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Chapter 2
Spheres unions and intersections and some of
their applications in molecular modeling

Michel Petitjean

Abstract The geometrical and computational aspects of spheres unions and in-
tersections are described. A practical analytical calculation of their surfaces and
volumes is given in the general case: any number of intersecting spheres of any
radii. Applications to trilateration and van der Waals surfaces and volumes calcula-
tion are considered. The results are compared to those of other algorithms, such as
Monte-Carlo methods, regular grid methods, or incomplete analytical algorithms.
For molecular modeling, these latter algorithms are shown to give strongly overesti-
mated values when the radii values are in the ranges recommended in the literature,
while regular grid methods are shown to give a poor accuracy.Other concepts re-
lated to surfaces and volumes of unions of spheres are evoked, such as Connolly’s
surfaces, accessible surface areas, and solvent excluded volumes.

2.1 Introduction

We denote byEd thed-dimensional Euclidean space. The relation between spheres
intersections and distance geometry can be exemplified by the trilateration prob-
lem: given, inE3, three fixed pointsc1, c2, c3 with known coordinates, locate an
unknown pointx from its respective distancesd(x,c1), d(x,c2), d(x,c3) to these
fixed points. This problem can be reformulated as a spheres intersection problem:
given three spheres of respective centersc1, c2, c3 and respective radiiR1 = d(x,c1),
R2 = d(x,c2), R3 = d(x,c3), locate the points at the intersection of their boundaries.
Such a reformulation allows us to realize immediately that,when the centers are
not aligned and when the intersection of the three spheres isnot void, there are in
general two solution points which are mirror images throughthe plane containing
c1, c2, c3. Then the experimentalist can decide which of these two solution points is
relevant, e.g. via an appropriate determinant calculus.
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18 Petitjean

Many applications occur in molecular modeling because atoms can be modeled
as hard spheres and molecules can be modeled as unions of spheres. The values of
the atomic radii depend on how they are defined and measured. Usually, they are
needed to compute the van der Waals surface and the van der Waals volume of a
molecule, i.e. the surface and the volume defined by the unionof the atomic spheres
of the molecule. Other molecular concepts which are based onatomic spheres in-
clude the Accessible Surface Areas, the Connolly surfaces,and the Solvent Ex-
cluded Volumes [4, 20, 24, 25, 36, 47, 54]. They all depend on an additional probe
sphere assumed to modelize a solvent molecule. Discussionson the physical mean-
ing of the molecular surfaces and volumes and on the adequatechoice of radii values
have been done in [5, 29, 30, 31], but this is not in the scope ofthis chapter. Practical
radii values can be found in [5, 15, 23, 43, 46, 50, 55]. It happened also that whole
molecules were implicitely or explicitely modeled by spheres. E.g., in the alpha-
shape model of pockets and channels in proteins [13], the ligand is represented by a
probe sphere. The alpha-shape model is strongly connected with Delaunay triangu-
lations and Voronoi diagrams [11, 12]. More recently these channels were computed
as union of spheres centered on the vertices of a grid [41, 42]. In any case, struc-
tural chemists know that the shapes of the molecules are generally far from being
spherical: better models are minimal height and minimal radius enclosing cylinders
[39], but spheres are much easier to handle so they are still much used for molecular
modeling.

2.2 The analytical calculation

We considern spheres inEd of given centers and radii, and we look for the calcula-
tion of the surface and the volume of their union or of their intersection. LetVi be the
volume of the spherei, i ∈ {1..n}, with fixed centerci and fixed radiusRi. We denote
by Vi1i2 the volume of the intersection of the spheresi1 andi2, Vi1i2i3 the volume of
the intersection of the spheresi1 andi2 andi3, etc. Similarly,Si is the surface (i.e. its
area) of the spherei, Si1i2 is the one of the intersection of the spheresi1 andi2, etc.
V is the volume of the union of then spheres andS is its surface. Although we will
exhibit the full analytical calculation ofV andSonly for d = 3, it is enlighting to do
some parts of this calculation inEd. We will specify the dimension when needed.

2.2.1 Spheres and lens

We setn = 1: we consider one sphere of fixed radiusR in Ed. We denote respec-
tively byV d(r) andSd(r) the volume and the surface of this sphere as functions of
the radiusr. E.g.,V 1(R) is the length of a segment of half-lengthR, S2(R) is the
perimeter of the circle of radiusRandV 2(R) is its surface, etc.
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Theorem 2.1.The volume and the surface of the sphere of radius R in Ed are re-
spectively given in equations (2.1) and (2.2).

V d(R) =
π

d
2

Γ (d
2 +1)

Rd, d≥ 1 (2.1)

Sd(R) = d
π

d
2

Γ (d
2 +1)

Rd−1, d≥ 2 (2.2)

Proof. We know thatV 1(R) andS2(R) stand. We getV 2(R) by integration:V 2(R)=
R∫

0
S2(r)dr, and converselyS2(R) is retrieved by derivatingV 2(R). For similar rea-

sons reasons, it suffices to prove equation (2.1) to be true and equation (2.2) is
proved to stand by derivation ofV d(R). We proceed by recurrence and we calcu-
lateV d(R) by integration ofV (d−1)(h) with h =

√
R2− r2, as indicated in Fig. 2.1:

V d(R) = 2
R∫

0
V (d−1)((R

2− r2)
1
2 )dr.

r

h
R

−R +R

θ

Fig. 2.1 Calculation of the sphere inEd via summation of the volumes of spheres inEd−1

Settingr = R
√

t, the integral is expressed with theβ function:

V d(R) = Rd π
d−1

2

Γ (d+1
2 )

1∫

0

t−
1
2 (1− t)

d−1
2 dt = Rd π

d−1
2

Γ (d+1
2 )

β (
1
2
,
d+1

2
).

Sinceβ (
1
2
,
d+1

2
) =

Γ (1
2)Γ (d+1

2 )

Γ (d
2 +1)

andΓ (1
2) = π

1
2 , we get the desired result.

Remark: expanding the expression of theΓ function shows thatV d(R) andSd(R)

are proportional toπ
d
2 (whend is even) or toπ

d−1
2 (whend is odd).

