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Chapter 2

Spheres unions and intersections and some of
their applications in molecular modeling

Michel Petitjean

Abstract The geometrical and computational aspects of spheres siaiod in-
tersections are described. A practical analytical catmnaof their surfaces and
volumes is given in the general case: any number of intarggspheres of any
radii. Applications to trilateration and van der Waals aggfs and volumes calcula-
tion are considered. The results are compared to those ef alfjorithms, such as
Monte-Carlo methods, regular grid methods, or incompleggaical algorithms.
For molecular modeling, these latter algorithms are shaxgiMe strongly overesti-
mated values when the radii values are in the ranges recodedémthe literature,
while regular grid methods are shown to give a poor accur@tyer concepts re-
lated to surfaces and volumes of unions of spheres are evekeld as Connolly’s
surfaces, accessible surface areas, and solvent exclotiedes.

2.1 Introduction

We denote bye? the d-dimensional Euclidean space. The relation between sphere
intersections and distance geometry can be exemplified dyrilateration prob-
lem: given, inE3, three fixed points;, ¢,, cz with known coordinates, locate an
unknown pointx from its respective distancex,c;), d(x,c;), d(x,c3) to these
fixed points. This problem can be reformulated as a sphetessattion problem:
given three spheres of respective centers,, ¢z and respective radit; = d(x, 1),

R, =d(x,¢c2), Rs = d(x,c3), locate the points at the intersection of their boundaries.
Such a reformulation allows us to realize immediately thdten the centers are
not aligned and when the intersection of the three sphenmastigoid, there are in
general two solution points which are mirror images throtighplane containing
1, C2, C3. Then the experimentalist can decide which of these twdisolpoints is
relevant, e.g. via an appropriate determinant calculus.
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18 Petitjean

Many applications occur in molecular modeling because atoam be modeled
as hard spheres and molecules can be modeled as unions #sphtee values of
the atomic radii depend on how they are defined and measusesilly they are
needed to compute the van der Waals surface and the van dés Vdhame of a
molecule, i.e. the surface and the volume defined by the wfitire atomic spheres
of the molecule. Other molecular concepts which are baseztamic spheres in-
clude the Accessible Surface Areas, the Connolly surfeaed,the Solvent Ex-
cluded Volumes [4, 20, 24, 25, 36, 47, 54]. They all dependroadditional probe
sphere assumed to modelize a solvent molecule. Discussiotte physical mean-
ing of the molecular surfaces and volumes and on the adedjaige of radii values
have been donein[5, 29, 30, 31], but this is not in the scopl@®thapter. Practical
radii values can be found in [5, 15, 23, 43, 46, 50, 55]. It eyl also that whole
molecules were implicitely or explicitely modeled by spé®rE.qg., in the alpha-
shape model of pockets and channels in proteins [13], thadigs represented by a
probe sphere. The alpha-shape model is strongly connedtedelaunay triangu-
lations and Voronoi diagrams [11, 12]. More recently thdsamels were computed
as union of spheres centered on the vertices of a grid [41,|d2Jny case, struc-
tural chemists know that the shapes of the molecules areggntar from being
spherical: better models are minimal height and minimailusidnclosing cylinders
[39], but spheres are much easier to handle so they are stilhmsed for molecular
modeling.

2.2 The analytical calculation

We considen spheres irE? of given centers and radii, and we look for the calcula-
tion of the surface and the volume of their union or of theiersection. LeY; be the
volume of the spherii € {1..n}, with fixed center; and fixed radiu®;. We denote

by Vi,i, the volume of the intersection of the sphergandis, Vi,i,i, the volume of
the intersection of the spherigsandi, andis, etc. Similarly,S is the surface (i.e. its
area) of the spherigS,;, is the one of the intersection of the sphereandi,, etc.

V is the volume of the union of thespheres an&is its surface. Although we will
exhibit the full analytical calculation &f andSonly ford = 3, it is enlighting to do
some parts of this calculation Ef. We will specify the dimension when needed.

2.2.1 Spheres and lens

We setn = 1: we consider one sphere of fixed radRiin EY. We denote respec-
tively by V 4(r) andSg4(r) the volume and the surface of this sphere as functions of
the radius. E.g.,V.1(R) is the length of a segment of half-leng# S»(R) is the
perimeter of the circle of radiuR andV »(R) is its surface, etc.
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Theorem 2.1.The volume and the surface of the sphere of radius RYimiE re-
spectively given in equations (2.1) and (2.2).

d
V_d(R)_ﬁRd, d>1 2.1)
S4(R) =d @ +1)Rd 1od>2 (2.2)

Proof. We know tha¥/ 1(R) andS »(R) stand. We ge¥ »(R) by integrationV»(R) =
R
J S2(r)dr, and conversel$ »(R) is retrieved by derivating »(R). For similar rea-
0

sons reasons, it suffices to prove equation (2.1) to be trdeegnation (2.2) is
proved to stand by derivation &4(R). We proceed by recurrence and we calcu-
lateV 4(R) by integration o 4_1(h) with h= /R —r2, as indicated in Fig. 2.1:

Va(R) =2/ Vg (R-r2)ar.

0
“R T +R

Fig. 2.1 Calculation of the sphere & via summation of the volumes of spheresitr !

Settingr = R/, the integral is expressed with tiBefunction:

ot 1 d-1
V4(R) /t 1-1) % dt = R Ti)ﬁ(l dzl).
)] 2

andl'(%) = 12, we get the desired result.

Remark: expanding the expression of fhéunction shows tha¥ 4(R) andS4(R)

. d . d—1 .
are proportional tar2 (whend is even) or tarr 2~ (whend is odd).
It is useful to calculate the voluméy(R,8) and the surfac&y(R, ) of the
spherical cap defined by the andlein Figure 2.1. They can be calculated by re-
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currence as above via integration using respectively tpeessions o¥ ) (R, )
ands 4_1)(R, 8), and with the help of incomple{® functions.

