width, assuming their quotient subgraphs are simple enough w.r.t. the72

problem at hands. We illustrated this possibility through the case of (q, q − 3)-graphs (i.e.,73

graphs where no set of at most q vertices, q ≥ 7, can induce more than q− 3 paths of length74

four). However, this approach completely fell down for Maximum Matching. Indeed,75

our Maximum Matching algorithm in [9] works on supergraphs of the quotient graphs76

that need to be repeatedly updated every time a new augmenting path is computed. Such77

approach did not help much in exploiting the structure of quotient graphs. We managed78

to do so for (q, q − 3)-graphs only through the help of a deeper structural theorem on the79

nontrivial modules in this class of graphs. Nevertheless, to take a shameful example, it was80

not even known before this work whether Maximum Matching could be solved faster than81

with the state-of-the art algorithms on graphs that can be modularly decomposed into paths!82

1.2 Our contributions83

We propose pruning rules on the modules in a graph (some of them new and some others84

revisited) that can be used in order to compute Maximum Matching in linear-time on85

several new graph classes. More precisely, given a module M in a graph G = (V,E),86
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recall that M is corresponding to some vertex vM in a quotient graph G′ of the modular87

decomposition of G. Assuming vM is a so-called one-vertex extension in G′ (i.e., it is88

pendant, anti-pendant, universal, isolated or it has a twin), we show that a maximum89

matching for G can be computed from a maximum matching of G[M ] and a maximum90

matching of G \M efficiently (see Section 4). Our rules are purely structural, in the sense91

that they only rely on the structural properties of vM in G′ and not on any additional92

assumption on the nontrivial modules. Some of these rules (e.g., for isolated or universal93

modules) were first introduced in [9] — although with slightly different correctness proofs.94

Our main technical contributions in this work are the pruning rules for, respectively, pendant95

and anti-pendant modules (see Sections 4.2 and 4.3). The latter two cases are surprisingly96

the most intricate. In particular, they require amongst other techniques: the computation97

of specified augmenting paths of length up to 7, the addition of some “virtual edges” in98

other modules, and a careful swapping between some matched and unmatched edges.99

Then, we are left with pruning every quotient subgraph in the modular decomposition100

by sequentially removing the one-vertex extensions. We prove that the resulting “pruned101

quotient subgraphs” are unique (independent from the removal orderings) and that they can102

be computed in quasi linear-time using a trie data-structure (Section 3). Furthermore, as103

a case-study we prove that several superclasses of cographs are totally decomposable w.r.t.104

this new “pruned modular decomposition”. These classes are further discussed in Section 5.105

Note that for some of them, such as distance-hereditary graphs, we so obtain the first known106

linear-time algorithm for Maximum Matching – thereby extending previous partial results107

obtained for bipartite and chordal distance-hereditary graphs [10]. Our approach actually108

has similarities with a general greedy scheme applied to distance-hereditary graphs [7].109

With slightly more work, we can extend our approach to every graph that can be modularly110

decomposed into cycles. The case of graphs of bounded modular treewidth [23] is left as an111

interesting open question.112

Definitions and our first results are presented in Section 2. We introduce the pruned113

modular decomposition in Section 3, where we show that it can be computed in quasi114

linear-time. Then, the core of the paper is Section 4 where the pruning rules are presented115

along with their correctness proofs. In particular, we state our main result in Section 4.4.116

Applications of our approach to some graph classes are discussed in Section 5. Finally, we117

conclude in Section 6 with some open questions. Due to lack of space, several proofs are118

omitted. Full proofs can be found in our technical report [14].119

2 Preliminaries120

For the standard graph terminology, see [3]. We only consider graphs that are finite, simple121

and unweighted. For any graph G = (V,E) let n = |V | and m = |E|. Given a vertex122

v ∈ V , we denote its (open) neighbourhood by NG(v) = {u ∈ V | {u, v} ∈ E} and its closed123

neighbourhood by NG[v] = NG(v) ∪ {v}. Similarly, we define the neighbourhood of any124

vertex-subset S ⊆ V as NG(S) =
(⋃

v∈S NG(v)
)
\S. In what follows, we introduce our main125

algorithmic tool for the paper as well as the graph problems we study.126

Modular decomposition127

A module in a graph G = (V,E) is any subset M ⊆ V (G) such that for any u, v ∈ M we128

have NG(v) \M = NG(u) \M . There are trivial examples of modules such as ∅, V, and {v}129

for every v ∈ V . Let P = {M1,M2, . . . ,Mp} be a partition of the vertex-set V . If for every130