It is useful to calculate the volumeV d(R,θ ) and the surfaceSd(R,θ ) of the
spherical cap defined by the angleθ in Figure 2.1. They can be calculated by re-
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currence as above via integration using respectively the expressions ofV (d−1)(R,θ )
andS (d−1)(R,θ ), and with the help of incompleteβ functions.

For clarity, we recall in equations (2.3) and (2.4) the results for d = 3, obtained,
respectively, from summation of the elementary cylinders volumes(πh2)(dr) and
of the elementary truncated cones surfaces(2πh)(Rdθ ):

V 3(R,θ ) =
πR3

3
(1−cosθ )2(2+cosθ ), (2.3)

S3(R,θ ) = 2πR2(1−cosθ ). (2.4)

Remark: in equations (2.3) and (2.4),θ takes values in[0;π ].

2.2.2 Lens and radical hyperplanes

We setn = 2. The intersection of two spheres inEd of respective centersc1 andc2

and radiusR1 andR2 is either empty, or reduces to one point, or is a lens, or is the
smallest sphere in the case it is included in the largest sphere. The case of interest is
the one of one lens.

The lens exists when:

|R1−R2| ≤ ‖c2−c1‖ ≤ R1 +R2. (2.5)

This lens is bounded by two spherical caps separated by a(d− 1)-hyperplane or-
thogonal to the directionc2− c1 and intersecting the axisc2− c1 at the pointt12.
This (d−1)-hyperplane is called aradical hyperplane, or simply aradical plane
whend = 3.

Theorem 2.2.The location of the intersection point t12 is given in equations (2.6)–
(2.8):

t12 =

(
c1 +c2

2

)

+
R2

1−R2
2

‖c2−c1‖2
(

c2−c1

2

)

(2.6)

‖t12−c1‖=
1
2

(

‖c2−c1‖+
R2

1−R2
2

‖c2−c1‖

)

(2.7)

‖t12−c2‖=
1
2

(

‖c2−c1‖+
R2

2−R2
1

‖c2−c1‖

)

(2.8)

Proof. We denote with quotes the transposed vectors, e.g.t ′12 is the transposed of
t12, andt ′12t12 = ‖t12‖2. The intersection of the lens with its radical hyperplane de-
fines a(d−1)-sphere (i.e. a disk whend = 3), of radiusL12 to be calculated further.
We definey12 as being any point on the boundary of this(d−1)-sphere in the rad-
ical hyperplane. Considering the right trianglesc1,t12,y12 andc2,t12,y12, we have
L2

12 = R2
1− (t12−c1)

′(t12−c1) = R2
2− (t12−c2)

′(t12−c2). We expresst12 with its
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barycentric coordinates relative toc1 andc2: t12 = α1c1 + α2c2, α1 + α2 = 1. Solv-
ing for the unknown quantityα1 and after elimination of the termt ′12t12, we get

α1 =
1
2

+
R2

2−R2
1

2‖c2−c1‖2
and thenα2 =

1
2

+
R2

1−R2
2

2‖c2−c1‖2
.

Moreover,θ1 andθ2 being the angles respectively associated to each spherical
cap (see Figure 2.1), the barycentric coefficients oft12 are the respective cosine of
these angles.

α1 = cosθ1 =
1
2

+
R2

2−R2
1

2‖c2−c1‖2
(2.9)

α2 = cosθ2 =
1
2

+
R2

1−R2
2

2‖c2−c1‖2
(2.10)

Then the radiusL12 of the(d−1)-sphere bounding the lens is:

4L2
12 = 2(R2

1 +R2
2)−

(
R2

1−R2
2

‖c2−c1‖

)2

−‖c2−c1‖2 (2.11)

The surface of the triangle defined byc1,c2,y12 is L12‖c2−c1‖/2. Then we express
this surface fromR1, R2, and‖c2−c1‖ with the Heron formula [53]: the expression
of L12 above comes after expansion and squaring.

There is a major difference about the validity of equations (2.6)–(2.8) and (2.11):
the latter is valid for non concentric spheres if and only if the inequalities (2.5) stand,
although the former stand if and only ifc1 6= c2. Thus, the radical plane exists for
any radius values, even null ones, discarding whether or notthe intersection of the
two spheres is empty and discarding if one sphere is includedin the other one. In
equations (2.9)–(2.10),α1 andα2 are defined for any pair of non concentric spheres,
although the existence ofθ1 andθ2 need that inequalities (2.5) stand. WhenR1 = R2,
the radical hyperplane is just the(d−1)-hyperplane mediator of the segmentc2−c1.

Then, the volumeV and the surfaceSof the union of the two spheres are respec-
tively expressed from the volume and the surface of their intersection:

V = V1 +V2−V12, (2.12)

S= S1 +S2−S12. (2.13)

V12 andS12 can be respectively calculated from the volume and the surface of the
two spherical caps bounding the lens. Knowingt12 from equation (2.6), the calcula-
tion is done as indicated at the end of Section 2.2.1 with the anglesθ1 andθ2 respec-
tively associated to each spherical cap (see Figure 2.1). These angles are known from
equations (2.7) and (2.8):|cosθ1|= ‖t12−c1‖/R1 and|cosθ2|= ‖t12−c2‖/R2. In
the cased = 3, we simply use equations (2.3) and (2.4). The values cosθ1 and cosθ2

are taken from equations (2.9) and (2.10). Remark: they can be negative.
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2.2.3 More about radical hyperplanes

We considern spheres inEd, not two of them being concentric, so that we have
definedn(n−1)/2 radical hyperplanes.

The intersection of the radical hyperplanes orthogonal toc1− c2 andc2− c3 is
a (d− 2)-flat, for which any pointz satisfies to the two orthogonality conditions
(z− t12)

′(c1− c2) = 0 and (z− t23)
′(c2− c3) = 0, wheret12 and t23 are known

from equation (2.6). By expanding these two equations and byadding them, and
by expressingt13 from equation (2.6), we get(z− t13)

′(c1− c3) = 0. That proves
Lemma 2.1.

Lemma 2.1.Assuming that c1,c2,c3 are not aligned, the common intersection of
the three radical hyperplanes defined by c1,c2,c3 exists and is a unique(d−2)-flat.