For clarity, we recall in equations (2.3) and (2.4) the rissfdrd = 3, obtained,
respectively, from summation of the elementary cylindereimes(7th?)(dr) and
of the elementary truncated cones surfa@sh)(Rd6):

V3(R 6) = ?(1—c036)2(2+0056), (2.3)

S3(R,0) = 2mR?(1— cosh). (2.4)

Remark: in equations (2.3) and (2.4)takes values ifi0; ).

2.2.2 Lens and radical hyperplanes

We setn = 2. The intersection of two spheresH{ of respective centers andc,
and radiu?; andR; is either empty, or reduces to one point, or is a lens, or is the
smallest sphere in the case it is included in the largestrepiie case of interest is
the one of one lens.

The lens exists when:

|R1— R2| < ||C2—C1H <R;+Ro. (2.5)

This lens is bounded by two spherical caps separated (oly-al)-hyperplane or-
thogonal to the direction, — ¢; and intersecting the axi — ¢; at the pointty».
This (d — 1)-hyperplane is called eadical hyperplaneor simply aradical plane
whend = 3.

Theorem 2.2.The location of the intersection poinptis given in equations (2.6)—
(2.8):

c+c RR-RZ (cp—¢
tip= 2.6
o (%) e (% (2
1 R R2
tir—cill = £ (eo—cill+ L= Re 27
izl = 5 (lle2 - call + i @7
1 R —R?
tio— Gl = = - —2 1 2.8
[t12— 2| 2<|Cz Cl|+”02_cl|) (2.8)

Proof. We denote with quotes the transposed vectors,tg,@s the transposed of
t1o, andti,tio = |It12]|%. The intersection of the lens with its radical hyperplane de
fines a(d — 1)-sphere (i.e. a disk wheth= 3), of radiud_;, to be calculated further.
We defineys» as being any point on the boundary of this— 1)-sphere in the rad-
ical hyperplane. Considering the right triangtgsty», y12 andcy,t12,y12, we have
L%Z = Rjz_ — (tio— Cl)/(tlz —C1) = R% — (tiz— Cz)/(tlz —C2). We express; o with its
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barycentric coordinates relative ¢g andcy: tjo = a1 + a2, 01 + a2 = 1. Solv-
ing for the unknown quantityr; and after elimination of the terrj,ti», we get
1 R-R 1 R-R
=-4+-—2 1 andtheroy==+-——2+ 2
2 2||Cz—01||2 2 2”02—01”2

Moreover,0; and 6, being the angles respectively associated to each spherical
cap (see Figure 2.1), the barycentric coefficients phre the respective cosine of
these angles.

ax

1 R-R
o, =cosf; = E-i-w (29)
1 R-R
o, =cosh, = E-i-w (2.10)
Then the radiug;, of the (d — 1)-sphere bounding the lens is:
: R\’ :
4%, = 2(RE+RE) — —lle—ci (2.11)
[[c2—cal|

The surface of the triangle defined by c;, y12 is L12||c2 — ¢1|| /2. Then we express
this surface fronRy, Ry, and||c, — ¢1|| with the Heron formula [53]: the expression
of L1 above comes after expansion and squaring.

There is a major difference about the validity of equatidh6)-(2.8) and (2.11):
the latter is valid for non concentric spheres if and onlfpé inequalities (2.5) stand,
although the former stand if and onlydf # c,. Thus, the radical plane exists for
any radius values, even null ones, discarding whether otheointersection of the
two spheres is empty and discarding if one sphere is includ#ue other one. In
equations (2.9)—(2.10y; anda; are defined for any pair of non concentric spheres,
although the existence 6f and6, need that inequalities (2.5) stand. WhHan= Ry,
the radical hyperplane is just thé— 1)-hyperplane mediator of the segmest-c;.

Then, the volum& and the surfac8 of the union of the two spheres are respec-
tively expressed from the volume and the surface of the@rgsction:

V =V1+Vo—Vjy, (212)

S=S5+S- S (2.13)

V12 andS;, can be respectively calculated from the volume and the seidathe
two spherical caps bounding the lens. Knowipgirom equation (2.6), the calcula-
tion is done as indicated at the end of Section 2.2.1 with tlodes6; and6, respec-
tively associated to each spherical cap (see Figure 2.g&s&angles are known from
equations (2.7) and (2.8)cos8:| = ||ti2— c1||/R1 and| cosB| = ||ti2— 2| /Re. In
the casal = 3, we simply use equations (2.3) and (2.4). The value§card co$,
are taken from equations (2.9) and (2.10). Remark: they earegative.
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2.2.3 More about radical hyperplanes

We considem spheres irE9, not two of them being concentric, so that we have
definedn(n— 1)/2 radical hyperplanes.

The intersection of the radical hyperplanes orthogonalte ¢, andcy; — c3 is
a (d — 2)-flat, for which any pointz satisfies to the two orthogonality conditions
(z—1t12)'(c1 — c2) = 0 and (z—ty3)'(c, — c3) = 0, wheret;, andtyz are known
from equation (2.6). By expanding these two equations anddung them, and
by expressind;3 from equation (2.6), we gdiz—t13)'(c; — c3) = 0. That proves
Lemma 2.1.

Lemma 2.1.Assuming that ¢ c,,c3 are not aligned, the common intersection of
the three radical hyperplanes defined hya, c; exists and is a uniqu@ — 2)-flat.

When the three radii are equal, we retrievedot 2 that the three perpendicular
bisectors of the sides of a triangle intersect at a commagiesjpoint.