1 ≤ i ≤ p, Mi is a module of G, then we call P a modular partition of G. By abuse of131

ISAAC 2018
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notation, we will sometimes identify a module Mi with the induced subgraph Hi = G[Mi],132

i.e., we will write P = {H1, H2, . . . Hp}. The quotient subgraph G/P has vertex-set P, and133

there is an edge between every two modulesMi,Mj ∈ P such thatMi×Mj ⊆ E. Conversely,134

let G′ = (V ′, E′) be a graph and let P = {H1, H2, . . . Hp}. be a collection of subgraphs.135

The substitution graph G′(P) is obtained from G′ by replacing every vertex vi ∈ V ′ with a136

module inducing Hi. In particular, for G′ =def G/P we have that G′(P) = G.137

We say that G is prime if its only modules are trivial (i.e., ∅, V, and the singletons {v}).138

We call a module M strong if it does not overlap any other module, i.e., for any module139

M ′ of G, either one of M or M ′ is contained in the other or M and M ′ do not intersect.140

LetM(G) be the family of all inclusion wise maximal strong modules of G that are proper141

subsets of V . The family M(G) is a modular partition of G [18], and so, we can define142

G′ = G/M(G). The following structure theorem is due to Gallai.143

I Theorem 1 ( [17]). For an arbitrary graph G exactly one of the following conditions is144

satisfied.145

1. G is disconnected;146

2. its complement G is disconnected;147

3. or its quotient graph G′ = G/M(G) is prime for modular decomposition.148

We now formally define the modular decomposition of G – introduced earlier in Section 1.149

We output the quotient graph G′ = G/M(G) and, for any strong moduleM ∈M(G) that is150

nontrivial (possibly none if G = G′), we also output the modular decomposition of G[M ]. By151

Theorem 1 the subgraphs from the modular decomposition are either edgeless, complete, or152

prime for modular decomposition. See Fig. 1 for an example. The modular decomposition of153

a given graph G = (V,E) can be computed in linear-time [25]. There are many graph classes154

that can be characterized using the modular decomposition.In particular, G is a cograph155

if and only if every quotient subgraph in its modular decomposition is either complete or156

disconnected [8].157
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Figure 1 A graph and its modular decomposition.

Maximum Matching158

A matching in a graph is defined as a set of edges with pairwise disjoint end vertices. The159

maximum cardinality of a matching in a given graph G = (V,E) is denoted by µ(G).160

I Problem 1 (Maximum Matching).
Input: A graph G = (V,E).
Output: A matching of G with maximum cardinality.

161

We remind the reader that Maximum Matching can be solved in O(m
√
n)-time on162

general graphs [22] — although we do not use this result directly in our paper. Furthermore,163
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let G = (V,E) be a graph and let F ⊆ E be a matching of G. We call a vertex matched if it164

is incident to an edge of F , and exposed otherwise. Then, we define an F -augmenting path165

as a path where the two ends are exposed, and the edges belong alternatively to F and not166

to F . It is well-known and easy to check that, given an F -augmenting path P , the matching167

E(P )∆F (obtained by symmetric difference on the edges) has larger cardinality than F .168

I Lemma 2 (Berge, [2]). A matching F in G = (V,E) is maximum if and only if there is169

no F -augmenting path.170

In this paper, we will consider an intermediate matching problem, first introduced in [9].171

I Problem 2 (Module Matching).
Input: A graph G′ = (V ′, E′) with the following additional information;

a collection of subgraphs P = {H1, H2, . . . ,Hp};
a collection F = {F1, F2, . . . , Fp},
with Fi being a maximum matching of Hi for every i.

Output: A matching of G = G′(P) with maximum cardinality.