When the three radii are equal, we retrieve ford = 2 that the three perpendicular
bisectors of the sides of a triangle intersect at a common single point.

More generally, we look for the existence of the pointsz at the intersection of
then(n−1)/2 radical planes defined byci−c j , 1≤ i < j ≤ n. Applying repeatedly
Lemma 2.1 to all triplets of centers, it appears that the set of the pointsz is the
intersection of then− 1 radical planes defined byc1− ci , i = 2, ..,n. If existing,
this intersection is a unique(d + 1−n)-flat. This flat is orthogonal to the(n−1)-
flat containingc1,c2, ...,cn, thus it can be located from the projectionz0 of any of
its pointsz on the (n− 1)-flat containingc1,c2, ...,cn. Let γ j , j = 1, ..,n, be the
barycentric coordinates ofz0 related toc1, ...,cn. We get the following linear system
of ordern:







1 . . . 1
c′1(c1−c2) . . . c′n(c1−c2)

...
...

...
c′1(c1−cn) . . . c′n(c1−cn)







·






γ1
...

γn




=

1
2








1
c′1c1−c′2c2 +R2

1−R2
2

...
c′1c1−c′ncn +R2

1−R2
n








. (2.14)

The system (2.14) receives a unique solution when the determinant ∆ of the
matrix above is not zero. The value of∆ is obtained by substracting columns 2, ..,n
from column 1 and by developing from the first column:

∆ = (−1)n ·det






(c2−c1)
′(c2−c1) . . . (cn−c1)

′(c2−c1)
...

...
...

(c2−c1)
′(cn−c1) . . . (cn−c1)

′(cn−c1)




 .

Denoting by∆1,2,...,n the determinant of the simplexc2−c1, ...,cn−c1, we get:

∆ = (−1)n∆2
1,2,...,n. (2.15)

It means thatz0 and the intersection we are looking for exists if and only if the
simplexc1, ...,cn is not degenerated in the subspace of dimensionn−1 defined by
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c1, ...,cn (in which case there are neither two concentric spheres nor three aligned
centers). The conclusion is still valid if we consider then−1 radical planes defined
by ck−ci, i = 1, ..,n, i 6= k, 2≤ k≤ n, and we get Theorem 2.3.

Theorem 2.3.Let n spheres in Ed, 2≤ n≤ d+1, their n centers c1, ...,cn being the
vertices of a non degenerated simplex in the(n−1)-flat defined by these n centers.
The intersection of the resulting n(n−1)/2 radical planes is a(d + 1−n)-flat or-
thogonal to the(n−1)-flat containing the n centers and its orthogonal projectionz0

on this(n−1)-flat satisfies to equations (2.14) and (2.15).

The result given above was reported in [37]. Whenn = d + 1, thed(d + 1)/2
radical planes all intersect at a common single pointz0. When all radii are equal, we
retrieve ford = 3 that the six planes mediators of the edges of a tetrahedron intersect
at a common single point.

The case ofn> d+1 spheres has interesting connections with Voronoi diagrams
[10, 11], but Voronoi diagrams are out of scope of this chapter, because they do not
lead to practical surfaces and volumes computations.

2.2.4 Intersections of order 3

We setn = 3. When two spheres are tangent, either one is included in theother one
or their intersection reduces to one point. For surfaces andvolumes calculations,
this latter case can be viewed as if the intersection is empty. Thus, in both cases
we can neglect the existence of tangent spheres. The enumeration of the possible
topological configurations is done in the plane containing the three centers: we have
to enumerate the configurations encountered from the intersections of the three great
circles of the spheres.

When the intersection of two spheres is a lens, their great circles intersect at
two contact points. Otherwise there is no contact point. Forthree spheres, there are
either 0, or 2, or 4, or 6 contact points (we neglect the cases of contact points with
multiplicities greater than 1). We enumerated in Figures 2.2–2.5 the 14 possible
configurations for 3 spheres.

Not all configurations are relevant in chemistry and for trilateration (see Sec-
tion 2.1), but all must be considered by the programmer willing to build a software
computingV andS in the general case. Exception made for the configuration in
Figure 2.5d,V123 andS123 are trivial to calculate, and so areV andSfrom equations
(2.16) and (2.17), obtained by iterating equations (2.12) and (2.13):

V = V1+V2+V3−V12−V13−V23+V123, (2.16)

S= S1 +S2+S3−S12−S13−S23+S123. (2.17)

Now we setd = 3 and we consider the case of Figure 2.5d. The convex domain
at the intersection of the three spheres is symmetric through the plane containing
c1,c2,c3, and the three arcs on the boundary of this domain intersect at two pointsz+
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(a) (b) (c) (d)

Fig. 2.2 The four configurations in the case there is no contact point

(a) (b) (c) (d)

Fig. 2.3 The four configurations in the case there are 2 contact points

(a) (b)

Fig. 2.4 The two configurations in the case there are 4 contact points

(a) (b) (c) (d)

Fig. 2.5 The four configurations in the case there are 6 contact points

andz− which both lie at the intersection of the three radical planes. The barycentric
coordinatesγi , i ∈ {1,2,3}, of z0 = (z+ + z−)/2 are calculated in equation (2.18)
from equations (2.14) and (2.15), whereT123 is the surface of the trianglec1,c2,c3

andi, j,k are circular permutations of 1,2,3. We get also the length of the segment
z+−z− in equation (2.19), and then we deduce Theorem 2.4:
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16T2
123γi = −2R2

i ‖c j −ck‖2

+R2
j (‖c j −ck‖2 +‖ck−ci‖2−‖ci−c j‖2)

+R2
k(‖c j −ck‖2−‖ck−ci‖2 +‖ci−c j‖2)

+‖c j −ck‖2(−‖c j −ck‖2 +‖ck−ci‖2 +‖ci−c j‖2), (2.18)

‖z+−z−
2
‖2 =

R2
1 +R2

2 +R2
3

3
−‖z0−

c1 +c2+c3

3
‖2

−‖c2−c1‖2 +‖c3−c2‖2 +‖c1−c3‖2
9

. (2.19)

Theorem 2.4.The convex domain defined by the configuration of Figure 2.5d exists
if and only if the quantity at the right member of equation (2.19) is positive.

