(3)

Cirs

Olitis

Construction of a De Bruijn Graph for Assembly from a Truncated Suffix Tree

Bastien Cazaux, Thierry Lecroq, Eric Rivals

LIRMM \& IBC, Montpellier - LITIS Rouen

Mars 3, 2015

Introduction

De Bruijn Graph for assembly

$R=\{b b a c b a a, c b a a c, b a c b a b$, cbabcaa, bcaacb $\}$

Introduction

De Bruijn Graph for assembly

$R=\{b b a c b a a, c b a a c, b a c b a b, c b a b c a a, b c a a c b\}$

Introduction

Generalized Suffix Tree (GST)

Introduction

Generalized Suffix Tree with cut

Introduction

Truncated Suffix Tree (TST)

$$
R=\{b b a c b a a, c b a a c, b a c b a b, c b a b c a a, b c a a c b\}
$$

- De Bruijn Graph is largely used in de novo genome assembly. [Pevzner et al., 2001]
- One builds a suffix tree before the assembly for some applications, for instance for the error correction. [Salmela, 2010]
- There exist algorithms to build directly the De Bruijn Graph [Onodera et al., 2013] [Rodland, 2013] and the Contracted De Bruijn Graph [Cazaux et al., 2014][Chikhi et al., 2014].

Introduction

Indexing data structures

- Numerous data structures: suffix tree, affix tree, suffix table, factor automata, etc.
- to index one or several texts (generalized index)
- functionnally equivalent

Indexing data structures

- Numerous data structures: suffix tree, affix tree, suffix table, factor automata, etc.
- to index one or several texts (generalized index)
- functionnally equivalent

Result: We can directly build the assembly De Bruijn graph in the classical or contracted form from an indexing data structures.[Cazaux et al., 2014]

Indexing data structures

- Numerous data structures: suffix tree, affix tree, suffix table, factor automata, etc.
- to index one or several texts (generalized index)
- functionnally equivalent

Result: We can directly build the assembly De Bruijn graph in the classical or contracted form from an indexing data structures.[Cazaux et al., 2014]

Question: How to do it without using more space than necessary?

Chain of suffix-dependant strings and Tree

(1) Chain of suffix-dependant strings and Tree
(2) Truncated Suffix Tree (TST)
(3) De Bruin Graph via the TST

4 Conclusion

Chain of suffix-dependant strings and Tree

Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.
w

Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.

W

Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.
$w \quad a \quad a \quad a \quad b \quad b \quad a \quad b \quad a \quad a \quad a d$

Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.
w

Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.

```
w
v
```


Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.
w

Chain of suffix-dependant strings and Tree String

Definition [Gusfield 1997]

Let w a string.

- a substring of w is a string included in w,
- a prefix of w is a substring which begins w and
- a suffix is a substring which ends w.
- an overlap between w and v is a suffix of w which is also a prefix of v.

Chain of suffix-dependant strings and Tree Norm of a set of words

$$
R=\{b b a c b a a, c b a a c, b a c b a b, c b a b c a a, b c a a c b\}
$$

$$
\|R\|=\sum_{w_{i} \in R}\left|w_{i}\right|
$$

$$
\|R\|=7+5+6+7+6=31
$$

Chain of suffix-dependant strings and Tree

Suffix Tree

Theorem

The GST of a set of words R takes linear space in $\|R\|$.

Chain of suffix-dependant strings and Tree Chain of suffix-dependant strings

Definition

- A string x is said to be suffix-dependant of another string y if $x[2 . .|x|]$ is prefix of y.
- Let w be a string and m be a positive integer smaller than $|w|-1$. A m-tuple of m strings $\left(x_{1}, \ldots, x_{m}\right)$ is a chain of suffix-dependant strings of w if x_{1} is a prefix of w and for each $i \in[2, m], x_{i}$ is a prefix of $w[i,|w|]$ such that $\left|x_{i}\right| \geq\left|x_{i-1}\right|-1$.

Chain of suffix-dependant strings and Tree $T(S)$ tree

Definition

Let $R=\left\{w_{1}, \ldots, w_{n}\right\}$ be a set of strings and $S=\left\{C_{1}, \ldots, C_{n}\right\}$ a set of tuples such that for $i \in[1, n], C_{i}$ is a chain of suffix dependant strings of $w_{i} . T(S)$ is the tree of the contracted Aho-Corasick tree of S.

