The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes

Guillaume Ducoffe, Alexandru Popa

To cite this version:

Guillaume Ducoffe, Alexandru Popa. The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes. 29th International Symposium on Algorithms and Computation (ISAAC 2018), Dec 2018, Jiaoxi, Yilan County, Taiwan. 10.4230/LIPIcs.ISAAC.2018.144. hal-01955985

HAL Id: hal-01955985
https://hal.science/hal-01955985
Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes

Guillaume Ducoffe

ICI - National Institute for Research and Development in Informatics, Bucharest, Romania
The Research Institute of the University of Bucharest ICUB, Bucharest, Romania
guillaume.ducoffe@ici.ro

Alexandru Popa
University of Bucharest, Bucharest, Romania ICI - National Institute for Research and Development in Informatics, Bucharest, Romania alexandru.popa@fmi.unibuc.ro

Abstract

We address the following general question: given a graph class \mathcal{C} on which we can solve MAXIMUM Matching in (quasi) linear time, does the same hold true for the class of graphs that can be modularly decomposed into \mathcal{C} ? As a way to answer this question for distance-hereditary graphs and some other superclasses of cographs, we study the combined effect of modular decomposition with a pruning process over the quotient subgraphs. We remove sequentially from all such subgraphs their so-called one-vertex extensions (i.e., pendant, anti-pendant, twin, universal and isolated vertices). Doing so, we obtain a "pruned modular decomposition", that can be computed in quasi linear time. Our main result is that if all the pruned quotient subgraphs have bounded order then a maximum matching can be computed in linear time. The latter result strictly extends a recent framework in (Coudert et al., SODA'18). Our work is the first to explain why the existence of some nice ordering over the modules of a graph, instead of just over its vertices, can help to speed up the computation of maximum matchings on some graph classes.

2012 ACM Subject Classification Graph theory, Design and analysis of algorithms

Keywords and phrases maximum matching; FPT in P; modular decomposition; pruned graphs; one-vertex extensions; P_{4}-structure

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.144

Funding This work was supported by the Institutional research programme PN 1819 "Advanced IT resources to support digital transformation processes in the economy and society - RESINFOTD" (2018), project PN 1819-01-01 "Modeling, simulation, optimization of complex systems and decision support in new areas of IT\&C research", funded by the Ministry of Research and Innovation, Romania.

1 Introduction

Can we compute a maximum matching in a graph in linear-time? - i.e., computing a maximum set of pairwise disjoint edges in a graph. - Despite considerable years of research and the design of elegant combinatorial and linear programming techniques, the best-known algorithms for this fundamental problem have stayed blocked to an $\mathcal{O}(m \sqrt{n})$-time complexity on n-vertex m-edge graphs [22]. Nevertheless, we can use some well-structured graph classes in order to overcome this superlinear barrier for particular cases of graphs. Our work combines two successful approaches for this problem, namely, the use of a vertex-ordering

© Guillaume Ducoffe and Alexandru Popa;
licensed under Creative Commons License CC-BY
29th International Symposium on Algorithms and Computation (ISAAC 201.
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 144; pp. 144:1-144:12
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
characterization for certain graph classes [5, 10, 21], and a recent technique based on the decomposition of a graph by its modules [9]. We detail these two approaches in what follows, before summarizing our contributions.

1.1 Related work

A cornerstone of most Maximum Matching algorithms is the notion of augmenting paths [2, 15]. However, although we can compute a set of augmenting paths in linear-time [16], this is a tedious task that involves the technical notion of blossoms and this may need to be repeated $\Omega(\sqrt{n})$ times before a maximum matching can be computed [19]. A well-known greedy approach consists in, given some total ordering $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ over the vertices in the graph, to consider the exposed vertices v_{i} by increasing order, then to try to match them with some exposed neighbour v_{j} that appears later in the ordering [12]. The vertex v_{j} can be chosen either arbitrarily or according to some specific rules depending on the graph class we consider. Our initial goal was to extend similar reduction rules to module-orderings.

Modular decomposition. A module in a graph $G=(V, E)$ is any vertex-subset X such that every vertex of $V \backslash X$ is either adjacent to every of X or nonadjacent to every of X. The modular decomposition of G is a recursive decomposition of G according to its modules [18]. We postpone its formal definition until Section 2. For now, we only want to stress that the vertices in the "quotient subgraphs" that are outputted by this decomposition represent modules of G (e.g., see Fig. 1 for an insightful illustration). Our main motivation for considering modular decomposition in this note is its recent use in the field of parameterized complexity for polynomial problems. More precisely, let us call modular-width of a graph G the minimum $k \geq 2$ such that every quotient subgraph in the modular decomposition of G is either "degenerate" (i.e., complete or edgeless) or of order at most k. With Coudert, we proved in [9] that many "hard" graph problems in P - for which no linear-time algorithm is likely to exist - can be solved in $k^{\mathcal{O}(1)}(n+m)$-time on graphs with modular-width at most k. In particular, we proposed an $\mathcal{O}\left(k^{4} n+m\right)$-time algorithm for Maximum Matching.