In the case of Figure 2.5d, the pointz0 = (z+ +z−)/2 is interior to the intersection
of the three spheres because this intersection is convex. Then, z0, z+, z− and the
three contact points on the boundary of the sphere intersection in the planec1,c2,c3

define a partition of the intersection into six parts, each one being the intersection
between one sphere and one trihedron. Each of the six trihedra originates inz0 and

is bounded by two radical planes and by the planec1,c2,c3. We denote byx(k)
i j each

of the contact points at the intersection of the great circles of spheresi and j located
in the interior of the spherek, wherei, j,k are circular permutations of 1,2,3. Thus
the trihedra are defined by the half lines sets:

{z0→ x(2)
31 ,z0→ x(3)

12 ,z0→ z+}
{z0→ x(3)

12 ,z0→ x(1)
23 ,z0→ z+}

{z0→ x(1)
23 ,z0→ x(2)

31 ,z0→ z+} ,

and their mirror symmetric images through the planec1,c2,c3:

{z0→ x(2)
31 ,z0→ x(3)

12 ,z0→ z−}
{z0→ x(3)

12 ,z0→ x(1)
23 ,z0→ z−}

{z0→ x(1)
23 ,z0→ x(2)

31 ,z0→ z−} .

The six above trihedra intersect respectively with the sphere 1, 2, 3, 1, 2, 3.
It follows that the calculation ofV123andS123can be done through the calculation

of the portion of the area of a sphere defined by its intersection with a trihedron
having its origin in the interior of the sphere. This latter calculation will be shown
to be required in the case of four intersecting spheres and isdone analytically in
Section 2.2.6 using the Gauss-Bonnet theorem.

Several analytical treatments of up to three intersecting spheres appeared in the
literature. Some do not involve the Gauss-Bonnet theorem [17, 18, 49], but most
involve it [2, 7, 8, 24, 36, 47]. These latter are mainly basedon [7] for the surfaces
and on [8] for the volumes. As shown in Section 2.2.7, neglecting the intersections
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of order 4 and higher is numerically not acceptable for van der Waals surfaces and
volumes calculation.

2.2.5 Intersections of order 4

We setn = 4 and we iterate again equations (2.12) and (2.13):

V = V1 +V2+V3+V4−V12−V13−V14−V23−V24−V34

+V123+V124+V134+V234−V1234, (2.20)

S= S1 +S2+S3+S4−S12−S13−S14−S23−S24−S34

+S123+S124+S134+S234−S1234. (2.21)

We setd = 3. For clarity, we do not enumerate all topological configurations
generated by four intersecting spheres. If any of the four triplets of spheres is not in
the configuration of Figure 2.5d, we know how to calculateV1234andS1234.

Assuming that the four sphere triplets are in the configuration of Figure 2.5d, we
can classify the topological configurations via locating the four pairs of two contact

pointsz(i jk)
+ andz(i jk)

− at the intersections of the boundaries of the three spheresi, j,k,
1≤ i < j < k≤ 4. Each of the two contact points defined by a triplet of spheres can
be inside or outside the fourth sphere (we still neglect tangencies and multiplicities).
We consider the possible locations of the six remaining contact points. When all of
them are inside a sphere, one sphere is included in the union of the three other ones.
When all the six remaining contact points are outside a sphere, either the intersec-
tion of three spheres is included in the remaining one, or the4-order intersection
is empty. This case of empty intersection was called an EmptySimplicial Topology

(EST) in [37]. If it happens for some tripleti, j,k thatz(i jk)
+ is inside the fourth sphere

andz(i jk)
− is outside, or conversely, then that happens for all the other triplets: there

are three contact points inside a sphere and three outside (this is the general case
of intersection of four spheres). The two remaining cases correspond in fact to the
same configuration: the intersection of two spheres is included in the union of the
two other ones.

To summarize, when the four sphere triplets are in the configuration of Fig-
ure 2.5d, the possible configurations for a non-empty 4-order intersection are:

1. One sphere is included in the union of the three other ones.
2. The intersection of two spheres is included in the union ofthe two other ones.
3. The intersection of three spheres is included in the remaining one.
4. None of the above ones: general case.

Calculating the 4-order intersection reduces to calculatethe 3-order intersections
in the cases of configurations 1,2,3. The total number of pairs of interior contact
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points for these latter configurations are respectively 3,2,1, and the total number of
pairs of exterior contact points are respectively 1,2,3. Only the EST configuration
has 4 exterior contact point pairs.

In the general case, the domain of the 4-order intersection is bounded by four
spherical triangles separated by six arcs of circle and intersecting at four contact
points:z(123), z(124), z(134), z(234). This convex domain is topologically similar to a
tetrahedron. From Theorem 2.3, there is a unique pointz0 at the intersection of the 6
radical planes. Its barycentric coordinates are computed from equations (2.14) and
(2.15). The pointz0 is interior to the convex domain of the 4-order intersection. This
latter is partitioned into four parts, each one being the intersection of one sphere and
one trihedron originating inz0.

These trihedra, which intersect respectively the spheres 1, 2, 3, 4, are:

{z0→ x(123),z0→ x(124),z0→ z(134)} ,
{z0→ x(123),z0→ x(124),z0→ z(234)} ,
{z0→ x(123),z0→ x(134),z0→ z(234)} ,
{z0→ x(124),z0→ x(134),z0→ z(234)} .

It follows that the calculation ofV1234andS1234can be done through the calcula-
tion of the portion of the area of a sphere defined by its intersection with a trihedron
having its origin in the interior of the sphere. This latter calculation is done ana-
lytically in Section 2.2.6 using the Gauss-Bonnet theorem.An analytical treatment
of the four spheres intersection without invoking the Gauss-Bonnet theorem was
reported [27].