More generally, we look for the existence of the pointt the intersection of
then(n—1)/2 radical planes defined lwy—cj, 1 <i < j < n. Applying repeatedly
Lemma 2.1 to all triplets of centers, it appears that the $¢h@ pointsz is the
intersection of then — 1 radical planes defined by — ¢;, i = 2,..,n. If existing,
this intersection is a uniqu@ + 1 — n)-flat. This flat is orthogonal to thén — 1)-
flat containingcy, Cy, ..., Cn, thus it can be located from the projectignof any of
its pointsz on the (n— 1)-flat containingcy,Cy,...,Ch. Lety;, j = 1,..,n, be the
barycentric coordinates af related tocy, ..., ¢, We get the following linear system
of ordern:

1 1 1
C/l(Cl - Cz) ... C;-,(Cl - Cz) " 1 c’lcl — C/2C2 + RE - R%

: : : 1732 : (2.14)
cj(C1—Cn) ... Ch(C1—Cn) Y CiC1 — Chen + RZ—R2

The system (2.14) receives a unique solution when the detantA of the
matrix above is not zero. The value 6fis obtained by substracting columns.2n
from column 1 and by developing from the first column:

(co—c1)'(ca—c1) ... (cn—c1)/(ca—cq)
A= (-1)"-det : : :
(co—c1)'(ecn—c1) ... (cn—c1)'(cn—c1)

A=(-1)"A%, . (2.15)

It means thaky and the intersection we are looking for exists if and onhyhi t
simplexcy, ..., Cq is not degenerated in the subspace of dimensierl defined by
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C1,...,Cn (in which case there are neither two concentric sphereshmee taligned
centers). The conclusion is still valid if we consider the 1 radical planes defined
byck—ci,i=1,..,n,i £k, 2<k<n, and we get Theorem 2.3.

Theorem 2.3.Let n spheresiin E2<n<d+1,theirn centers ¢ ...,c, being the
vertices of a non degenerated simplex in the- 1)-flat defined by these n centers.
The intersection of the resultingm— 1) /2 radical planes is ad + 1 — n)-flat or-
thogonal to then — 1)-flat containing the n centers and its orthogonal projectzgn
on this(n— 1)-flat satisfies to equations (2.14) and (2.15).

The result given above was reported in [37]. Whea d + 1, thed(d +1)/2
radical planes all intersect at a common single pajn®When all radii are equal, we
retrieve ford = 3 that the six planes mediators of the edges of a tetrahediensect
at a common single point.

The case of > d + 1 spheres has interesting connections with Voronoi diagram
[10, 11], but Voronoi diagrams are out of scope of this chajmecause they do not
lead to practical surfaces and volumes computations.

2.2.4 Intersections of order 3

We setn = 3. When two spheres are tangent, either one is included iothex one
or their intersection reduces to one point. For surfacesvatuimes calculations,
this latter case can be viewed as if the intersection is endptys, in both cases
we can neglect the existence of tangent spheres. The entiwneséithe possible
topological configurations is done in the plane containigthree centers: we have
to enumerate the configurations encountered from the gdgoss of the three great
circles of the spheres.

When the intersection of two spheres is a lens, their grealesi intersect at
two contact points. Otherwise there is no contact point.thia@e spheres, there are
either 0, or 2, or 4, or 6 contact points (we neglect the cabesrgact points with
multiplicities greater than 1). We enumerated in Figures-2.5 the 14 possible
configurations for 3 spheres.

Not all configurations are relevant in chemistry and foratgtation (see Sec-
tion 2.1), but all must be considered by the programmerngltio build a software
computingV andS in the general case. Exception made for the configuration in
Figure 2.5dV23andS;»3 are trivial to calculate, and so aveandS from equations
(2.16) and (2.17), obtained by iterating equations (2.18)@.13):

V =Vi+Vo+V3—Vio—Viz—Voz+Vios (2.16)
S=5+S+S—Si2—Si3— S3+ Si23 (2.17)

Now we setd = 3 and we consider the case of Figure 2.5d. The convex domain
at the intersection of the three spheres is symmetric thradlig plane containing
1, Cp,C3, and the three arcs on the boundary of this domain intersegbgointsz,
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b 00 ) ©

@)

Fig. 2.2 The four configurations in the case there is no contact point

@) (b) ©

(d)
Fig. 2.3 The four configurations in the case there are 2 contact points
@) (b)
Fig. 2.4 The two configurations in the case there are 4 contact points
@) (b) (c) (d)

Fig. 2.5 The four configurations in the case there are 6 contact points

andz_ which both lie at the intersection of the three radical ptaffde barycentric
coordinatesy, i € {1,2,3}, of zp = (z; +z_)/2 are calculated in equation (2.18)
from equations (2.14) and (2.15), whélrgs is the surface of the trianglg, c,, c3
andi, j, k are circular permutations of 2,3. We get also the length of the segment
Z" —z" in equation (2.19), and then we deduce Theorem 2.4:
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16THay = —2R?||cj — |
2 2 2
+R([lej — oll® + lok—&ill* = llei — ¢%)
2 2 2
+RY(llej — oll® = lok—&ill®+ llei — ¢%)
+llej — ellP(—llej — ell® + llok —cil |+ llci — ¢il%),  (2.18)

L ek
2 3 3
3 |c2— cal|2+ [[ca— 2|2 + [|lea — ca|2

5 (2.19)
Theorem 2.4.The convex domain defined by the configuration of Figure Xtise
if and only if the quantity at the right member of equatiorl@®.is positive.