One appealing aspect of our approach in [9] was that, for most problems studied, we obtained a linear-time reduction from the input graph G to some (smaller) quotient subgraph G^{\prime} in its modular decomposition. - We say that the problem is preserved by quotient. - This paved the way to the design of efficient algorithms for these problems on graph classes with unbounded modular-width, assuming their quotient subgraphs are simple enough w.r.t. the problem at hands. We illustrated this possibility through the case of ($q, q-3$)-graphs (i.e., graphs where no set of at most q vertices, $q \geq 7$, can induce more than $q-3$ paths of length four). However, this approach completely fell down for Maximum Matching. Indeed, our Maximum Matching algorithm in [9] works on supergraphs of the quotient graphs that need to be repeatedly updated every time a new augmenting path is computed. Such approach did not help much in exploiting the structure of quotient graphs. We managed to do so for $(q, q-3)$-graphs only through the help of a deeper structural theorem on the nontrivial modules in this class of graphs. Nevertheless, to take a shameful example, it was not even known before this work whether Maximum Matching could be solved faster than with the state-of-the art algorithms on graphs that can be modularly decomposed into paths!

1.2 Our contributions

We propose pruning rules on the modules in a graph (some of them new and some others revisited) that can be used in order to compute Maximum Matching in linear-time on several new graph classes. More precisely, given a module M in a graph $G=(V, E)$,
recall that M is corresponding to some vertex v_{M} in a quotient graph G^{\prime} of the modular decomposition of G. Assuming v_{M} is a so-called one-vertex extension in G^{\prime} (i.e., it is pendant, anti-pendant, universal, isolated or it has a twin), we show that a maximum matching for G can be computed from a maximum matching of $G[M]$ and a maximum matching of $G \backslash M$ efficiently (see Section 4). Our rules are purely structural, in the sense that they only rely on the structural properties of v_{M} in G^{\prime} and not on any additional assumption on the nontrivial modules. Some of these rules (e.g., for isolated or universal modules) were first introduced in [9] — although with slightly different correctness proofs. Our main technical contributions in this work are the pruning rules for, respectively, pendant and anti-pendant modules (see Sections 4.2 and 4.3). The latter two cases are surprisingly the most intricate. In particular, they require amongst other techniques: the computation of specified augmenting paths of length up to 7, the addition of some "virtual edges" in other modules, and a careful swapping between some matched and unmatched edges.

Then, we are left with pruning every quotient subgraph in the modular decomposition by sequentially removing the one-vertex extensions. We prove that the resulting "pruned quotient subgraphs" are unique (independent from the removal orderings) and that they can be computed in quasi linear-time using a trie data-structure (Section 3). Furthermore, as a case-study we prove that several superclasses of cographs are totally decomposable w.r.t. this new "pruned modular decomposition". These classes are further discussed in Section 5. Note that for some of them, such as distance-hereditary graphs, we so obtain the first known linear-time algorithm for MAximum Matching - thereby extending previous partial results obtained for bipartite and chordal distance-hereditary graphs [10]. Our approach actually has similarities with a general greedy scheme applied to distance-hereditary graphs [7]. With slightly more work, we can extend our approach to every graph that can be modularly decomposed into cycles. The case of graphs of bounded modular treewidth [23] is left as an interesting open question.

Definitions and our first results are presented in Section 2. We introduce the pruned modular decomposition in Section 3, where we show that it can be computed in quasi linear-time. Then, the core of the paper is Section 4 where the pruning rules are presented along with their correctness proofs. In particular, we state our main result in Section 4.4. Applications of our approach to some graph classes are discussed in Section 5. Finally, we conclude in Section 6 with some open questions. Due to lack of space, several proofs are omitted. Full proofs can be found in our technical report [14].

2 Preliminaries

For the standard graph terminology, see [3]. We only consider graphs that are finite, simple and unweighted. For any graph $G=(V, E)$ let $n=|V|$ and $m=|E|$. Given a vertex $v \in V$, we denote its (open) neighbourhood by $N_{G}(v)=\{u \in V \mid\{u, v\} \in E\}$ and its closed neighbourhood by $N_{G}[v]=N_{G}(v) \cup\{v\}$. Similarly, we define the neighbourhood of any vertex-subset $S \subseteq V$ as $N_{G}(S)=\left(\bigcup_{v \in S} N_{G}(v)\right) \backslash S$. In what follows, we introduce our main algorithmic tool for the paper as well as the graph problems we study.

Modular decomposition

A module in a graph $G=(V, E)$ is any subset $M \subseteq V(G)$ such that for any $u, v \in M$ we have $N_{G}(v) \backslash M=N_{G}(u) \backslash M$. There are trivial examples of modules such as \emptyset, V, and $\{v\}$ for every $v \in V$. Let $\mathcal{P}=\left\{M_{1}, M_{2}, \ldots, M_{p}\right\}$ be a partition of the vertex-set V. If for every $1 \leq i \leq p, M_{i}$ is a module of G, then we call \mathcal{P} a modular partition of G. By abuse of
notation, we will sometimes identify a module M_{i} with the induced subgraph $H_{i}=G\left[M_{i}\right]$, i.e., we will write $\mathcal{P}=\left\{H_{1}, H_{2}, \ldots H_{p}\right\}$. The quotient subgraph G / \mathcal{P} has vertex-set \mathcal{P}, and there is an edge between every two modules $M_{i}, M_{j} \in \mathcal{P}$ such that $M_{i} \times M_{j} \subseteq E$. Conversely, let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a graph and let $\mathcal{P}=\left\{H_{1}, H_{2}, \ldots H_{p}\right\}$. be a collection of subgraphs. The substitution graph $G^{\prime}(\mathcal{P})$ is obtained from G^{\prime} by replacing every vertex $v_{i} \in V^{\prime}$ with a module inducing H_{i}. In particular, for $G^{\prime}={ }^{\text {def }} G / \mathcal{P}$ we have that $G^{\prime}(\mathcal{P})=G$.