2.2.6 Intersection of a sphere with a dihedron or with trihedron

We consider a sphere of centerc and radiusR intersecting a salient trihedron of
origin z inside the sphere. The trihedron intersects the boundary ofthe sphere at
x1, x2, x3, these three points being ordered in the direct sense when referred toz as
origin. We look for the calculation of the volumeVst of the intersection and for the
surfaceSst of the spherical triangle on the boundary of the sphere. Thisspherical
triangle is bounded by the oriented arcs of circle(x1,x2), (x2,x3), (x3,x1). These
arcs have respective radiih12, h23, h31 and respective anglesb12, b23, b31, each of
these angles being in[0;π ]. The trihedron intersects each of the planes respectively
tangent to the sphere atx1, x2, x3, thus defining the respective anglesa1, a2, a3,
each of these angles being in[0;π ]. We definec12, c23, c31 as the projections ofc on
the planes containing the respective triplets(x1,z,x2), (x2,z,x3), (x3,z,x1). We also
define the angles associated to the three lens:θi j = x̂i ,c,ci j = x̂ j ,c,ci j , (i, j) = (1,2)
or (i, j) = (2,3) or (i, j) = (3,1), such that cosθi j is positive when the vectorci j −c
of origin c has the same sense than the direct normal to the plane of the oriented arc
(xi ,x j), and cosθi j is negative whenci j −c has a sense opposite to this normal. We
have also sinθi j = hi j /R. The sphere has a constant Gaussian curvature and each
arc of circle has a constant geodesic curvature. Thus, the Gauss-Bonnet theorem
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[26, 52] leads to a simple expression ofSst in equation (2.22), in which the first term
in parenthesis is the spherical excess:

Sst

R2 = (a1 +a2+a3−π)− (b12cosθ12+b23cosθ23+b31cosθ31). (2.22)

Vzx being the signed volume of the oriented tetrahedron(x1−z,x2−z,x3−z) and
Vcx being the signed volume of the oriented tetrahedron(x1− c,x2− c,x3− c), the
volumeVst is given below [37]:

Vst = R3

6 [ cosθ12sin2 θ12(sinb12−b12)+

cosθ23sin2 θ23(sinb23−b23)+

cosθ31sin2 θ31(sinb31−b31) ]+Vzx−Vcx+
SstR

3
. (2.23)

Whenz lies atc, we retrieve the expression given by Girard’s theorem [48]:
Sst

R2

is the spherical excess andVst =
SstR

3
.

Remark: rather than looking for the validity of equation (2.23) from integrating
Sst as stated in [37], we give a hint of proof as follows. We define the pointx0 at
the intersection of the half line of originc passing throughz with the boundary
of the sphere, and we add the three signed contributions toVst due to the trihedra
{z→ x1,z→ x2,z→ x0} and{z→ x2,z→ x3,z→ x0} and{z→ x3,z→ x1,z→ x0},
a contribution being negative when the bounding arcs are notoriented in the con-
ventional sense. For each trihedra, say{z→ x1,z→ x2,z→ x0}, the volume of
the intersection with the sphere isVsc012−Vcz12−Vc12, in whichVsc012 is the vol-
ume of the domain bounded byc− x0, c− x1, c− x2 and by the spherical triangle
(x0,x1,x2) intercepted by the trihedron{z→ x1,z→ x2,z→ x0} and of area com-
putable by equation (2.22). Despite that this domain is not bounded by a trihedron,
Vsc012 is computable by trivial integration in respect to the radius of the sphere.Vcz12

is the volume of the tetrahedron(c,z,x1,x2). Vc12 is the volume of the portion of
the cone of originc with heightRcosθ12 and of basis the circular segment of area
(b12−sinb12)(Rsinθ12)

2/2, i.e.Vc12 = cosθ12sin2 θ12(b12−sinb12)R3/6. The rest
of the calculation is easy.

The case of the six trihedra listed at the end of Section 2.2.4is of interest. It is
such that one of the arcs, say,(x2,x3), lies on a great circle of the sphere:z, x2, x3,
c, c12, c31, are coplanar andc23 coincides withc, thena2 = π/2, a3 = π/2, and
θ23 = π/2.

Grouping each trihedra with its symmetric image through theplane of the great
circle let us to the expressions of the volumeVsd of the intersection of a sphere and a
dihedron and for the surfaceSsd of the associated portion of spherical area. Keeping
the notations used in equations (2.22) and (2.23):
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Ssd

R2 = 2a1−2(b12cosθ12+b31cosθ31), (2.24)

Vsd = R3

3 [ cosθ12sin2 θ12(sinb12−b12)+

cosθ31sin2 θ31(sinb31−b31) ]+2(Vzx−Vcx)+
SsdR

3
. (2.25)

Care: in equations (2.24) and (2.25),b12 andb31 are the angles of the half arcs
(not the full arcs) bounding the intersection of the sphere with the dihedron. It is
also recalled that the arcs must be correctly oriented and that cosθ12 and cosθ31 can
be negative.

Whenz is outside the sphere, the intersection with a dihedron reduces to sim-
pler cases such as a sphere minus two lens, and the intersection with a trihedron
can be reduced to intersections with appropriate dihedra ortrihedra for which equa-
tions (2.22)–(2.25) can be used. More generally we can extend volumes and surfaces
computations to the intersections of a sphere with a tetrahedron, a convex polyhe-
dron, and with any union of convex polyhedra. These computations are based on
equations (2.22)–(2.25) but are not needed in the frameworkof this chapter.

2.2.7 Intersections of order 5 and higher

By iterating equations (2.12) and (2.13) until ordern, the volume and the surface of
the union of then spheres can be expressed from the inclusion-exclusion principle
as follows:

V = ∑
1≤i≤n

Vi− ∑
1≤i1<i2≤n

Vi1i2 + ∑
1≤i1<i2<i3≤n

Vi1i2i3 + · · ·+(−1)n−1Vi1i2···in, (2.26)

S= ∑
1≤i≤n

Si− ∑
1≤i1<i2≤n

Si1i2 + ∑
1≤i1<i2<i3≤n

Si1i2i3 + · · ·+(−1)n−1Si1i2···in. (2.27)

Settingd = 3 andn≥ 5, the existence of intersections of ordern is deduced from
Helly’s theorem [14]. It means that the intersection of 5 spheres is not empty if and
only if each of the 5 subsets of 4 spheres gives rise to a non-empty intersection. If
n≥ 6, the intersection of 6 spheres is not empty if and only if each of the 6 subsets
of 5 spheres gives rise to a non-empty intersection. Etc.