172

A natural choice for Module Matching would be to take P = M(G). However, we173

will allow P to take different values for our reduction rules.174

Additional notations. Let 〈G′,P,F〉 be any instance of Module Matching. The175

order of G′, equivalently the cardinality of P, is denoted by p. For every 1 ≤ i ≤ p let176

Mi = V (Hi) and let ni = |Mi| be the order of Hi. We denote δi = |E(Mi,Mi)| the size177

of the cut E(Mi,Mi) with all the edges between Mi and NG(Mi). In particular, we have178

δi =
∑

vj∈NG′ (vi) ninj . Let us define ∆m(G′) =
∑p

i=1 δi. We will omit the dependency in179

G′ if it is clear from the context. Finally, let ∆µ = µ(G)−
∑p

i=1 µ(Hi).180

Our framework is based on the following lemma (inspired from [9]).181

I Lemma 3. Let G = (V,E) be a graph. Suppose that for every H ′ in the modular de-182

composition of G we can solve Module Matching on any instance 〈H ′,P,F〉 in time183

T (p,∆m,∆µ), where T is a subadditive function1. Then, we can solve Maximum Match-184

ing on G in time O(T (O(n),m, n)).185

An important observation for our subsequent analysis is that, given any module M of186

a graph G, the internal structure of G[M ] has no more relevance after we computed a187

maximum matching FM for this subgraph. More precisely, we will use the following lemma:188

I Lemma 4 ( [9]). Let M be a module of G = (V,E), let G[M ] = (M,EM ) and let189

FM ⊆ EM be a maximum matching of G[M ]. Then, every maximum matching of G′M =190

(V, (E \ EM ) ∪ FM ) is a maximum matching of G.191

By Lemma 4 we can modify our algorithmic framework as follows. For every instance192

〈G′,P,F〉 for Module Matching, we can assume that Hi = (Mi, Fi) for every 1 ≤ i ≤ p.193

Data structures. Finally, let 〈G′,P,F〉 be any instance for Module Matching. A194

canonical ordering of Hi (w.r.t. Fi) is a total ordering over V (Hi) such that the exposed195

vertices appear first, and every two vertices that are matched together are consecutive. In196

what follows, we will assume that we have access to a canonical ordering for every i. Such197

1 We stress that every polynomial function is subadditive.
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144:6 Pruned modular decomposition and Maximum Matching

orderings can be computed in time O(
∑

i |Mi| + |Fi|) by scanning all the modules and the198

matchings in F , that is an O(∆m) provided G′ has no isolated vertex.199

Furthermore, let F be a (not necessarily maximum) matching for the subdivision G =200

G′(P). We will make the standard assumption that, for every v ∈ V (G), we can decide in201

constant-time whether v is matched by F , and if so, we can also access in constant-time to202

the vertex matched with v.203

3 A pruned modular decomposition204

In this section, we introduce a pruning process over the quotient subgraphs, that we use in205

order to refine the modular decomposition.206

I Definition 5. Let G = (V,E) be a graph. We call v ∈ V a one-vertex extension if it falls207

in one of the following cases:208

NG[v] = V (universal) or NG(v) = ∅ (isolated);209

NG[v] = V \ u (anti-pendant) or NG(v) = {u} (pendant), for some u ∈ V \ v;210

NG[v] = NG[u] (true twin) or NG(v) = NG(u) (false twin), for some u ∈ V \ v.211

A pruned subgraph of G is obtained from G by sequentially removing one-vertex ex-212

tensions (in the current subgraph) until it can no more be done. This terminology was213

introduced in [20], where they only considered the removals of twin and pendant vertices.214

Also, the clique-width of graphs that are totally decomposed by the above pruning process215

(i.e., with their pruned subgraph being a singleton) was studied in [24] 2. Our contribution216

in this part is twofold. First, we show that the gotten subgraph is “almost” independent217

of the removal ordering, i.e., there is a unique pruned subgraph of G (up to isomorphism).218

The latter can be derived from the following (easy) lemma:219

I Lemma 6. Let G = (V,E) be a graph and let v, v′ ∈ V be one-vertex extensions of G. If220

v, v′ are not pairwise twins then v′ is a one-vertex extension of G \ v.221

I Corollary 7. Every graph G = (V,E) has a unique pruned subgraph up to isomorphism.222

For many graph classes a pruning sequence can be computed in linear-time. We observe223

that the same can be done for any graph (up to a logarithmic factor).224

I Proposition 1. For every graph G = (V,E), we can compute a pruned subgraph in225