We say that G is prime if its only modules are trivial (i.e., \emptyset, V, and the singletons $\{v\}$). We call a module M strong if it does not overlap any other module, i.e., for any module M^{\prime} of G, either one of M or M^{\prime} is contained in the other or M and M^{\prime} do not intersect. Let $\mathcal{M}(G)$ be the family of all inclusion wise maximal strong modules of G that are proper subsets of V. The family $\mathcal{M}(G)$ is a modular partition of G [18], and so, we can define $G^{\prime}=G / \mathcal{M}(G)$. The following structure theorem is due to Gallai.

- Theorem 1 ([17]). For an arbitrary graph G exactly one of the following conditions is satisfied.

1. G is disconnected;
2. its complement \bar{G} is disconnected;
3. or its quotient graph $G^{\prime}=G / \mathcal{M}(G)$ is prime for modular decomposition.

We now formally define the modular decomposition of G - introduced earlier in Section 1. We output the quotient graph $G^{\prime}=G / \mathcal{M}(G)$ and, for any strong module $M \in \mathcal{M}(G)$ that is nontrivial (possibly none if $G=G^{\prime}$), we also output the modular decomposition of $G[M]$. By Theorem 1 the subgraphs from the modular decomposition are either edgeless, complete, or prime for modular decomposition. See Fig. 1 for an example. The modular decomposition of a given graph $G=(V, E)$ can be computed in linear-time [25]. There are many graph classes that can be characterized using the modular decomposition. In particular, G is a cograph if and only if every quotient subgraph in its modular decomposition is either complete or disconnected [8].

Figure 1 A graph and its modular decomposition.

Maximum Matching

A matching in a graph is defined as a set of edges with pairwise disjoint end vertices. The maximum cardinality of a matching in a given graph $G=(V, E)$ is denoted by $\mu(G)$.

- Problem 1 (Maximum Matching).

Input: A graph $G=(V, E)$.
Output: A matching of G with maximum cardinality.
We remind the reader that Maximum Matching can be solved in $\mathcal{O}(m \sqrt{n})$-time on general graphs [22] - although we do not use this result directly in our paper. Furthermore,

G. Ducoffe and A. Popa

let $G=(V, E)$ be a graph and let $F \subseteq E$ be a matching of G. We call a vertex matched if it is incident to an edge of F, and exposed otherwise. Then, we define an F-augmenting path as a path where the two ends are exposed, and the edges belong alternatively to F and not to F. It is well-known and easy to check that, given an F-augmenting path P, the matching $E(P) \Delta F$ (obtained by symmetric difference on the edges) has larger cardinality than F.

- Lemma 2 (Berge, [2]). A matching F in $G=(V, E)$ is maximum if and only if there is no F-augmenting path.

In this paper, we will consider an intermediate matching problem, first introduced in [9].

- Problem 2 (Module Matching).

Input: A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with the following additional information;

- a collection of subgraphs $\mathcal{P}=\left\{H_{1}, H_{2}, \ldots, H_{p}\right\}$;
- a collection $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{p}\right\}$, with F_{i} being a maximum matching of H_{i} for every i.
Output: A matching of $G=G^{\prime}(\mathcal{P})$ with maximum cardinality.

A natural choice for Module Matching would be to take $\mathcal{P}=\mathcal{M}(G)$. However, we will allow \mathcal{P} to take different values for our reduction rules.

Additional notations. Let $\left\langle G^{\prime}, \mathcal{P}, \mathcal{F}\right\rangle$ be any instance of Module Matching. The order of G^{\prime}, equivalently the cardinality of \mathcal{P}, is denoted by p. For every $1 \leq i \leq p$ let $M_{i}=V\left(H_{i}\right)$ and let $n_{i}=\left|M_{i}\right|$ be the order of H_{i}. We denote $\delta_{i}=\left|E\left(M_{i}, \overline{M_{i}}\right)\right|$ the size of the cut $E\left(M_{i}, \overline{M_{i}}\right)$ with all the edges between M_{i} and $N_{G}\left(M_{i}\right)$. In particular, we have $\delta_{i}=\sum_{v_{j} \in N_{G^{\prime}}\left(v_{i}\right)} n_{i} n_{j}$. Let us define $\Delta m\left(G^{\prime}\right)=\sum_{i=1}^{p} \delta_{i}$. We will omit the dependency in G^{\prime} if it is clear from the context. Finally, let $\Delta \mu=\mu(G)-\sum_{i=1}^{p} \mu\left(H_{i}\right)$.

Our framework is based on the following lemma (inspired from [9]).

- Lemma 3. Let $G=(V, E)$ be a graph. Suppose that for every H^{\prime} in the modular decomposition of G we can solve Module Matching on any instance $\left\langle H^{\prime}, \mathcal{P}, \mathcal{F}\right\rangle$ in time $T(p, \Delta m, \Delta \mu)$, where T is a subadditive function ${ }^{1}$. Then, we can solve Maximum MatchING on G in time $\mathcal{O}(T(\mathcal{O}(n), m, n))$.

An important observation for our subsequent analysis is that, given any module M of a graph G, the internal structure of $G[M]$ has no more relevance after we computed a maximum matching F_{M} for this subgraph. More precisely, we will use the following lemma:

- Lemma 4 ([9]). Let M be a module of $G=(V, E)$, let $G[M]=\left(M, E_{M}\right)$ and let $F_{M} \subseteq E_{M}$ be a maximum matching of $G[M]$. Then, every maximum matching of $G_{M}^{\prime}=$ $\left(V,\left(E \backslash E_{M}\right) \cup F_{M}\right)$ is a maximum matching of G.

By Lemma 4 we can modify our algorithmic framework as follows. For every instance $\left\langle G^{\prime}, \mathcal{P}, \mathcal{F}\right\rangle$ for Module Matching, we can assume that $H_{i}=\left(M_{i}, F_{i}\right)$ for every $1 \leq i \leq p$.