Inthe case of Figure 2.5d, the poit= (z; +z_)/2 is interior to the intersection
of the three spheres because this intersection is conveen, &) z,, z. and the
three contact points on the boundary of the sphere intéosdatthe planes, ¢y, c3
define a partition of the intersection into six parts, eacé being the intersection
between one sphere and one trihedron. Each of the six tatwdyinates irgg and

is bounded by two radical planes and by the plene,, cs. We denote by(i(-k) each
of the contact points at the intersection of the great crofesspheresandj located
in the interior of the spherke wherei, j,k are circular permutations of 2,3. Thus
the trihedra are defined by the half lines sets:

2 3
{20—>ng720—>%12),20—>2+}

(20— 20> xY 20— 2}

1 2
(20— XY,20 X3 20— 2.},

and their mirror symmetric images through the plane;, c3:

(20— 5% 20 %Y 202}

{20 =3 20— %5 20—~ 2.}
{zoex(z%,’),zoaxgzl),zo —z}.

The six above trihedra intersect respectively with the splie2, 3, 1, 2, 3.

It follows that the calculation df;,3andS; 23 can be done through the calculation
of the portion of the area of a sphere defined by its interseatiith a trihedron
having its origin in the interior of the sphere. This lattataulation will be shown
to be required in the case of four intersecting spheres addrie analytically in
Section 2.2.6 using the Gauss-Bonnet theorem.

Several analytical treatments of up to three intersectiigeses appeared in the
literature. Some do not involve the Gauss-Bonnet theorem I8, 49], but most
involve it [2, 7, 8, 24, 36, 47]. These latter are mainly based7] for the surfaces
and on [8] for the volumes. As shown in Section 2.2.7, negigdhe intersections
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of order 4 and higher is numerically not acceptable for vanviigals surfaces and
volumes calculation.

2.2.5 Intersections of order 4

We setn = 4 and we iterate again equations (2.12) and (2.13):

V =V +Vo+V3+Vs—Vio—Viz— V14— Voz— Vo4 — Va4
+V123+ Vi2a+Vi3a+ Vaza— Vioas, (2.20)

S=9+S+S+S%-S2-S3-S1u—S3—S4— S
+S123+ S124+ S134+ S34— S1234 (2.21)

We setd = 3. For clarity, we do not enumerate all topological configiores
generated by four intersecting spheres. If any of the fopletis of spheres is not in
the configuration of Figure 2.5d, we know how to calculig;, andS; 234

Assuming that the four sphere triplets are in the configaradif Figure 2.5d, we
can classify the topological configurations via locating thur pairs of two contact

pointsz&”k) andz"™ at the intersections of the boundaries of the three sphgrés
1<i< j< k<4, Each of the two contact points defined by a triplet of spheam
be inside or outside the fourth sphere (we still neglectéasges and multiplicities).
We consider the possible locations of the six remainingaxrgoints. When all of
them are inside a sphere, one sphere is included in the uhtbe three other ones.
When all the six remaining contact points are outside a spleéther the intersec-
tion of three spheres is included in the remaining one, odtoeder intersection
is empty. This case of empty intersection was called an E/@ptyplicial Topology

(EST)in[37]. Ifit happens for some tripletj,kthatzﬂjk) is inside the fourth sphere
andZ'™ is outside, or conversely, then that happens for all therdthmets: there

are three contact points inside a sphere and three outsidei{tthe general case
of intersection of four spheres). The two remaining casesespond in fact to the
same configuration: the intersection of two spheres is dedun the union of the
two other ones.

To summarize, when the four sphere triplets are in the cordtgun of Fig-

ure 2.5d, the possible configurations for a non-empty 4+ardersection are:

1. One sphere is included in the union of the three other ones.

2. The intersection of two spheres is included in the uniatheftwo other ones.
3. The intersection of three spheres is included in the neimgione.

4. None of the above ones: general case.

Calculating the 4-order intersection reduces to calculee-order intersections
in the cases of configurations 1,2,3. The total number ofspaiiinterior contact
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points for these latter configurations are respectivelyl3and the total number of
pairs of exterior contact points are respectively 1,2,3y@me EST configuration
has 4 exterior contact point pairs.

In the general case, the domain of the 4-order intersecsidrtounded by four
spherical triangles separated by six arcs of circle andsatting at four contact
points: 2123 2124 #1349 7234 Thijs convex domain is topologically similar to a
tetrahedron. From Theorem 2.3, there is a unique pgiat the intersection of the 6
radical planes. Its barycentric coordinates are computad £quations (2.14) and
(2.15). The poing is interior to the convex domain of the 4-order intersectibims
latter is partitioned into four parts, each one being thersgction of one sphere and
one trihedron originating im.

These trihedra, which intersect respectively the sphergs3, 4, are:

{z0— X 20— 2139}
{z0— X 29— 2239}
{Z()—)X( 4)
{z0—X K

It follows that the calculation d¥;234andS; 234 can be done through the calcula-
tion of the portion of the area of a sphere defined by its iet&isn with a trihedron
having its origin in the interior of the sphere. This lattedaulation is done ana-
Iytically in Section 2.2.6 using the Gauss-Bonnet theor&manalytical treatment
of the four spheres intersection without invoking the GaBsanet theorem was
reported [27].

2.2.6 Intersection of a sphere with a dihedron or with trihesh

We consider a sphere of ceneand radiusk intersecting a salient trihedron of
origin z inside the sphere. The trihedron intersects the boundatiyeophere at

X1, X2, X3, these three points being ordered in the direct sense wifemae toz as
origin. We look for the calculation of the volunyg; of the intersection and for the
surfaceS;; of the spherical triangle on the boundary of the sphere. $pieerical
triangle is bounded by the oriented arcs of cirtlg,x2), (x2,x3), (X3,X1). These
arcs have respective radii,, hps, h3; and respective anglds,, bos, bsi, each of
these angles being {0; 1. The trihedron intersects each of the planes respectively
tangent to the sphere &, X, X3, thus defining the respective angles ay, ag,
each of these angles being[h r1. We definecy, €3, C31 as the projections afon

the planes containing the respective triplets z,x2), (x2,2,X3), (X3,2,%1). We also
define the angles associated to the three léps: X, C,Gj = Xj,c,Gj, (i,]) = (1,2)
or(i,j)=(2,3) or (i, j) = (3,1), such that cog; is positive when the vectaj; —c

of origin ¢ has the same sense than the direct normal to the plane ofitmeeat arc
(xi,%;j), and co$j is negative wheij; — ¢ has a sense opposite to this normal. We
have also sij = h;j/R. The sphere has a constant Gaussian curvature and each
arc of circle has a constant geodesic curvature. Thus, thisssBonnet theorem
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[26, 52] leads to a simple expression3yfin equation (2.22), in which the first term
in parenthesis is the spherical excess:

% = (a1 +az+azg— 1) — (b12€0861 2+ by3c0SBr3+ b31 COSBs1). (2.22)
Vyzx being the signed volume of the oriented tetrahedr@r- z, x2 — z, X3 — z) and
Vex being the signed volume of the oriented tetrahedpan- ¢,x; — ¢, x3 — c), the

volumeVg; is given below [37]:

Vst = %[ cosBi2sir? B1o(sinbyo — byo) +

coSBa3Sir? Ba3(sinbaz — bps) +

. . R
cosBs; Sir? B31(sinbzy — bag) | +Vax— Vex+ SSTI (2.23)

Whenz lies atc, we retrieve the expression given by Girard’s theorem [%]:
SR

is the spherical excess aWg =

Remark: rather than looking for the validity of equation2(®). from integrating
S;; as stated in [37], we give a hint of proof as follows. We defime pointxy at
the intersection of the half line of origia passing througlz with the boundary
of the sphere, and we add the three signed contributiol ue to the trihedra
{z—%1,2— X2,Zz— X0} and{z — Xp,Z— X3,Z— Xo} and{z— X3,z — X1,Z— Xo},

a contribution being negative when the bounding arcs are@nented in the con-
ventional sense. For each trihedra, day— X1,Z — X2,z — Xg}, the volume of
the intersection with the sphereWggi12 — Veza2 — Ve12, in which Vg2 is the vol-
ume of the domain bounded lry- Xy, ¢ — X1, ¢ — X2 and by the spherical triangle
(X0,X1,X%2) intercepted by the trihedrofz — X3,z — X2,z — X0} and of area com-
putable by equation (2.22). Despite that this domain is vonided by a trihedron,
Vso12is computable by trivial integration in respect to the radifithe spheré/c,»

is the volume of the tetrahedrdi, z,x1,%2). Ve12 is the volume of the portion of
the cone of origirc with heightRcos6;, and of basis the circular segment of area
(b12 — Sinblz)(RSinelz)z/Z, i.e.Vch = COSQ;]_ZS"'I2 612(b12 — Sinblz)R3/6. The rest
of the calculation is easy.

The case of the six trihedra listed at the end of Section 25204 interest. It is
such that one of the arcs, sdye, x3), lies on a great circle of the sphezxy, X3,

C, C12, C31, are coplanar andy3 coincides withc, thena, = /2, a3 = /2, and
923 = 7'[/2.

Grouping each trihedra with its symmetric image throughplame of the great
circle let us to the expressions of the volu¥g of the intersection of a sphere and a
dihedron and for the surfa&y of the associated portion of spherical area. Keeping
the notations used in equations (2.22) and (2.23):
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% = 2a1 — 2(12C0S612 + bz c0SBs1), (2.24)

Veq = g[ COSQ;]_ZS"'I2 612(sinbyo — byo) +

. . R
c0sB31 Sir? B31(sinbsy — ba1) ]+ 2(Vax— Vex) + %Td' (2.25)

Care: in equations (2.24) and (2.26)p andbs; are the angles of the half arcs
(not the full arcs) bounding the intersection of the spheith the dihedron. It is
also recalled that the arcs must be correctly oriented aatattigd;» and co$z; can
be negative.

Whenz is outside the sphere, the intersection with a dihedronaesito sim-
pler cases such as a sphere minus two lens, and the inters@gth a trihedron
can be reduced to intersections with appropriate dihedtréh@dra for which equa-
tions (2.22)—(2.25) can be used. More generally we can dxtelumes and surfaces
computations to the intersections of a sphere with a tethaime a convex polyhe-
dron, and with any union of convex polyhedra. These comjmutatare based on
equations (2.22)—(2.25) but are not needed in the frameuwfdtiis chapter.

2.2.7 Intersections of order 5 and higher

By iterating equations (2.12) and (2.13) until ordethe volume and the surface of
the union of then spheres can be expressed from the inclusion-exclusioniplén
as follows:

V= Z Vi— Z Visip + Z \/ili2i3+“'+(_1)n71\/ili2'“in’ (2.26)

1<i<n 1<i <ip<n 1<ip<lip<iz<n

S= S- > Swmt Y Suigis + -+ (=1)" 1S, (2.27)

1<i<n 1<i1<ip<n 1<ii<iz<iz<n

Settingd = 3 andn > 5, the existence of intersections of ordas deduced from
Helly’s theorem [14]. It means that the intersection of Sexgls is not empty if and
only if each of the 5 subsets of 4 spheres gives rise to a ngtyemtersection. If
n > 6, the intersection of 6 spheres is not empty if and only iheafcthe 6 subsets
of 5 spheres gives rise to a non-empty intersection. Etc.

For practical computations, we need Theorem 2.5:

Theorem 2.5.When n> 5 spheres in B have a common non-empty intersection,
there are m (withL < m < 3) of these spheres such that their union J contains the
intersection | of the A~ m remaining spheres.
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Proof. Assume initially thah = 5 spheres have a common non-empty intersection.
From Helly’s theorem, each of the 5 subsets of 4 spheres ga&$o a non-empty
intersection. If one of these subsets of 4 spheres is suthh®ainion ofm= 1,

2, or 3 spheres contains the intersection of them remaining spheres, the union
of thesem spheres contains the intersection of the i remaining spheres and the
theorem stands. As stated in Section 2.2.5, a set of 4 spbieieg raise to a non-
empty intersection which is not in one of these latter coméigians is in the general
configuration.