For practical computations, we need Theorem 2.5:

Theorem 2.5.When n≥ 5 spheres in E3 have a common non-empty intersection,
there are m (with1≤m≤ 3) of these spheres such that their union J contains the
intersection I of the n−m remaining spheres.
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Proof. Assume initially thatn = 5 spheres have a common non-empty intersection.
From Helly’s theorem, each of the 5 subsets of 4 spheres givesrise to a non-empty
intersection. If one of these subsets of 4 spheres is such that the union ofm = 1,
2, or 3 spheres contains the intersection of the 4−m remaining spheres, the union
of thesem spheres contains the intersection of the 5−m remaining spheres and the
theorem stands. As stated in Section 2.2.5, a set of 4 spheresgiving raise to a non-
empty intersection which is not in one of these latter configurations is in the general
configuration.

Now we need to prove the theorem when the 5 subsets of 4 spheresare in the
case of a general configuration. For this latter, the four contact points pairs between
three spheres are such that one of these contact points lies inside the fourth sphere
and the other contact point lies outside this fourth sphere.Thus, enumerating the
spatial arrangements of the five spheres leads to only two possible configurations:

1. One sphere contains the intersection of the four other ones, and simultaneously
the union of these four spheres contains the first one. The common 5-order in-
tersection is reduced to a 4-order intersection of the four spheres in the general
configuration, which is topologically related to a tetrahedron.

2. The union of two spheres contain the intersection of the three other ones, and
simultaneously the union of these three spheres contains the intersection of
the two first ones. The common 5-order intersection is a spherical polyhedron
topologically related to a triangular prism, i.e. bounded by two triangles and
three tetragons, nine arcs and six vertices.

Obviously the theorem stands for both configurations and thus it stands always
for n = 5. Then it stands forn > 5 because the intersection of then−m spheres is
itself included in the intersection of the 5−mspheres.

Theorem 2.5 is known as thethree spheres theorem[37]. A more general expres-
sion of this theorem is given in the appendix.

Then, applying the inclusion-exclusion principle to both members of the equality
I ∪J = J provides a relation between then-order intersection and the(n−1)-order
intersections. Starting from 4-order intersections surfaces and volumes, we can com-
pute 5-order and then higher order intersections surfaces and volumes.

Some authors attempted to fully describe spheres intersections [9, 16, 20, 37] or
to produce softwares dealing with more thann = 3 intersecting spheres [21, 40].
Since many authors did an analytical treatment with the assumption that no 4-order
intersections exist (see Section 2.2.4), we analyzed a set of 70 molecules offering a
wide structural diversity [28] with the ASV freeware [37, 40]. The number of atoms
ranged from 16 to 186 (median: 45). The atomic radii (inÅ) were taken from [15]:
H=1.17, C=1.75, N=1.55, O=1.40, F=1.30, I=2.10, and from [23]: P=1.75, S=2.55.

The results for volumes are in Table 2.1 and those for surfaces are in Table 2.2.
All molecules gave raise to 5-order intersections, 69 to 6-order intersections,

13 to 7-order intersections and 2 to 8-order intersections.Owing to the results in
Tables 2.1 and 2.2, truncating the calculation after the 3-order intersections is in-
acceptable, both for volumes and surfaces computations: the values are strongly
overestimated. Correcting the overestimated volumes via the use of smaller radii is
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Table 2.1 Distribution of the volume and of the errors on the volume.

Mean Std. dev. Min Max Median

Volume: exact valueV in Å3 336.181 165.917 115.518 1162.450 386.702
Error V̂(3)−V, from eq. (2.16) 35.022 15.329 6.389 88.783 33.581
Error V̂(4)−V, from eq. (2.20) -6.173 2.745 -12.768 -0.498 -5.180
100· (V̂(3)−V)/V 10.655 2.973 3.154 19.107 8.889
100· (V̂(4)−V)/V -1.987 0.838 -5.283 -0.161 -1.427

Table 2.2 Distribution of the surface and of the errors on the surface.

Mean Std. dev. Min Max Median

Surface: exact valueS in Å2 388.162 185.526 147.386 1324.635 461.750
Error Ŝ(3)−S, from eq. (2.17) 337.120 170.906 71.409 869.994 362.754
Error Ŝ(4)−S, from eq. (2.21) -59.374 27.288 -130.446 -6.716 -53.672
100· (Ŝ(3)−S)/S 86.511 25.691 35.609 139.625 79.243
100· (Ŝ(4)−S)/S -16.176 7.064 -37.001 -3.407 -12.130

of course inappropriate, and lowering the radii even does not guarantee a decrease
of the surfaces values. Truncating the calculation after the 4-order intersections give
underestimated values which are still not acceptable for surfaces, although it gives
a rough approximation of the volumes which could be tolerated in some contexts.

Another set was analyzed [37], containing 63 molecules: even though the hy-
drogens were discarded, similar conclusions were derived.It is amazing to see the
success encountered during the last three decades by the analytical algorithms ne-
glecting the existence of intersections between more than 3spheres (see references
cited at the end of Section 2.2.4). Unless working with sufficiently small atomic
radii, the resulting software tools should return stronglyerroneous results, includ-
ing those which compute derivatives [24, 36, 47]

2.3 Numerical methods

The full analytical calculation of spheres unions volumes and surfaces can be used
to compute numerical approximations of derivatives, whichin turn are useful in
some optimization problems [38]. However, for many QSAR (Quantitative Structure
Activity Relationships) applications involving the molecular surface or volume as
an input variable for regression, an approximate value based on a numerical calculus
may be acceptable. Several numerical methods were developed [3, 4, 25, 32, 34, 35,
54]. The brute approach is based on a regular grid, i.e. a meshof N nodes defining
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cubes to be counted in order to estimate the volume of the surface. Despite that more
or less sophisticated possible variants of this approach are possible, these areO(N3)
processing time algorithms. Thus, Monte-Carlo methods should be preferred (see
further).