Data structures. Finally, let $\left\langle G^{\prime}, \mathcal{P}, \mathcal{F}\right\rangle$ be any instance for Module Matching. A canonical ordering of H_{i} (w.r.t. F_{i}) is a total ordering over $V\left(H_{i}\right)$ such that the exposed vertices appear first, and every two vertices that are matched together are consecutive. In what follows, we will assume that we have access to a canonical ordering for every i. Such

[^0]orderings can be computed in time $\mathcal{O}\left(\sum_{i}\left|M_{i}\right|+\left|F_{i}\right|\right)$ by scanning all the modules and the matchings in \mathcal{F}, that is an $\mathcal{O}(\Delta m)$ provided G^{\prime} has no isolated vertex.

Furthermore, let F be a (not necessarily maximum) matching for the subdivision $G=$ $G^{\prime}(\mathcal{P})$. We will make the standard assumption that, for every $v \in V(G)$, we can decide in constant-time whether v is matched by F, and if so, we can also access in constant-time to the vertex matched with v.

3 A pruned modular decomposition

In this section, we introduce a pruning process over the quotient subgraphs, that we use in order to refine the modular decomposition.

Definition 5. Let $G=(V, E)$ be a graph. We call $v \in V$ a one-vertex extension if it falls in one of the following cases:

- $N_{G}[v]=V($ universal $)$ or $N_{G}(v)=\emptyset($ isolated $)$;
- $N_{G}[v]=V \backslash u$ (anti-pendant) or $N_{G}(v)=\{u\}$ (pendant), for some $u \in V \backslash v$;
- $N_{G}[v]=N_{G}[u]$ (true twin) or $N_{G}(v)=N_{G}(u)$ (false twin), for some $u \in V \backslash v$.

A pruned subgraph of G is obtained from G by sequentially removing one-vertex extensions (in the current subgraph) until it can no more be done. This terminology was introduced in [20], where they only considered the removals of twin and pendant vertices. Also, the clique-width of graphs that are totally decomposed by the above pruning process (i.e., with their pruned subgraph being a singleton) was studied in [24] ${ }^{2}$. Our contribution in this part is twofold. First, we show that the gotten subgraph is "almost" independent of the removal ordering, i.e., there is a unique pruned subgraph of G (up to isomorphism). The latter can be derived from the following (easy) lemma:

- Lemma 6. Let $G=(V, E)$ be a graph and let $v, v^{\prime} \in V$ be one-vertex extensions of G. If v, v^{\prime} are not pairwise twins then v^{\prime} is a one-vertex extension of $G \backslash v$.
- Corollary 7. Every graph $G=(V, E)$ has a unique pruned subgraph up to isomorphism.

For many graph classes a pruning sequence can be computed in linear-time. We observe that the same can be done for any graph (up to a logarithmic factor).

- Proposition 1. For every graph $G=(V, E)$, we can compute a pruned subgraph in $\mathcal{O}(n+m \log n)$-time.

Proof. By Corollary 7, we are left with greedily searching for, then eliminating, the onevertex extensions. We can compute the ordered degree sequence of G in $\mathcal{O}(n+m)$-time. Furthermore, after any vertex v is eliminated, we can update this sequence in $\mathcal{O}(|N(v)|)$ time. Hence, up to a total update time in $\mathcal{O}(n+m)$, at any step we can detect and remove in constant-time any vertex that is either universal, isolated, pendant or anti-pendant. Finally, in [20] they proposed a trie data-structure supporting the following two operations: suppression of a vertex; and detection of true or false twins (if any). The total time for all the operations on this data-structure is in $\mathcal{O}(n+m \log n)$ [20].

[^1]
G. Ducoffe and A. Popa

We will term "pruned modular decomposition" of a graph G the collection of the pruned subgraphs for all the quotient subgraphs in the modular decomposition of G. Note that there is a unique pruned modular decomposition of G (up to isomorphism) and that it can be computed in $\mathcal{O}(n+m \log n)$-time by Proposition 1 (applied to every quotient subgraph in the modular decomposition separately). Furthermore, we remark that most cases of onevertex extensions imply the existence of non trivial modules, and so, they cannot exist in the prime quotient subgraphs of the modular decomposition. Nevertheless, such vertices may appear after removal of pendant or anti-pendant vertices (e.g., in the bull graph).

4 Reduction rules

Let $\left\langle G^{\prime}, \mathcal{P}, \mathcal{F}\right\rangle$ be any instance of Module Matching. Suppose that v_{1}, the vertex corresponding to M_{1} in G^{\prime}, is a one-vertex extension. Under this assumption, we present reduction rules to a smaller instance $\left\langle G^{*}, \mathcal{P}^{*}, \mathcal{F}^{*}\right\rangle$ where $\left|\mathcal{P}^{*}\right|<|\mathcal{P}|$. Each rule can be implemented to run in $\mathcal{O}\left(\Delta m\left(G^{\prime}\right)-\Delta m\left(G^{*}\right)\right)$-time. Due to lack of space, we skip the complexity analysis.

In Section 4.1 we recall the rules introduced in [9] for universal and isolated modules (explicitly) and for false or true twin modules (implicitly). Our main technical contributions are the reduction rules for pendant and anti-pendant modules (in Sections 4.2 and 4.3, respectively), which are surprisingly the most intricate. Finally, we end this section stating our main result (Theorem 14).

4.1 Simple cases

We introduce two local operations on a matching, first used in [26] for cographs. Let $F \subseteq E$ be a matching and let $M \subseteq V$ be a module.