Now we need to prove the theorem when the 5 subsets of 4 sphierés the
case of a general configuration. For this latter, the foutairpoints pairs between
three spheres are such that one of these contact pointasiee ithe fourth sphere
and the other contact point lies outside this fourth sphEheis, enumerating the
spatial arrangements of the five spheres leads to only twailesonfigurations:

1. One sphere contains the intersection of the four othes,@mal simultaneously
the union of these four spheres contains the first one. Thenmomb-order in-
tersection is reduced to a 4-order intersection of the fpheses in the general
configuration, which is topologically related to a tetratwed

2. The union of two spheres contain the intersection of theetlother ones, and
simultaneously the union of these three spheres contammtarsection of
the two first ones. The common 5-order intersection is a $pdilgrolyhedron
topologically related to a triangular prism, i.e. boundgdwwo triangles and
three tetragons, nine arcs and six vertices.

Obviously the theorem stands for both configurations and thstands always
for n=5. Then it stands fon > 5 because the intersection of the- m spheres is
itself included in the intersection of the-bm spheres.

Theorem 2.5 is known as thleree spheres theoref@7]. A more general expres-
sion of this theorem is given in the appendix.

Then, applying the inclusion-exclusion principle to botambers of the equality
I UJ = J provides a relation between theorder intersection and th@ — 1)-order
intersections. Starting from 4-order intersections stgéand volumes, we can com-
pute 5-order and then higher order intersections surfaugsaumes.

Some authors attempted to fully describe spheres intéossdd, 16, 20, 37] or
to produce softwares dealing with more thag= 3 intersecting spheres [21, 40].
Since many authors did an analytical treatment with therapsion that no 4-order
intersections exist (see Section 2.2.4), we analyzed & §& molecules offering a
wide structural diversity [28] with the ASV freeware [37,]J4The number of atoms
ranged from 16 to 186 (median: 45). The atomic radiif()nNere taken from [15]:
H=1.17, C=1.75, N=1.55, 0=1.40, F=1.30, 1=2.10, and froBj[P=1.75, S=2.55.

The results for volumes are in Table 2.1 and those for susfaoein Table 2.2.

All molecules gave raise to 5-order intersections, 69 tadepintersections,
13 to 7-order intersections and 2 to 8-order intersecti@veing to the results in
Tables 2.1 and 2.2, truncating the calculation after thed&wintersections is in-
acceptable, both for volumes and surfaces computatiorsvdlues are strongly
overestimated. Correcting the overestimated volumeshwaise of smaller radii is
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Table 2.1 Distribution of the volume and of the errors on the volume.

Mean Std. dev. Min Max Median

Volume: exact valu® in A3 336.181 165.917 115.518 1162.450 386.702
ErrorvV® —V, from eq. (2.16) 35.022 15.329 6.389 88.783 33.581

ErrorV# —V, from eq. (2.20) -6.173 2745  -12.768 -0.498  -5.180
100- (V® —v) )V 10.655 2.973 3.154 19.107 8.889
100- (V@ —Vv) )V -1.987 0.838 -5.283 -0.161 -1.427

Table 2.2 Distribution of the surface and of the errors on the surface.

Mean Std. dev. Min Max Median

Surface: exact valugin A2 388.162 185.526 147.386 1324.635 461.750
ErrorS® —S fromeq. (2.17)  337.120  170.906 71.409 869.994  362.754
)

Eror§% — s fromeq. (2.21)  -59.374  27.288  -130.446 -6.716  -53.672
100- (89 - 5)/s 86.511 25691 35609  139.625  79.243
100- (8% —9)/s -16.176 7.064  -37.001 -3.407  -12.130

of course inappropriate, and lowering the radii even doégunarantee a decrease
of the surfaces values. Truncating the calculation afeedtlorder intersections give
underestimated values which are still not acceptable fidases, although it gives
a rough approximation of the volumes which could be tolelratesome contexts.

Another set was analyzed [37], containing 63 moleculesn eéleugh the hy-
drogens were discarded, similar conclusions were derlvéslamazing to see the
success encountered during the last three decades by ty&caaalgorithms ne-
glecting the existence of intersections between more theph8res (see references
cited at the end of Section 2.2.4). Unless working with sigfily small atomic
radii, the resulting software tools should return strorgisoneous results, includ-
ing those which compute derivatives [24, 36, 47]

2.3 Numerical methods

The full analytical calculation of spheres unions volumed aurfaces can be used
to compute numerical approximations of derivatives, whirchurn are useful in
some optimization problems [38]. However, for many QSAR&@titative Structure
Activity Relationships) applications involving the moléar surface or volume as
an input variable for regression, an approximate valuedase numerical calculus
may be acceptable. Several numerical methods were deed®pé 25, 32, 34, 35,
54]. The brute approach is based on a regular grid, i.e. a wfddmodes defining
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cubes to be counted in order to estimate the volume of thaseirDespite that more
or less sophisticated possible variants of this approazpassible, these a@N3)
processing time algorithms. Thus, Monte-Carlo methodsikshbe preferred (see
further).

2.4 Monte-Carlo methods

These methods are highly attractive due to their great siiyplin general, they
are used in awkward situations where analytical methodsrzaeailable and where
numerical methods are inefficient, e.g. due to a multiplegral over a domain with
an untractable boundary calculation.

As shown below, Monte-Carlo methods @éN?) processing time algorithms,
although regular grid methods are gener@N®) ones. Thus, fod > 2, Monte-
Carlo methods should be preferred. Furthermore, they dyedftiequate for QSAR
applications and easy to programme.