O(n+m logn)-time.226

Proof. By Corollary 7, we are left with greedily searching for, then eliminating, the one-227

vertex extensions. We can compute the ordered degree sequence of G in O(n + m)-time.228

Furthermore, after any vertex v is eliminated, we can update this sequence in O(|N(v)|)-229

time. Hence, up to a total update time in O(n+m), at any step we can detect and remove230

in constant-time any vertex that is either universal, isolated, pendant or anti-pendant. Fi-231

nally, in [20] they proposed a trie data-structure supporting the following two operations:232

suppression of a vertex; and detection of true or false twins (if any). The total time for all233

the operations on this data-structure is in O(n+m logn) [20]. J234

2 Anti-twins are also defined as one-vertex extensions in [24]. Their integration to this framework remains
to be done.
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We will term “pruned modular decomposition” of a graph G the collection of the pruned235

subgraphs for all the quotient subgraphs in the modular decomposition of G. Note that236

there is a unique pruned modular decomposition of G (up to isomorphism) and that it can237

be computed in O(n + m logn)-time by Proposition 1 (applied to every quotient subgraph238

in the modular decomposition separately). Furthermore, we remark that most cases of one-239

vertex extensions imply the existence of non trivial modules, and so, they cannot exist in240

the prime quotient subgraphs of the modular decomposition. Nevertheless, such vertices241

may appear after removal of pendant or anti-pendant vertices (e.g., in the bull graph).242

4 Reduction rules243

Let 〈G′,P,F〉 be any instance of Module Matching. Suppose that v1, the vertex corres-244

ponding toM1 in G′, is a one-vertex extension. Under this assumption, we present reduction245

rules to a smaller instance 〈G∗,P∗,F∗〉 where |P∗| < |P|. Each rule can be implemented to246

run in O(∆m(G′)−∆m(G∗))-time. Due to lack of space, we skip the complexity analysis.247

In Section 4.1 we recall the rules introduced in [9] for universal and isolated modules248

(explicitly) and for false or true twin modules (implicitly). Our main technical contributions249

are the reduction rules for pendant and anti-pendant modules (in Sections 4.2 and 4.3,250

respectively), which are surprisingly the most intricate. Finally, we end this section stating251

our main result (Theorem 14).252

4.1 Simple cases253

We introduce two local operations on a matching, first used in [26] for cographs. Let F ⊆ E254

be a matching and let M ⊆ V be a module.255

I Operation 1 (MATCH). While there are x ∈M, y ∈ N(M) exposed, add {x, y} to F .256

I Operation 2 (SPLIT). While there are x, x′ ∈M, y, y′ ∈ N(M) such that x and x′ are257

exposed, and {y, y′} ∈ F , replace {y, y′} in F by {x, y}, {x′, y′}.258

Let G = H1⊕H2 be the join of the two graphs H1, H2 and let F1, F2 be maximum match-259

ings for H1, H2, respectively. The “MATCH and SPLIT” technique consists in applying260

Operations 1 then 2 to M = V (H1) and F = F1∪F2, thereby obtaining a new matching F ′,261

then to M = V (H2) and F = F ′. Based on this technique, we design the following rules:262

I Reduction rule 1 (see also [9]). Suppose v1 is isolated in G′. We set G∗ = G′ \ v1,263

P∗ = P \ {H1}, and F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of264

G∗(P∗) = G[V \M1]. We output F ∗ ∪ F1.265

I Reduction rule 2 (see also [9]). Suppose v1 is universal in G′. We set G∗ = G \ v1,266

P∗ = P \ {H1}, F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of the267

subdivision G∗(P∗) = G[V \ M1]. We apply the “MATCH and SPLIT” technique to268

M1, F1 with V \M1, F
∗.269

I Reduction rule 3. Suppose v1, v2 are false twins in G′. We set G∗ = G′ \ v1, P∗ =270