- Operation 1 (MATCH). While there are $x \in M, y \in N(M)$ exposed, add $\{x, y\}$ to F.
- Operation 2 (SPLIT). While there are $x, x^{\prime} \in M, y, y^{\prime} \in N(M)$ such that x and x^{\prime} are exposed, and $\left\{y, y^{\prime}\right\} \in F$, replace $\left\{y, y^{\prime}\right\}$ in F by $\{x, y\},\left\{x^{\prime}, y^{\prime}\right\}$.

Let $G=H_{1} \oplus H_{2}$ be the join of the two graphs H_{1}, H_{2} and let F_{1}, F_{2} be maximum matchings for H_{1}, H_{2}, respectively. The "MATCH and SPLIT" technique consists in applying Operations 1 then 2 to $M=V\left(H_{1}\right)$ and $F=F_{1} \cup F_{2}$, thereby obtaining a new matching F^{\prime}, then to $M=V\left(H_{2}\right)$ and $F=F^{\prime}$. Based on this technique, we design the following rules:

- Reduction rule 1 (see also [9]). Suppose v_{1} is isolated in G^{\prime}. We set $G^{*}=G^{\prime} \backslash v_{1}$, $\mathcal{P}^{*}=\mathcal{P} \backslash\left\{H_{1}\right\}$, and $\mathcal{F}^{*}=\mathcal{F} \backslash\left\{F_{1}\right\}$. Furthermore, let F^{*} be a maximum matching of $G^{*}\left(\mathcal{P}^{*}\right)=G\left[V \backslash M_{1}\right]$. We output $F^{*} \cup F_{1}$.

Reduction rule 2 (see also [9]). Suppose v_{1} is universal in G^{\prime}. We set $G^{*}=G \backslash v_{1}$, $\mathcal{P}^{*}=\mathcal{P} \backslash\left\{H_{1}\right\}, \mathcal{F}^{*}=\mathcal{F} \backslash\left\{F_{1}\right\}$. Furthermore, let F^{*} be a maximum matching of the subdivision $G^{*}\left(\mathcal{P}^{*}\right)=G\left[V \backslash M_{1}\right]$. We apply the "MATCH and SPLIT" technique to M_{1}, F_{1} with $V \backslash M_{1}, F^{*}$.

- Reduction rule 3. Suppose v_{1}, v_{2} are false twins in G^{\prime}. We set $G^{*}=G^{\prime} \backslash v_{1}, \mathcal{P}^{*}=$ $\left\{H_{1} \cup H_{2}\right\} \cup\left(\mathcal{P} \backslash\left\{H_{1}, H_{2}\right\}\right), \mathcal{F}^{*}=\left\{F_{1} \cup F_{2}\right\} \cup\left(\mathcal{F} \backslash\left\{F_{1}, F_{2}\right\}\right)$. We output a maximum matching of $G^{*}\left(\mathcal{P}^{*}\right)=G$.
$>$ Reduction rule 4. Suppose v_{1}, v_{2} are true twins in G^{\prime}. Let F_{2}^{*} be the matching of $H_{1} \oplus H_{2}$ obtained from the "MATCH and SPLIT" technique applied to M_{1}, F_{1} with M_{2}, F_{2}. We set $G^{*}=G \backslash v_{1}, \mathcal{P}^{*}=\left\{H_{1} \oplus H_{2}\right\} \cup\left(\mathcal{P} \backslash\left\{H_{1}, H_{2}\right\}\right), \mathcal{F}^{*}=\left\{F_{2}^{*}\right\} \cup\left(\mathcal{F} \backslash\left\{F_{1}, F_{2}\right\}\right)$. We output a maximum matching of $G^{*}\left(\mathcal{P}^{*}\right)=G$.

4.2 Anti-pendant

Suppose v_{1} is anti-pendant in G^{\prime}. W.l.o.g., v_{2} is the unique vertex that is nonadjacent to v_{1} in G^{\prime}. By Lemma 4, we can also assume w.l.o.g. that $E\left(H_{i}\right)=F_{i}$ for every i. In this situation, we start applying Reduction rule 1 , i.e., we set $G^{*}=G^{\prime} \backslash v_{1}, \mathcal{P}^{*}=\mathcal{P} \backslash\left\{H_{1}\right\}$, $\mathcal{F}^{*}=\mathcal{F} \backslash\left\{F_{1}\right\}$. Then, we obtain a maximum matching F^{*} of $G \backslash M_{1}$ (i.e., by applying our reduction rules to this new instance). Finally, from F_{1} and F^{*}, we compute a maximum matching F of G, using an intricate procedure. We detail this procedure next.

First phase: pre-processing. Our correctness proofs in what follows will assume that some additional properties hold on the matched vertices in F^{*}. So, we start correcting the initial matching F^{*} so that it is the case. For that, we introduce two "swapping" operations. Recall that v_{2} is the unique vertex that is nonadjacent to v_{1} in G^{\prime}.

- Operation 3 (REPAIR). While there exist $x_{2}, y_{2} \in M_{2}$ such that $\left\{x_{2}, y_{2}\right\} \in F_{2}$ and y_{2} is exposed in F^{*}, we replace any edge $\left\{x_{2}, w\right\} \in F^{*}$ by $\left\{x_{2}, y_{2}\right\}$.
- Operation 4 (ATTRACT). While there exist $x_{2} \in M_{2}$ exposed and $\{u, w\} \in F^{*}$ such that $u \in N_{G}\left(M_{2}\right), w \notin M_{2}$, we replace $\{u, w\}$ by $\left\{u, x_{2}\right\}$.

