

Construction of a De Bruijn Graph for Assembly from a Truncated Suffix Tree

Bastien Cazaux, Thierry Lecroq, Eric Rivals

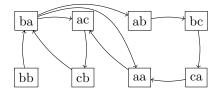
LIRMM & IBC, Montpellier - LITIS Rouen

Mars 3, 2015

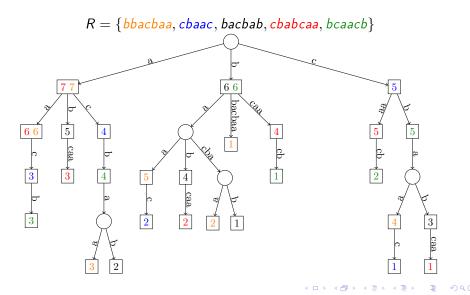
イロト イポト イヨト イヨト

 $R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$

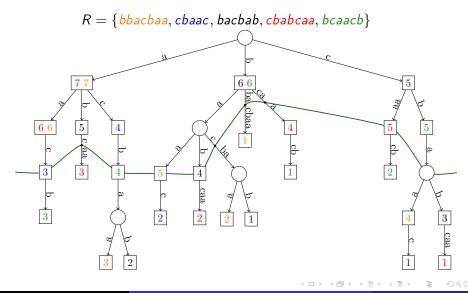
$R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$



Introduction Generalized Suffix Tree (GST)



Generalized Suffix Tree with cut

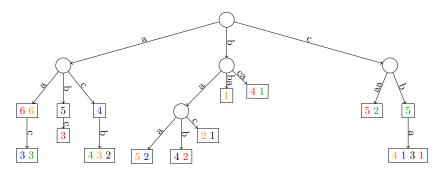


Introduction

2 / 30

Introduction Truncated Suffix Tree (TST)

$R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$



- De Bruijn Graph is largely used in *de novo* genome assembly. [Pevzner et al., 2001]
- One builds a suffix tree before the assembly for some applications, for instance for the error correction. [Salmela, 2010]
- There exist algorithms to build directly the De Bruijn Graph [Onodera et al., 2013] [Rodland, 2013] and the Contracted De Bruijn Graph [Cazaux et al., 2014][Chikhi et al., 2014].

- Numerous data structures: suffix tree, affix tree, suffix table, factor automata, etc.
- to index one or several texts (generalized index)
- functionnally equivalent

- Numerous data structures: suffix tree, affix tree, suffix table, factor automata, etc.
- to index one or several texts (generalized index)
- functionnally equivalent

Result: We can directly build the assembly De Bruijn graph in the classical or contracted form from an indexing data structures.[Cazaux et al., 2014]

- Numerous data structures: suffix tree, affix tree, suffix table, factor automata, etc.
- to index one or several texts (generalized index)
- functionnally equivalent

Result: We can directly build the assembly De Bruijn graph in the classical or contracted form from an indexing data structures.[Cazaux et al., 2014]

Question: How to do it without using more space than necessary?

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

String

Definition [Gusfield 1997]

- a substring of w is a string included in w,
- a **prefix** of w is a substring which begins w and
- a suffix is a substring which ends w.
- an **overlap** between *w* and *v* is a suffix of *w* which is also a prefix of *v*.

String

Definition [Gusfield 1997]

- a **substring** of *w* is a string included in *w*,
- a **prefix** of w is a substring which begins w and
- a suffix is a substring which ends w.
- an **overlap** between w and v is a suffix of w which is also a prefix of v.

String

Definition [Gusfield 1997]

- a **substring** of *w* is a string included in *w*,
- a **prefix** of w is a substring which begins w and
- a suffix is a substring which ends w.
- an **overlap** between w and v is a suffix of w which is also a prefix of v.

String

Definition [Gusfield 1997]

- a substring of w is a string included in w,
- a **prefix** of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.

String

Definition [Gusfield 1997]

- a substring of w is a string included in w,
- a **prefix** of w is a substring which begins w and
- a **suffix** is a substring which ends *w*.
- an **overlap** between *w* and *v* is a suffix of *w* which is also a prefix of *v*.

String

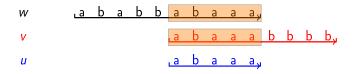
Definition [Gusfield 1997]

- a substring of w is a string included in w,
- a **prefix** of w is a substring which begins w and
- a suffix is a substring which ends w.
- an **overlap** between *w* and *v* is a suffix of *w* which is also a prefix of *v*.

String

Definition [Gusfield 1997]

- a substring of w is a string included in w,
- a **prefix** of w is a substring which begins w and
- a suffix is a substring which ends w.
- an **overlap** between *w* and *v* is a suffix of *w* which is also a prefix of *v*.