2.4.1 Monte-Carlo calculations of volumes

The Monte-Carlo measure of the voluMef a finite domainZ of EY is performed
as follows:

1. Enclose the domain indxdimensional parallelepipedic window of voluié

2. Build a function returning the status of one point: insider not.

3. Generate a sample bfindependent random points Ef, each one following
the uniform law in the window.

. Count the numbeXy of these random points which falled insige

. The Monte-Carlo estimate ®fisV =W - Ny /N.

We consider thé&l random variableX; = Liyieays i =1,...,N, whereU; is theith
random vector following the uniform law in the window ahg}, c », is the indicator
function of the event; € 2. In other wordsX; = 1 whenU; takes a value i?
andX; = 0 elsewhere. Assuming thidt, ...,Uy are independent, thefy, ..., Xy are
independent and identically distributed (i.i.d.). Thelpability for U; to take a value
in 7 is p=V /W. Settingg=1— p, Prob(X; = 1) = p andProb(X = 0) = q, i.e.
each of thex; follow the Bernouilli law of parametep. The sum of thes#! i.i.d.

random variableX; follow a binomial lawB(N, p), of expectatiorN p and variance
N

N pa Their mean is the random variabfe= % zixi, with expectatiorp = \\//—v and
i=

[

_ pg 1 /V\ /W-V V Ny
variance— = — [ — —— ). It follows that the observed me ==
N N (W> ( W ° ] WoN
is a consistent and unbiased estimatoiXofThus,V is a consistent and unbiased
estimator oV, of expectatiorv and varianc® (W —V)/N. Furthermore, we know
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Table 2.3 Monte-Carlo measures of the van der Waals volume of the spoline. Analyti-
cal valueV = 1162450152.

N Ny w \Y &/, 1006y /V
100 23 5230.333  1202.977  220.109 18.297
10000 2220 5230.333 1161.134  21.737 1.872
1000000 222642 5230.333  1164.492 2.176 0.187
_ NX —Np
from de Moivre-Laplace theorem [19, 45] that the Iawe\/fN:pq converges to

the normal law47(0,1) of expectation O and variance 1.

We notice that the best possible window is the one minimi¥it\y — V), so that
it should be the smallest possible one contairingrhe theory still works with a
non parallelepipedic window, but this latter needs an iasesof the computational
cost to generate thg following the uniform law in the window.

The precision is evaluated through a confidence intervalei@ébinomial pro-
portion confidence intervals were proposed [1, 6, 44]. Amihiegn, we selected the
so-called Wald interval, which is symmetric and based utidemormal approxi-

mation:[p+ $1-a/2)\/ w], wherep'= \7/W andé(;_q/o) is the(1—-a/2)

percentile of the normal law#"(0,1) corresponding to the errar(e.g., for a 95%
confidence levelg = 0.05, 1— a /2 = 0.975 and§(;_q/2) =~ 1.96). Thus, having
estimated the center of the confidence intervalMoits length is estimated from

the observed standard deviatign = W&y, with 6, = 4/ w The Wald con-

fidence interval is appropriate as long as neiti@rnor Ng is too small, which is
the case in our context.

Examples of Monte-Carlo computations of a molecular volareegiven in Ta-
ble 2.3. The molecule is the cyclosporine. It is the largéshhe dataset used at the
end of Section 2.2.7 and it contains 186 atomic spheres.

Clearly, multiplying by 100 the number of observations ledan increase of
the precision by a factor 10. This is in agreement with theprtionality of 6y to

1/VN.

2.4.2 Monte-Carlo calculations of surfaces

The Monte-Carlo measure of the surfaé@ef an union ofn spheres irE® is similar
to the one for volumes, except that we consider the ratio@bthrface of the union
of the spheres to the union of their surfaces, i.e. the SumS, + ... + S, of the
individual surfaces of th@ spheres plays the role &¥ for the volumes, and the
domainZ is now defined by the surface of the union of thepheres.
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The Monte-Carlo measure 8fis performed as follows:

1. Compute the total surfade

2. Build a function returning the status of one point: insgdgphere or not.

3. Generate a sample df independent random points, each one following the
uniform law over the union of the surfaces. It is done as follows:

e Select one of the spheres such that each sphietas a probabilitys /T
to be selected, i.e. get a random numbédollowing the uniform law over
[0;T] and retain the sphere indexas the smallest one such thatt §; +
..+S.

e Generate a random point &9 following the uniform distribution on the
surface of the spheielt will fallin 2 if it is not interior to any of then— 1
other spheres.

4. Count the numbeN,, of these random points which falled .
5. The Monte-Carlo estimate &fis S= T -Ny»/N.

The analysis of the algorithm is identical to the one for voés, withds = T &y,
6p=1/ w andp=§/T.

There are several methods to generate a random point foliptive uniform law
on the boundary of a sphere. For clarity, we assume that titercef the sphere lies
at the origin. The rejection method is the simplest one: gerea point following
the uniform law in the smallest cube containing the sphend, accept the point
if it falls inside the sphere; if it falls outside, generate @her one, until it falls
inside the sphere. Once done, normalize the corresponéictgivto set its length
equal to the radius of the sphere. The rejection methodheratefficient for high
d values because the ratio of the volume of the sphere to itheshanclosing cube
tends to zero whed increases to infinity (see Section 2.2.1). Neverthelesanitbe
retained ford = 3. There are other methods, such as normalizing a vectomfivify
the isotropic multinormal law, i.e. such that dscomponents follovd uncorrelated
normal laws of null expectation and of identical standardia®ns. Observations
from the normal law can themselves be generated from varimibhods, such as
Box-Muller or Marsaglia [22].