Let $F^{(0)}=F_{1} \cup F^{*}$. Summarizing, we get:

- Definition 8. A matching F of G is good if it satisfies the following two properties:

1. every vertex matched by $F_{1} \cup F_{2}$ is also matched by F;
2. either every vertex in M_{2} is matched, or there is no matched edge in $N_{G}\left(M_{2}\right) \times N_{G}\left(M_{1}\right)$.

- Fact 1. $F^{(0)}$ is a good matching of G.

Main phase: a modified Match and Split. We now apply the following three operations sequentially:

1. $\operatorname{Match}\left(M_{1}, F^{(0)}\right)$ (Operation 1). Doing so, we obtain a larger good matching $F^{(1)}$.
2. $\operatorname{Split}\left(M_{1}, F^{(1)}\right.$) (Operation 2). Doing so, we obtain a larger good matching $F^{(2)}$.
3. the operation Unbreak, defined in what follows (see also Fig. 2 for an illustration):

Figure 2 An augmenting path of length 5 with ends x_{1}, x_{2}. Matched edges are drawn in bold.

- Operation 5 (Unbreak). While there exist $x_{1} \in M_{1}$ and $x_{2} \in M_{1} \cup M_{2}$ exposed, and there also exist $\left\{y_{2}, z_{2}\right\} \in F_{2} \backslash F^{(2)}$, we replace any two edges $\left\{y_{2}, u\right\},\left\{z_{2}, w\right\} \in F^{(2)}$ by the three edges $\left\{x_{2}, u\right\},\left\{y_{2}, z_{2}\right\}$ and $\left\{w, x_{1}\right\}$.
We stress that the two edges $\left\{y_{2}, u\right\},\left\{z_{2}, w\right\} \in F^{(2)}$ always exist since $F^{(2)}$ is a good matching of G. Furthermore doing so, we obtain a larger matching $F^{(3)}$.

The resulting matching $F^{(3)}$ is not necessarily maximum. However, this matching satisfies the following crucial property:

- Lemma 9. No vertex of M_{1} can be an end in an $F^{(3)}$-augmenting path.

Finalization phase: breaking some edges in F_{1}. Intuitively, the matching $F^{(3)}$ may not be maximum because we sometimes need to borrow some edges of F_{1} in augmenting paths. So, we complete our procedure by performing the following two operations: Let U_{1} contain all the exposed vertices in $N\left(M_{1}\right)$. Consider the subgraph $G\left[M_{1} \cup U_{1}\right]=G\left[M_{1}\right] \oplus$ $G\left[U_{1}\right]$. The set U_{1} is a module of this subgraph. We apply $\operatorname{Split}\left(U_{1}, F^{(3)}\right)$ in $G\left[M_{1} \cup U_{1}\right]$. Doing so, we obtain a larger good matching $F^{(4)}$. Then, we apply LocalAug, defined next (see also Fig. 3 for an illustration):

Figure 3 An augmenting path of length 7 with ends x_{2}, c. Matched edges are drawn in bold.

- Operation 6 (LocalAug). While there exist $x_{2} \in M_{2}$ and $c \in N\left(M_{1}\right)$ exposed, and there also exist $\left\{x_{1}, y_{1}\right\} \in F_{1} \cap F^{(4)}$ and $\left\{y_{2}, z_{2}\right\} \in F_{2} \backslash F^{(4)}$, we do the following:
- we remove $\left\{x_{1}, y_{1}\right\}$ and any edge $\left\{a, y_{2}\right\},\left\{b, z_{2}\right\}$ from $F^{(4)}$;
- we add $\left\{x_{2}, a\right\},\left\{y_{2}, z_{2}\right\},\left\{b, x_{1}\right\}$ and $\left\{y_{1}, c\right\}$ in $F^{(4)}$.

We stress that the two edges $\left\{y_{2}, a\right\},\left\{z_{2}, b\right\} \in F^{(4)}$ always exist since $F^{(4)}$ is a good matching of G. Furthermore doing so, we obtain a larger matching $F^{(5)}$.

- Lemma 10. $F^{(5)}$ is a maximum-cardinality matching of G.

4.3 Pendant

Suppose v_{1} is pendant in G^{\prime}. W.l.o.g., v_{2} is the unique vertex that is adjacent to v_{1} in G^{\prime}. This last case is arguably more complex than the others since it requires both a preprocessing and a post-processing treatment on the matching.

First phase: greedy matching. We apply the "Мatch and Split" technique to M_{1}. Doing so, we obtain a set $F_{1,2}$ of matched edges between M_{1} and M_{2}. We remove $V\left(F_{1,2}\right)$, the set of vertices incident to an edge of $F_{1,2}$, from G. Then, there are three cases. If $M_{2} \subseteq$ $V\left(F_{1,2}\right)$ then $M_{1} \backslash V\left(F_{1,2}\right)$ is isolated. We apply Reduction rule 1. If $M_{1} \subseteq V\left(F_{1,2}\right)$ then M_{1} is already eliminated. The interesting case is when both $M_{1} \backslash V\left(F_{1,2}\right)$ and $M_{2} \backslash V\left(F_{1,2}\right)$ are nonempty. In particular, suppose there remains an exposed vertex $x_{1} \in M_{1} \backslash V\left(F_{1,2}\right)$. Since $M_{2} \backslash V\left(F_{1,2}\right) \neq \emptyset$, there exists $\left\{x_{2}, y_{2}\right\} \in F_{2}$ such that $x_{2}, y_{2} \notin V\left(F_{1,2}\right)$. We remove x_{1} from M_{1}, x_{2} from $M_{2},\left\{x_{2}, y_{2}\right\}$ from F_{2} and then we add $\left\{x_{1}, x_{2}\right\}$ in $F_{1,2}$. Our first result in this section is that there always exists an optimal solution that contains $F_{1,2}$. This justifies a posteriori the removal of $V\left(F_{1,2}\right)$ from G.