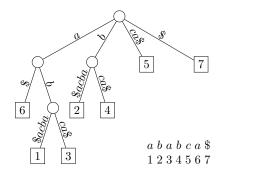
 $R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$

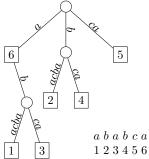
$$||R|| = \sum_{w_i \in R} |w_i|$$

$$||R|| = 7 + 5 + 6 + 7 + 6 = 31$$

Cazaux, Lecroq, Rivals

Chain of suffix-dependant strings and Tree Suffix Tree





Theorem

The GST of a set of words R takes linear space in ||R||.

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

Chain of suffix-dependant strings and Tree Chain of suffix-dependant strings

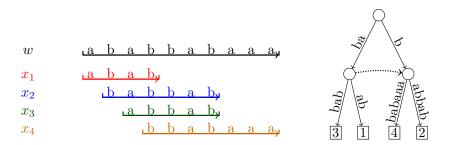
Definition

- A string x is said to be *suffix-dependant* of another string y if x[2..|x|] is prefix of y.
- Let w be a string and m be a positive integer smaller than |w| 1. A m-tuple of m strings (x₁,...,x_m) is a chain of suffix-dependant strings of w if x₁ is a prefix of w and for each i ∈ [2, m], x_i is a prefix of w[i, |w|] such that |x_i| ≥ |x_{i-1}| 1.

Chain of suffix-dependant strings and Tree T(S) tree

Definition

Let $R = \{w_1, \ldots, w_n\}$ be a set of strings and $S = \{C_1, \ldots, C_n\}$ a set of tuples such that for $i \in [1, n]$, C_i is a chain of suffix dependant strings of w_i . T(S) is the tree of the contracted Aho-Corasick tree of S.



Chain of suffix-dependant strings and Tree Linear construction of T(S)

Theorem

For a set of chains of suffix-dependant strings S of a set of strings R, we can construct T(S) in O(||R||) time and space.

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

Example

Let $R = \{w_1, \ldots, w_n\}$ be a set of strings and $S = \{C_1, \ldots, C_n\}$ a set of tuples such that for $i \in [1, n]$, C_i is a chain of suffix dependent strings of w_i .

- For n = 1, an S = {C₁} the tuple of suffixes of w₁, T(S) is the Contracted Suffix Tree of R,
- For C_i the tuple of of suffixes of w_i for all $i \in [1, n], T(S)$ is the Generalised Contracted Suffix Tree of R.
- We can construct the Truncated Suffix Tree of [Peng et al., 2003]
- We can construct the Generalised Truncated Suffix Tree of [Schulz et al., 2008]

Truncated Suffix Tree (TST)

Truncated Suffix Tree (TST)

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

< A

3 D (

13 / 30

Truncated Suffix Tree (TST) Our Truncated Suffix Tree

Definitions

For a set of words $R = \{w_1, w_2, \ldots, w_n\}$ and an integer k > 0, we define the following notation.

- $F_k(R)$ is the set of substrings of length k of words of R.
- 3 $Suff_k(R)$ is the set of suffixes of length k of words of R.
- So For all *i* ∈ [1, |*R*|] and *j* ∈ [1, |*w_i*| − *k* + 1], *A_{k,i}* denotes the tuple such that its *jth* element is defined by

$$egin{aligned} &\mathcal{A}_{k,i}[j] := egin{cases} w_i[j,j+k] & ext{ if } j \leq |w_i|-k \ w_i[j,|w_i|] & ext{ otherwise.} \end{aligned}$$

• and finally A_k is the set of these tuples: $A_k := \bigcup_{i=1}^n A_{k,i}$.

Truncated Suffix Tree (TST) Example of TST

Proposition

• $A_{k,i}$ is a chain of suffix-dependent strings of w_i .

3 Moreover, $\{w \in A_{k,i} \mid A_{k,i} \in A_k\} = F_{k+1}(R) \cup Suff_k(R)$.

For $R = \{ababbabaaa\}$, we have $A_4 = \{(ababb, babba, abbab, bbaba, babaa, abaaa, baaa)\}.$ <u>ababbabaaa</u> wababb x_1 b a b b a x_2 abbaby x_3 <u>b b a b a</u> x_{4} , b a b a a x_5 x_6 <u>a b a a ay</u> baaa. x_7

- 4 個 ト - 4 三 ト - 4 三 ト

Truncated Suffix Tree (TST) Linear construction of $T(A_k)$

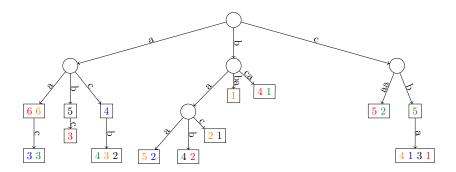
Corollary

We can construct $T(A_k)$ in O(||R||) time and space.