2.4 Monte-Carlo methods

These methods are highly attractive due to their great simplicity. In general, they
are used in awkward situations where analytical methods areunavailable and where
numerical methods are inefficient, e.g. due to a multiple integral over a domain with
an untractable boundary calculation.

As shown below, Monte-Carlo methods areO(N2) processing time algorithms,
although regular grid methods are generallyO(Nd) ones. Thus, ford > 2, Monte-
Carlo methods should be preferred. Furthermore, they are fully adequate for QSAR
applications and easy to programme.

2.4.1 Monte-Carlo calculations of volumes

The Monte-Carlo measure of the volumeV of a finite domainD of Ed is performed
as follows:

1. Enclose the domain in ad-dimensional parallelepipedic window of volumeW.
2. Build a function returning the status of one point: insideD or not.
3. Generate a sample ofN independent random points inEd, each one following

the uniform law in the window.
4. Count the numberND of these random points which falled insideD .
5. The Monte-Carlo estimate ofV is V̂ = W ·ND/N.

We consider theN random variablesXi = 1{Ui∈D}, i = 1, ...,N, whereUi is theith

random vector following the uniform law in the window and1{Ui∈D} is the indicator
function of the eventUi ∈ D . In other words,Xi = 1 whenUi takes a value inD
andXi = 0 elsewhere. Assuming thatU1, ...,UN are independent, thenX1, ...,XN are
independent and identically distributed (i.i.d.). The probability forUi to take a value
in D is p = V/W. Settingq = 1− p, Prob(Xi = 1) = p andProb(Xi = 0) = q, i.e.
each of theXi follow the Bernouilli law of parameterp. The sum of theseN i.i.d.
random variablesXi follow a binomial lawB(N, p), of expectationNp and variance

Npq. Their mean is the random variablēX =
1
N

N

∑
i=1

Xi , with expectationp =
V
W

and

variance
pq
N

=
1
N

(
V
W

)(
W−V

W

)

. It follows that the observed mean
V̂
W

=
ND

N
is a consistent and unbiased estimator ofX̄. Thus,V̂ is a consistent and unbiased
estimator ofV, of expectationV and varianceV(W−V)/N. Furthermore, we know
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Table 2.3 Monte-Carlo measures of the van der Waals volume of the cyclosporine. Analyti-
cal value:V = 1162.450152.

N ND W V̂ σ̂V 100· σ̂V/V

100 23 5230.333 1202.977 220.109 18.297
10000 2220 5230.333 1161.134 21.737 1.872

1000000 222642 5230.333 1164.492 2.176 0.187

from de Moivre-Laplace theorem [19, 45] that the law of
NX̄−Np√

Npq
converges to

the normal lawN (0,1) of expectation 0 and variance 1.
We notice that the best possible window is the one minimizingV(W−V), so that

it should be the smallest possible one containingD . The theory still works with a
non parallelepipedic window, but this latter needs an increase of the computational
cost to generate theUi following the uniform law in the window.

The precision is evaluated through a confidence interval. Several binomial pro-
portion confidence intervals were proposed [1, 6, 44]. Amongthem, we selected the
so-called Wald interval, which is symmetric and based underthe normal approxi-

mation:[p̂± ξ(1−α/2)

√

p̂(1− p̂)
N

], wherep̂ = V̂/W andξ(1−α/2) is the(1−α/2)

percentile of the normal lawN (0,1) corresponding to the errorα (e.g., for a 95%
confidence level,α = 0.05, 1−α/2 = 0.975 andξ(1−α/2) ≈ 1.96). Thus, having
estimated the center of the confidence interval forV̂, its length is estimated from

the observed standard deviationσ̂V = Wσ̂p, with σ̂p =

√

p̂(1− p̂)
N

. The Wald con-

fidence interval is appropriate as long as neitherNp nor Nq is too small, which is
the case in our context.

Examples of Monte-Carlo computations of a molecular volumeare given in Ta-
ble 2.3. The molecule is the cyclosporine. It is the largest of the dataset used at the
end of Section 2.2.7 and it contains 186 atomic spheres.

Clearly, multiplying by 100 the number of observations led to an increase of
the precision by a factor 10. This is in agreement with the proportionality of σ̂V to
1/
√

N.

2.4.2 Monte-Carlo calculations of surfaces

The Monte-Carlo measure of the surfaceSof an union ofn spheres inEd is similar
to the one for volumes, except that we consider the ratio of the surface of the union
of the spheres to the union of their surfaces, i.e. the sumT = S1 + ... + Sn of the
individual surfaces of then spheres plays the role ofW for the volumes, and the
domainD is now defined by the surface of the union of then spheres.
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The Monte-Carlo measure ofS is performed as follows:

1. Compute the total surfaceT.
2. Build a function returning the status of one point: insidea sphere or not.
3. Generate a sample ofN independent random points, each one following the

uniform law over the union of then surfaces. It is done as follows:

• Select one of then spheres such that each spherei has a probabilitySi/T
to be selected, i.e. get a random numberν following the uniform law over
[0;T] and retain the sphere indexi as the smallest one such thatν < S1 +
...+Si.

• Generate a random point ofEd following the uniform distribution on the
surface of the spherei. It will fall in D if it is not interior to any of then−1
other spheres.

4. Count the numberND of these random points which falled inD .
5. The Monte-Carlo estimate ofS is Ŝ= T ·ND/N.

The analysis of the algorithm is identical to the one for volumes, withσ̂S= Tσ̂p,

σ̂p =

√

p̂(1− p̂)
N

andp̂ = Ŝ/T.

There are several methods to generate a random point following the uniform law
on the boundary of a sphere. For clarity, we assume that the center of the sphere lies
at the origin. The rejection method is the simplest one: generate a point following
the uniform law in the smallest cube containing the sphere, and accept the point
if it falls inside the sphere; if it falls outside, generate an other one, until it falls
inside the sphere. Once done, normalize the corresponding vector to set its length
equal to the radius of the sphere. The rejection method is rather inefficient for high
d values because the ratio of the volume of the sphere to its smallest enclosing cube
tends to zero whend increases to infinity (see Section 2.2.1). Nevertheless, itcan be
retained ford = 3. There are other methods, such as normalizing a vector following
the isotropic multinormal law, i.e. such that itsd components followd uncorrelated
normal laws of null expectation and of identical standard deviations. Observations
from the normal law can themselves be generated from variousmethods, such as
Box-Muller or Marsaglia [22].