- Lemma 11. There is a maximum matching of G that contains all edges in $F_{1,2}$.

We stress that during this phase, all the operations except maybe the last one increase the cardinality of the matching. Furthermore, the only possible operation that does not increase the cardinality of the matching is the replacement of an edge in F_{2} by an edge in $F_{1,2}$. Doing so, either we fall in one of the two pathological cases $M_{1} \subseteq V\left(F_{1,2}\right)$ or $M_{2} \subseteq V\left(F_{1,2}\right)$ (easy to solve), or then we obtain through the replacement operation the following stronger property:

- Property 1. All vertices in M_{1} are matched by F_{1}.

We will assume Property 1 to be true for the remaining of this section.
Second phase: virtual split edges. We complete the previous phase by performing a Split between M_{2}, M_{1} (Operation 2). That is, while there exist two exposed vertices $x_{2}, y_{2} \in M_{2}$ and a matched edge $\left\{x_{1}, y_{1}\right\} \in F_{1}$ we replace $\left\{x_{1}, y_{1}\right\}$ by $\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$ in the current matching. However, we encode the Split operation using virtual edges in H_{2}. Formally, we add a virtual edge $\left\{x_{2}, y_{2}\right\}$ in H_{2} that is labeled by the corresponding edge $\left\{x_{1}, y_{1}\right\} \in F_{1}$. Let H_{2}^{*} and F_{2}^{*} be obtained from H_{2} and F_{2} by adding all the virtual edges. We set $G^{*}=G^{\prime} \backslash v_{1}, \mathcal{P}^{*}=\left\{H_{2}^{*}\right\} \cup\left(\mathcal{P} \backslash\left\{H_{1}, H_{2}\right\}\right)$ and $\mathcal{F}^{*}=\left\{F_{2}^{*}\right\} \cup\left(\mathcal{F} \backslash\left\{F_{1}, F_{2}\right\}\right)$.

Intuitively, virtual edges are used in order to shorten the augmenting paths crossing M_{1}.
Third phase: post-processing. Let F^{*} be a maximum-cardinality matching of the subdivision $G^{*}\left(\mathcal{P}^{*}\right)$ (i.e., obtained by applying our reduction rules to the new instance). We construct a matching F for G as follows. We add in F all the non virtual edges in F^{*}. For every virtual edge $\left\{x_{2}, y_{2}\right\}$, let $\left\{x_{1}, y_{1}\right\} \in F_{1}$ be its label. If $\left\{x_{2}, y_{2}\right\} \in F^{*}$ then we add $\left\{x_{1}, y_{2}\right\},\left\{x_{2}, y_{1}\right\}$ in F, otherwise we add $\left\{x_{1}, y_{1}\right\}$ in F. In the first case, we say that we confirm the Split operation, whereas in the second case we say that we cancel it. Finally, we complete F with all the edges of F_{1} that do not label any virtual edge (i.e., unused during the second phase).

- Lemma 12. F is a maximum-cardinality matching of G.

The above result is proved by contrapositive. More precisely, we prove intricate properties on the intersection of shortest augmenting paths with pendant modules. Using these properties and the virtual edges, we could transform any shortest F-augmenting path into an F^{*}-augmenting path, a contradiction.

4.4 Main result

Our framework consists in applying any reduction rule presented in this section until it can no more be done. Then, we rely on the following result:

- Theorem 13 ([9]). We can solve Module Matching for $\left\langle G^{\prime}, \mathcal{P}, \mathcal{F}\right\rangle$ in $\mathcal{O}\left(\Delta \mu \cdot p^{4}\right)$-time.

We are now ready to state our main result in this paper (the proof of which directly follows from all the previous results in this section).

- Theorem 14. Let $G=(V, E)$ be a graph. Suppose that, for every prime subgraph H^{\prime} in the modular decomposition of G, its pruned subgraph has order at most k. Then, we can solve Maximum Matching for G in $\mathcal{O}\left(k^{4} \cdot n+m \log n\right)$-time.

5 Applications

We conclude this paper presenting applications and refinements of our main result to some graph classes. Recall that cographs are exactly the graphs that are totally decomposable by modular decomposition [8]. We start showing that several distinct generalizations of cographs in the literature are totally decomposable by the pruned modular decomposition.

Distance-hereditary graphs. A graph $G=(V, E)$ is distance-hereditary if it can be reduced to a singleton by pruning sequentially the pendant vertices and twin vertices [1]. Conversely, G is co-distance hereditary if it is the complement of a distance-hereditary graph, i.e., it can be reduced to a singleton by pruning sequentially the anti-pendant vertices and twin vertices. In both cases, the corresponding pruning sequence can be computed in lineartime [11, 13]. Therefore, we can derive the following result from our framework:

- Proposition 2. We can solve Maximum Matching in linear-time on graphs that can be modularly decomposed into distance-hereditary graphs and co-distance hereditary graphs.

Trees are a special subclass of distance-hereditary graphs. We say that a graph has modular treewidth at most k if every prime quotient subgraph in its modular decomposition has treewidth at most k. In particular, graphs with modular treewidth at most one are exactly the graphs that can be modularly decomposed into trees ${ }^{3}$. We stress the following consequence of Proposition 2:

- Corollary 15. We can solve Maximum Matching in linear-time on graphs with modulartreewidth at most one.