For $R = \{ababbabaaa\}$, we have $A_4 = \{(ababb, babba, abbab, abbab, bbaba, babaa, abaaa, baaa)\}.$

Truncated Suffix Tree (TST) Example of Truncated Suffix Tree

$R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$



Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

- (日本)

∃ ▶ ∢

18 / 30

Example of construction: De Bruijn Graph DBG₂

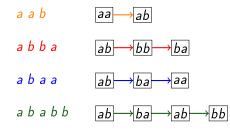
a a b

a b b a

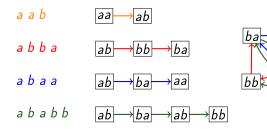
a b a a

a b a b b

Example of construction: De Bruijn Graph DBG₂



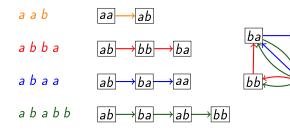
De Bruin Graph via the TST Example of construction: De Bruijn Graph DBG₂



aa

ab

De Bruin Graph via the TST Example of construction: De Bruijn Graph DBG₂



aa

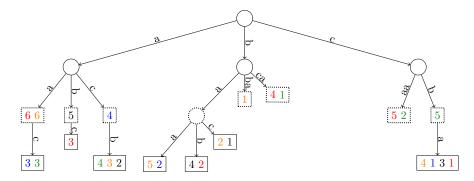
ab

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

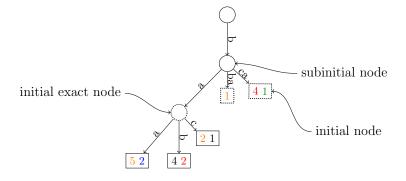
19 / 30

De Bruin Graph via the TST Truncated Suffix Tree (TST)



 $R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$ and k = 2

De Bruin Graph via the TST Truncated Suffix Tree (TST)



 $R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$ and k = 2

Cazaux, Lecroq, Rivals

De Bruin Graph via the TST Nodes of the de Bruijn Graph

Notation: *lnit*(*R*)

Let Init(R) denote the set of initial nodes of the TST of R.

Property: node correspondence

The set of k-mers of DBG_k of R is isomorphic to Init(R).

Cazaux, Lecroq, Rivals

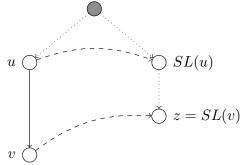
Truncated Suffix Tree & DBG

De Bruin Graph via the TST Arcs of the de Bruijn Graph

dea

- Take an initial node v
- If follow its suffix link to node z (lose the first letter of its k-mer)
- if needed, go the children of z to find its extensions
- Check whether the extensions are valid

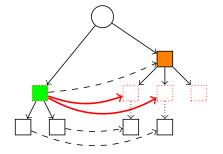
Let v be an initial node, u its father, and z the node pointed at by the suffix link of v.



Kinship property of suffix links in suffix trees

Let v be a node of suffix tree. If it exists, the suffix link of v belongs to the sub-tree of the suffix link of p(v).

De Bruin Graph via the TST Example of construction of arcs of DBG_k



v is initial exact with a several children

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

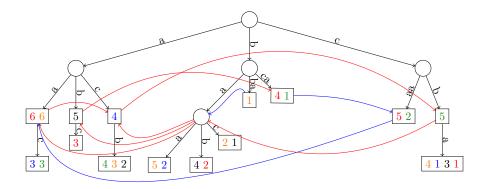
Theorem

Given the TST of a set of words R. The construction of the De Bruijn Graph takes linear time in ||R||.

Proof

All different cases of the typology are processed in constant time.

De Bruin Graph via the TST DBG_2 of R embedded in the TST of R



 $R = \{bbacbaa, cbaac, bacbab, cbabcaa, bcaacb\}$ and k = 2

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

Linear space construction

Theorem

Given the TST of a set of words R. The construction of the De Bruijn Graph takes linear space in the size of the De Bruijn Graph.

Proof

The size of the TST is linear in the size of the De Bruijn Graph of the same order.

Conclusion

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG

28 / 30

æ

<ロト </p>

An algorithm that builds the De Bruijn Graph

from a Truncated Suffix Tree

in linear time in the size of the input and

in linear space in the size of the output.

Conclusion Funding and acknowledgments

Thanks for your attention

Questions?

Cazaux, Lecroq, Rivals

Truncated Suffix Tree & DBG