{H1 ∪ H2} ∪ (P \ {H1, H2}), F∗ = {F1 ∪ F2} ∪ (F \ {F1, F2}). We output a maximum271

matching of G∗(P∗) = G.272

IReduction rule 4. Suppose v1, v2 are true twins inG′. Let F ∗2 be the matching ofH1⊕H2273

obtained from the “MATCH and SPLIT” technique applied to M1, F1 with M2, F2. We274

set G∗ = G \ v1, P∗ = {H1⊕H2}∪ (P \ {H1, H2}), F∗ = {F ∗2 }∪ (F \ {F1, F2}). We output275

a maximum matching of G∗(P∗) = G.276

ISAAC 2018



144:8 Pruned modular decomposition and Maximum Matching

4.2 Anti-pendant277

Suppose v1 is anti-pendant in G′. W.l.o.g., v2 is the unique vertex that is nonadjacent to278

v1 in G′. By Lemma 4, we can also assume w.l.o.g. that E(Hi) = Fi for every i. In this279

situation, we start applying Reduction rule 1, i.e., we set G∗ = G′ \ v1, P∗ = P \ {H1},280

F∗ = F \ {F1}. Then, we obtain a maximum matching F ∗ of G \M1 (i.e., by applying our281

reduction rules to this new instance). Finally, from F1 and F ∗, we compute a maximum282

matching F of G, using an intricate procedure. We detail this procedure next.283

First phase: pre-processing. Our correctness proofs in what follows will assume that284

some additional properties hold on the matched vertices in F ∗. So, we start correcting the285

initial matching F ∗ so that it is the case. For that, we introduce two “swapping” operations.286

Recall that v2 is the unique vertex that is nonadjacent to v1 in G′.287

I Operation 3 (REPAIR). While there exist x2, y2 ∈M2 such that {x2, y2} ∈ F2 and y2288

is exposed in F ∗, we replace any edge {x2, w} ∈ F ∗ by {x2, y2}.289

I Operation 4 (ATTRACT). While there exist x2 ∈ M2 exposed and {u,w} ∈ F ∗ such290

that u ∈ NG(M2), w /∈M2, we replace {u,w} by {u, x2}.291

Let F (0) = F1 ∪ F ∗. Summarizing, we get:292

I Definition 8. A matching F of G is good if it satisfies the following two properties:293

1. every vertex matched by F1 ∪ F2 is also matched by F ;294

2. either every vertex inM2 is matched, or there is no matched edge in NG(M2)×NG(M1).295

I Fact 1. F (0) is a good matching of G.296

Main phase: a modified Match and Split. We now apply the following three297

operations sequentially:298

1. Match(M1, F
(0)) (Operation 1). Doing so, we obtain a larger good matching F (1).299

2. Split(M1, F
(1)) (Operation 2). Doing so, we obtain a larger good matching F (2).300

3. the operation Unbreak, defined in what follows (see also Fig. 2 for an illustration):301

M

M

N(M )

1

1

2

x

x y z

u w

1

2 2 2

Figure 2 An augmenting path of length 5 with ends x1, x2. Matched edges are drawn in bold.

I Operation 5 (Unbreak). While there exist x1 ∈ M1 and x2 ∈ M1 ∪M2 exposed,302

and there also exist {y2, z2} ∈ F2 \F (2), we replace any two edges {y2, u}, {z2, w} ∈ F (2)
303

by the three edges {x2, u}, {y2, z2} and {w, x1}.304

We stress that the two edges {y2, u}, {z2, w} ∈ F (2) always exist since F (2) is a good305

matching of G. Furthermore doing so, we obtain a larger matching F (3).306

The resulting matching F (3) is not necessarily maximum. However, this matching satis-307

fies the following crucial property:308

I Lemma 9. No vertex of M1 can be an end in an F (3)-augmenting path.309
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Finalization phase: breaking some edges in F1. Intuitively, the matching F (3) may310

not be maximum because we sometimes need to borrow some edges of F1 in augmenting311

paths. So, we complete our procedure by performing the following two operations: Let U1312

contain all the exposed vertices in N(M1). Consider the subgraph G[M1 ∪ U1] = G[M1] ⊕313

G[U1]. The set U1 is a module of this subgraph. We apply Split(U1, F
(3)) in G[M1 ∪ U1].314

Doing so, we obtain a larger good matching F (4). Then, we apply LocalAug, defined next315

(see also Fig. 3 for an illustration):316

M

M

N(M )

1

1

2

x

x y z

a b

1

2 2 2

y1

c

Figure 3 An augmenting path of length 7 with ends x2, c. Matched edges are drawn in bold.