Examples of Monte-Carlo computations of a molecular s@rfa@ given in Ta-
ble 2.4. The molecule is the cyclosporine. It is the largéshe dataset used at the
end of Section 2.2.7 and it contains 186 atomic spheres.

Again, multiplying by 100 the number of observations led marecrease of the
precision by a factor 10, which is in agreement with the pripoality of Js to

1/VN.



2 Spheres Unions and Intersections 35

Table 2.4 Monte-Carlo measures of the van der Waals surface area of/thesporine. Analyti-
cal value:S= 1324635145.

N Ny T S Gs 100 65/S
100 20 4751.111  950.222  190.044 20.000
10000 2715  4751.111 1289.927  21.130 1.638
1000000 277944  4751.111  1320.543 2.128 0.161

2.5 Discussion and conclusion

Selecting the analytical calculation vs. the Monte-Casdizglation of the volume
or surface of a union of spheres depends on two criteria:

1. A high precision is required, e.g. for computing derivas via finite differ-
ences.
2. A small computing time is required, due to the need of naugrepeated calls.

Itis clear from equations (2.26)—(2.27) that, when all sphéntersect, the com-
puting time of the analytical calculation grows expondhtiaith the number of
spheres. Practically, we measured computing times withinib& 64 bits Intel ver-
sion of the freeware ASV [40], which can perform both analgitiand Monte-carlo
calculations. For the cyclosporine data mentioned in abl8 and 2.4 and containg
186 atoms, the analytical calculation took 0.23s, althatinghMonte-Carlo calcu-
lation took 36s. However, for the 5188 "ATOM” set of the hum@mostate antigen
(PDB code 2ZCH; contains hydrogens) the analytical catmraook 1053s, al-
though the Monte-Carlo calculation took only 131s. Thus,dimall molecules or
small sets of spheres, the analytical calculation is recentad. For large sets of
spheres with a huge of intersections, the Monte-Carlo tation is useful as long
as a moderate accuracy suffices. Since it is the case for mastuatar model-
ing applications, the f77 sources of the Monte-Carlo caltahs inEY, plus a f77
implementation of a pseudo-random generator [22] of pe2tddased on the con-
gruential method used in [33], are provided with ASV.

Geometry programs are often subject to potential numeristdbilities. It is the
case of the calculation of the intersection of the radicahpk via Theorem 2.3,
which assumes that the centers of the spheres are the gesfieenon degenerate
simplex (see Section 2.2.3). Alas, chemistry data offergehuf triplets of aligned
atoms and of quadruplets of coplanar atoms. E.g. benzeivatiess offer 12 copla-
nar atoms and three sets of 4 aligned atoms due to the benagn@hich is by far
the ring the most frequently encountered by chemists [$ilfa¢t, anysp? carbon
(e.g. a carbon connected with one double bond and two sirgldd) gives raise
to four coplanar atoms, a very common situation. Fortugabelmost cases cal-
culating the intersection of the radical planes is not regfiiFurthermore, due to
the presence of a limited number of significant digits in roaler files, most cases
of alignment or coplanarity are avoided. In any case, to gmeinstabilities, it is
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possible to let the user perturbate the atomic coordinatésavgiven magnitude
[40].

Appendix: segments and disks

We give here a stronger version of Theorem 2.5.

Theorem 2.6.When n> d + 2 spheres in B, d < 3, have a common non-empty
intersection, there are m (with< m< Ld—glj + 1) of these spheres such that their
union contains the intersection of the-rm remaining spheres and simultaneously
the union of these 1 m spheres contains the intersection of the first m ones.

Proof. We assume initially that = d 4+ 2 spheres have a common non-empty inter-
section.

We setd = 1. A sphere irE' is a segment. The = 3 segments have a common
3-order intersection. The theorem stands if a segment iaded in an other one.
If not, it is easy to check that there is only one possible gpméition: one segment
contains the intersection of the two other ones, and simetiasly the union of
these two segments contains the first one.

We setd = 2. A sphere irE? is a disk. Then = 4 disks have a common 4-order
intersection. The possible configurations for three irgeting disks are enumerated
in Figures 2.2 and 2.5 (Section 2.2.4). If any of the fourlétp of disks is not in
the general case of intersection of Figure 2.5d, the thestands. We assume that
the four triplets of disks are in this general case (FigutlR.We consider the
four bounding circles. There are two contact points at thersection of each of
the six pairs of circles. Enumerating the arrangementsesdtour circles can be
done with the help of their contact points and with the twol2bs at the respective
intersections of the disks 1,2 and 3,4. It leads to only twssfile configurations:

1. One disk contains the intersection of the three other,@mssimultaneously
the union of these three disks contains the first one. The aomrorder
intersection is a curvilinear triangle (Figure 2.6a).

2. The union of two disks contains the intersection of the bilrer ones, and
simultaneously the union of the two latter ones containgttezsection of the
two former ones. The common 4-order intersection is a daeadlr tetragon
(Figure 2.6hb).

The theorem stands in both cases and thus it stands always=fdr Ford = 3, the
theorem was proved in Section 2.2.7.

Forn=d+2 andd < 3 the theorem stands and we found the th < Ld—;lj +1
required spheres. For> d+ 2 andd < 3, we considen— d — 2 additional spheres.
The theorem still stands because (a) the union ofnthepheres contains the in-
tersection of thed + 2 — m spheres which in turn contains the intersection of the
(n—d—2)+ (d+2—m) =n—mspheres, and (b) the union of these m spheres
contains the union of the + 2 — m spheres which in turn contains the intersection
of themones.
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(@ (b)

Fig. 2.6 The two configurations in the case of 4 intersecting disks

It is conjectured that Theorem 2.6 standsdar 3. Although useful in the case
d = 3 for spheres unions surfaces and volumes computatiosghiwrem can also
be used in the cagk= 2 for computing surfaces and exposed arcs lengths of disks
unions.
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