The case of graphs with modular treewidth $k \geq 2$ is left as an intriguing open question.
Tree-perfect graphs. Two graphs G_{1}, G_{2} are P_{4}-isomorphic if there exists a bijection from G_{1} to G_{2} such that a 4-tuple induces a P_{4} in G_{1} if and only if its image in G_{2} also induces a $P_{4}[6]$. The notion of P_{4}-isomorphism plays an important role in the study of perfect graphs. A graph is tree-perfect if it is P_{4}-isomorphic to a tree [4]. We prove the following result:

- Proposition 3. Tree-perfect graphs are totally decomposable by the pruned modular decomposition. In particular, we can solve Maximum Matching in linear-time on treeperfect graphs.

Our proof is based on a deep structural characterization of tree-perfect graphs [4].
The case of unicycles. We end up this section with a refinement of our framework for the special case of unicyclic quotient graphs (a.k.a., graphs with exactly one cycle).

- Proposition 4. We can solve Maximum Matching in linear-time on the graphs that can be modularly decomposed into unicycles.

For that, we reduce the case of unicycles to the case of cycles (removing pendant modules). Then, we test for all possible numbers of matched edges between two adjacent modules. Doing so, we reduce the case of cycles to the case of paths.

6 Open problems

The pruned modular decomposition happens to be an interesting add up in the study of Maximum Matching algorithms. An exhaustive study of its other algorithmic applications remains to be done. Moreover, another interesting question is to characterize the graphs that are totally decomposable by this new decomposition. We note that our pruning process can be seen as a repeated update of the modular decomposition of a graph after some specified modules (pendant, anti-pendant) are removed. However, we can only detect a restricted family of these new modules (i.e., universal, isolated, twins). A fully dynamic modular decomposition algorithm could be helpful in order to further refine our framework.

——References

1 H.-J. Bandelt and H. Mulder. Distance-hereditary graphs. J. of Combinatorial Theory, Series B, 41(2):182-208, 1986.

[^2]2 C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):842-844, 1957.
3 J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.
4 A. Brandstädt and V. Le. Tree-and forest-perfect graphs. Discrete applied mathematics, 95(1-3):141-162, 1999.
5 M. Chang. Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs. In ISAAC, pages 146-155. Springer, 1996.
6 V. Chvátal. A semi-strong perfect graph conjecture. In North-Holland mathematics studies, volume 88, pages 279-280. Elsevier, 1984.
7 O. Cogis and E. Thierry. Computing maximum stable sets for distance-hereditary graphs. Discrete Optimization, 2(2):185-188, 2005.
8 D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM Journal on Computing, 14(4):926-934, 1985.
9 D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In SODA'18, pages 2765-2784. SIAM, 2018.
10 E. Dahlhaus and M. Karpinski. Matching and multidimensional matching in chordal and strongly chordal graphs. Discrete Applied Mathematics, 84(1-3):79-91, 1998.
11 G. Damiand, M. Habib, and C. Paul. A simple paradigm for graph recognition: application to cographs and distance hereditary graphs. Theoretical Computer Science, 263(1-2):99111, 2001.
12 F. Dragan. On greedy matching ordering and greedy matchable graphs. In $W G^{\prime} 97$, volume 1335 of LNCS, pages 184-198. Springer, 1997.
13 S. Dubois, V. Giakoumakis, and C. El Mounir. On co-distance hereditary graphs. In CTW, pages 94-97, 2008.
14 G. Ducoffe and A. Popa. The use of a pruned modular decomposition for maximum matching algorithms on some graph classes. Technical Report arXiv:1804.09407, arXiv, 2018.
15 J. Edmonds. Paths, trees, and flowers. Canadian J. of mathematics, 17(3):449-467, 1965.
16 H. Gabow and R. Tarjan. A linear-time algorithm for a special case of disjoint set union. In STOC'83, pages 246-251. ACM, 1983.
17 Tibor Gallai. Transitiv orientierbare graphen. Acta Math. Hungarica, 18(1):25-66, 1967.
18 M. Habib and C. Paul. A survey of the algorithmic aspects of modular decomposition. Computer Science Review, 4(1):41-59, 2010.
19 J. Hopcroft and R. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on computing, 2(4):225-231, 1973.
20 J. Lanlignel, O. Raynaud, and E. Thierry. Pruning graphs with digital search trees. application to distance hereditary graphs. In STACS, pages 529-541. Springer, 2000.
21 G. Mertzios, A. Nichterlein, and R. Niedermeier. Linear-time algorithm for maximumcardinality matching on cocomparability graphs. Technical report, 2017. arXiv preprint arXiv:1703.05598.
22 S. Micali and V. Vazirani. An $O(\sqrt{V} E)$ algorithm for finding maximum matching in general graphs. In FOCS' 80 , pages 17-27. IEEE, 1980.
23 D. Paulusma, F. Slivovsky, and S. Szeider. Model counting for cnf formulas of bounded modular treewidth. Algorithmica, 76(1):168-194, 2016.
24 M. Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics, 308(24):6157-6165, 2008.
25 M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular decomposition via recursive factorizing permutations. In $I C A L P$, pages 634-645. Springer, 2008.
26 M.-S. Yu and C.-H. Yang. An $O(n)$-time algorithm for maximum matching on cographs. Information processing letters, 47(2):89-93, 1993.

[^0]: 1 We stress that every polynomial function is subadditive.

[^1]: ${ }^{2}$ Anti-twins are also defined as one-vertex extensions in [24]. Their integration to this framework remains to be done.

[^2]: ${ }^{3}$ Our definition is more restricted than the one in [23] since they only impose the quotient subgraph G^{\prime} to have bounded treewidth.