I Operation 6 (LocalAug). While there exist x2 ∈ M2 and c ∈ N(M1) exposed, and317

there also exist {x1, y1} ∈ F1 ∩ F (4) and {y2, z2} ∈ F2 \ F (4), we do the following:318

we remove {x1, y1} and any edge {a, y2}, {b, z2} from F (4);319

we add {x2, a}, {y2, z2}, {b, x1} and {y1, c} in F (4).320

We stress that the two edges {y2, a}, {z2, b} ∈ F (4) always exist since F (4) is a good matching321

of G. Furthermore doing so, we obtain a larger matching F (5).322

I Lemma 10. F (5) is a maximum-cardinality matching of G.323

4.3 Pendant324

Suppose v1 is pendant in G′. W.l.o.g., v2 is the unique vertex that is adjacent to v1 in325

G′. This last case is arguably more complex than the others since it requires both a pre-326

processing and a post-processing treatment on the matching.327

First phase: greedy matching. We apply the “Match and Split” technique to M1.328

Doing so, we obtain a set F1,2 of matched edges between M1 and M2. We remove V (F1,2),329

the set of vertices incident to an edge of F1,2, from G. Then, there are three cases. If M2 ⊆330

V (F1,2) then M1 \ V (F1,2) is isolated. We apply Reduction rule 1. If M1 ⊆ V (F1,2) then331

M1 is already eliminated. The interesting case is when both M1 \ V (F1,2) and M2 \ V (F1,2)332

are nonempty. In particular, suppose there remains an exposed vertex x1 ∈ M1 \ V (F1,2).333

Since M2 \V (F1,2) 6= ∅, there exists {x2, y2} ∈ F2 such that x2, y2 /∈ V (F1,2). We remove x1334

from M1, x2 from M2, {x2, y2} from F2 and then we add {x1, x2} in F1,2. Our first result in335

this section is that there always exists an optimal solution that contains F1,2. This justifies336

a posteriori the removal of V (F1,2) from G.337

I Lemma 11. There is a maximum matching of G that contains all edges in F1,2.338

We stress that during this phase, all the operations except maybe the last one increase339

the cardinality of the matching. Furthermore, the only possible operation that does not340

increase the cardinality of the matching is the replacement of an edge in F2 by an edge341

in F1,2. Doing so, either we fall in one of the two pathological cases M1 ⊆ V (F1,2) or342

M2 ⊆ V (F1,2) (easy to solve), or then we obtain through the replacement operation the343

following stronger property:344

I Property 1. All vertices in M1 are matched by F1.345
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We will assume Property 1 to be true for the remaining of this section.346

Second phase: virtual split edges. We complete the previous phase by performing347

a Split between M2,M1 (Operation 2). That is, while there exist two exposed vertices348

x2, y2 ∈ M2 and a matched edge {x1, y1} ∈ F1 we replace {x1, y1} by {x1, x2}, {y1, y2} in349

the current matching. However, we encode the Split operation using virtual edges in H2.350

Formally, we add a virtual edge {x2, y2} in H2 that is labeled by the corresponding edge351

{x1, y1} ∈ F1. Let H∗2 and F ∗2 be obtained from H2 and F2 by adding all the virtual edges.352

We set G∗ = G′ \ v1, P∗ = {H∗2} ∪ (P \ {H1, H2}) and F∗ = {F ∗2 } ∪ (F \ {F1, F2}).353

Intuitively, virtual edges are used in order to shorten the augmenting paths crossing M1.354

Third phase: post-processing. Let F ∗ be a maximum-cardinality matching of the355

subdivision G∗(P∗) (i.e., obtained by applying our reduction rules to the new instance).356

We construct a matching F for G as follows. We add in F all the non virtual edges in F ∗.357

For every virtual edge {x2, y2}, let {x1, y1} ∈ F1 be its label. If {x2, y2} ∈ F ∗ then we add358