Examples of Monte-Carlo computations of a molecular surface are given in Ta-
ble 2.4. The molecule is the cyclosporine. It is the largest of the dataset used at the
end of Section 2.2.7 and it contains 186 atomic spheres.

Again, multiplying by 100 the number of observations led to an increase of the
precision by a factor 10, which is in agreement with the proportionality of σ̂S to
1/
√

N.
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Table 2.4 Monte-Carlo measures of the van der Waals surface area of thecyclosporine. Analyti-
cal value:S= 1324.635145.

N ND T Ŝ σ̂S 100· σ̂S/S

100 20 4751.111 950.222 190.044 20.000
10000 2715 4751.111 1289.927 21.130 1.638

1000000 277944 4751.111 1320.543 2.128 0.161

2.5 Discussion and conclusion

Selecting the analytical calculation vs. the Monte-Carlo calculation of the volume
or surface of a union of spheres depends on two criteria:

1. A high precision is required, e.g. for computing derivatives via finite differ-
ences.

2. A small computing time is required, due to the need of numerous repeated calls.

It is clear from equations (2.26)–(2.27) that, when all spheres intersect, the com-
puting time of the analytical calculation grows exponentially with the number of
spheres. Practically, we measured computing times with thelinux 64 bits Intel ver-
sion of the freeware ASV [40], which can perform both analytical and Monte-carlo
calculations. For the cyclosporine data mentioned in Tables 2.3 and 2.4 and containg
186 atoms, the analytical calculation took 0.23s, althoughthe Monte-Carlo calcu-
lation took 36s. However, for the 5188 ”ATOM” set of the humanprostate antigen
(PDB code 2ZCH; contains hydrogens) the analytical calculation took 1053s, al-
though the Monte-Carlo calculation took only 131s. Thus, for small molecules or
small sets of spheres, the analytical calculation is recommended. For large sets of
spheres with a huge of intersections, the Monte-Carlo calculation is useful as long
as a moderate accuracy suffices. Since it is the case for most molecular model-
ing applications, the f77 sources of the Monte-Carlo calculations inEd, plus a f77
implementation of a pseudo-random generator [22] of period257 based on the con-
gruential method used in [33], are provided with ASV.

Geometry programs are often subject to potential numericalinstabilities. It is the
case of the calculation of the intersection of the radical planes via Theorem 2.3,
which assumes that the centers of the spheres are the vertices of a non degenerate
simplex (see Section 2.2.3). Alas, chemistry data offer a huge of triplets of aligned
atoms and of quadruplets of coplanar atoms. E.g. benzene derivatives offer 12 copla-
nar atoms and three sets of 4 aligned atoms due to the benzene ring, which is by far
the ring the most frequently encountered by chemists [51]. In fact, anysp2 carbon
(e.g. a carbon connected with one double bond and two single bonds) gives raise
to four coplanar atoms, a very common situation. Fortunately, in most cases cal-
culating the intersection of the radical planes is not required. Furthermore, due to
the presence of a limited number of significant digits in molecular files, most cases
of alignment or coplanarity are avoided. In any case, to prevent instabilities, it is
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possible to let the user perturbate the atomic coordinates with a given magnitude
[40].

Appendix: segments and disks

We give here a stronger version of Theorem 2.5.

Theorem 2.6.When n≥ d + 2 spheres in Ed, d ≤ 3, have a common non-empty
intersection, there are m (with1≤m≤ ⌊d+1

2 ⌋+1) of these spheres such that their
union contains the intersection of the n−m remaining spheres and simultaneously
the union of these n−m spheres contains the intersection of the first m ones.

Proof. We assume initially thatn = d+2 spheres have a common non-empty inter-
section.

We setd = 1. A sphere inE1 is a segment. Then = 3 segments have a common
3-order intersection. The theorem stands if a segment is included in an other one.
If not, it is easy to check that there is only one possible configuration: one segment
contains the intersection of the two other ones, and simultaneously the union of
these two segments contains the first one.

We setd = 2. A sphere inE2 is a disk. Then = 4 disks have a common 4-order
intersection. The possible configurations for three intersecting disks are enumerated
in Figures 2.2 and 2.5 (Section 2.2.4). If any of the four triplets of disks is not in
the general case of intersection of Figure 2.5d, the theoremstands. We assume that
the four triplets of disks are in this general case (Figure 2.5d). We consider the
four bounding circles. There are two contact points at the intersection of each of
the six pairs of circles. Enumerating the arrangements of these four circles can be
done with the help of their contact points and with the two 2D-lens at the respective
intersections of the disks 1,2 and 3,4. It leads to only two possible configurations:

1. One disk contains the intersection of the three other ones, and simultaneously
the union of these three disks contains the first one. The common 4-order
intersection is a curvilinear triangle (Figure 2.6a).

2. The union of two disks contains the intersection of the twoother ones, and
simultaneously the union of the two latter ones contains theintersection of the
two former ones. The common 4-order intersection is a curvilinear tetragon
(Figure 2.6b).

The theorem stands in both cases and thus it stands always forn = 4. Ford = 3, the
theorem was proved in Section 2.2.7.

Forn= d+2 andd≤ 3 the theorem stands and we found the 1≤m≤ ⌊d+1
2 ⌋+1

required spheres. Forn > d+2 andd≤ 3, we considern−d−2 additional spheres.
The theorem still stands because (a) the union of them spheres contains the in-
tersection of thed + 2−m spheres which in turn contains the intersection of the
(n−d−2)+(d+2−m) = n−mspheres, and (b) the union of thesen−mspheres
contains the union of thed+ 2−m spheres which in turn contains the intersection
of them ones.



2 Spheres Unions and Intersections 37

(a) (b)

Fig. 2.6 The two configurations in the case of 4 intersecting disks

It is conjectured that Theorem 2.6 stands ford > 3. Although useful in the case
d = 3 for spheres unions surfaces and volumes computations, this theorem can also
be used in the cased = 2 for computing surfaces and exposed arcs lengths of disks
unions.
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