{x1, y2}, {x2, y1} in F , otherwise we add {x1, y1} in F . In the first case, we say that we359

confirm the Split operation, whereas in the second case we say that we cancel it. Finally,360

we complete F with all the edges of F1 that do not label any virtual edge (i.e., unused361

during the second phase).362

I Lemma 12. F is a maximum-cardinality matching of G.363

The above result is proved by contrapositive. More precisely, we prove intricate prop-364

erties on the intersection of shortest augmenting paths with pendant modules. Using these365

properties and the virtual edges, we could transform any shortest F -augmenting path into366

an F ∗-augmenting path, a contradiction.367

4.4 Main result368

Our framework consists in applying any reduction rule presented in this section until it can369

no more be done. Then, we rely on the following result:370

I Theorem 13 ( [9]). We can solve Module Matching for 〈G′,P,F〉 in O(∆µ · p4)-time.371

We are now ready to state our main result in this paper (the proof of which directly372

follows from all the previous results in this section).373

I Theorem 14. Let G = (V,E) be a graph. Suppose that, for every prime subgraph H ′ in374

the modular decomposition of G, its pruned subgraph has order at most k. Then, we can375

solve Maximum Matching for G in O(k4 · n+m logn)-time.376

5 Applications377

We conclude this paper presenting applications and refinements of our main result to some378

graph classes. Recall that cographs are exactly the graphs that are totally decomposable379

by modular decomposition [8]. We start showing that several distinct generalizations of380

cographs in the literature are totally decomposable by the pruned modular decomposition.381

Distance-hereditary graphs. A graph G = (V,E) is distance-hereditary if it can be382

reduced to a singleton by pruning sequentially the pendant vertices and twin vertices [1].383

Conversely, G is co-distance hereditary if it is the complement of a distance-hereditary graph,384

i.e., it can be reduced to a singleton by pruning sequentially the anti-pendant vertices and385

twin vertices. In both cases, the corresponding pruning sequence can be computed in linear-386

time [11, 13]. Therefore, we can derive the following result from our framework:387



G. Ducoffe and A. Popa 144:11

I Proposition 2. We can solve Maximum Matching in linear-time on graphs that can be388

modularly decomposed into distance-hereditary graphs and co-distance hereditary graphs.389

Trees are a special subclass of distance-hereditary graphs. We say that a graph has390

modular treewidth at most k if every prime quotient subgraph in its modular decomposition391

has treewidth at most k. In particular, graphs with modular treewidth at most one are392

exactly the graphs that can be modularly decomposed into trees3. We stress the following393

consequence of Proposition 2:394

I Corollary 15. We can solve Maximum Matching in linear-time on graphs with modular-395

treewidth at most one.396

The case of graphs with modular treewidth k ≥ 2 is left as an intriguing open question.397

Tree-perfect graphs. Two graphs G1, G2 are P4-isomorphic if there exists a bijection398

from G1 to G2 such that a 4-tuple induces a P4 in G1 if and only if its image in G2 also399

induces a P4 [6]. The notion of P4-isomorphism plays an important role in the study of400

perfect graphs. A graph is tree-perfect if it is P4-isomorphic to a tree [4]. We prove the401

following result:402

I Proposition 3. Tree-perfect graphs are totally decomposable by the pruned modular403

decomposition. In particular, we can solve Maximum Matching in linear-time on tree-404

perfect graphs.405

Our proof is based on a deep structural characterization of tree-perfect graphs [4].406

The case of unicycles. We end up this section with a refinement of our framework for407

the special case of unicyclic quotient graphs (a.k.a., graphs with exactly one cycle).408

I Proposition 4. We can solve Maximum Matching in linear-time on the graphs that409

can be modularly decomposed into unicycles.410

For that, we reduce the case of unicycles to the case of cycles (removing pendant mod-411

ules). Then, we test for all possible numbers of matched edges between two adjacent modules.412

Doing so, we reduce the case of cycles to the case of paths.413

6 Open problems414

The pruned modular decomposition happens to be an interesting add up in the study of415

Maximum Matching algorithms. An exhaustive study of its other algorithmic applications416

remains to be done. Moreover, another interesting question is to characterize the graphs that417

are totally decomposable by this new decomposition. We note that our pruning process can418

be seen as a repeated update of the modular decomposition of a graph after some specified419

modules (pendant, anti-pendant) are removed. However, we can only detect a restricted420

family of these new modules (i.e., universal, isolated, twins). A fully dynamic modular421

decomposition algorithm could be helpful in order to further refine our framework.422
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