Chain of suffix-dependant strings and Tree Linear construction of $T(S)$

Theorem

For a set of chains of suffix-dependant strings S of a set of strings R, we can construct $T(S)$ in $O(\|R\|)$ time and space.

Chain of suffix-dependant strings and Tree Application to well known structures

Example

Let $R=\left\{w_{1}, \ldots, w_{n}\right\}$ be a set of strings and $S=\left\{C_{1}, \ldots, C_{n}\right\}$ a set of tuples such that for $i \in[1, n], C_{i}$ is a chain of suffix dependant strings of w_{i}.

- For $n=1$, an $S=\left\{C_{1}\right\}$ the tuple of suffixes of $w_{1}, T(S)$ is the Contracted Suffix Tree of R,
- For C_{i} the tuple of of suffixes of w_{i} for all $i \in[1, n], T(S)$ is the Generalised Contracted Suffix Tree of R.
- We can construct the Truncated Suffix Tree of [Peng et al., 2003]
- We can construct the Generalised Truncated Suffix Tree of [Schulz et al., 2008]

Truncated Suffix Tree (TST)

Truncated Suffix Tree (TST)

Our Truncated Suffix Tree

Definitions

For a set of words $R=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and an integer $k>0$, we define the following notation.
(1) $F_{k}(R)$ is the set of substrings of length k of words of R.
(2) $\operatorname{Suff}_{k}(R)$ is the set of suffixes of length k of words of R.
(3) For all $i \in[1,|R|]$ and $j \in\left[1,\left|w_{i}\right|-k+1\right], A_{k, i}$ denotes the tuple such that its $j^{\text {th }}$ element is defined by

$$
A_{k, i}[j]:= \begin{cases}w_{i}[j, j+k] & \text { if } j \leq\left|w_{i}\right|-k \\ w_{i}\left[j,\left|w_{i}\right|\right] & \text { otherwise }\end{cases}
$$

(9) and finally A_{k} is the set of these tuples: $A_{k}:=\bigcup_{i=1}^{n} A_{k, i}$.

Truncated Suffix Tree (TST)
 Example of TST

Proposition

(1) $A_{k, i}$ is a chain of suffix-dependant strings of w_{i}.
(2) Moreover, $\left\{w \in A_{k, i} \mid A_{k, i} \in A_{k}\right\}=F_{k+1}(R) \cup \operatorname{Suff}_{k}(R)$.

For $R=\{a b a b b a b a a a\}$, we have
$A_{4}=\{(a b a b b, b a b b a, a b b a b, b b a b a, b a b a a, a b a a a, b a a a)\}$.

Truncated Suffix Tree (TST)

Linear construction of $T\left(A_{k}\right)$

Corollary

We can construct $T\left(A_{k}\right)$ in $O(\|R\|)$ time and space.

For $R=\{$ ababbabaaa $\}$, we have $A_{4}=\{(a b a b b, b a b b a, a b b a b, b b a b a, b a b a a, a b a a a, b a a a)\}$.

Truncated Suffix Tree (TST)

Example of Truncated Suffix Tree

$$
R=\{\text { bbacbaa, cbaac, bacbab, cbabcaa, bcaacb }\}
$$

De Bruin Graph via the TST

De Bruin Graph via the TST

De Bruin Graph via the TST

Example of construction: De Bruijn Graph $D B G_{2}$

$$
\begin{aligned}
& a a b \\
& a b b a \\
& a b a a \\
& a b a b b
\end{aligned}
$$

De Bruin Graph via the TST

Example of construction: De Bruijn Graph $D B G_{2}$

$$
\begin{array}{ll}
a a b & a a-a b \\
a b b a & a b-b b-b a \\
a b a a & a b-b a-a b \\
a b a b b & a b \longrightarrow b a \longrightarrow a b \longrightarrow b b
\end{array}
$$

De Bruin Graph via the TST

Example of construction: De Bruijn Graph $D B G_{2}$

De Bruin Graph via the TST
Example of construction: De Bruijn Graph $D B G_{2}$

De Bruin Graph via the TST

Truncated Suffix Tree (TST)

$R=\{$ bbacbaa, cbaac, bacbab, cbabcaa, bcaacb $\}$ and $k=2$

De Bruin Graph via the TST

 Truncated Suffix Tree (TST)

De Bruin Graph via the TST
Nodes of the de Bruijn Graph

Notation: Init(R)

Let $\operatorname{Init}(R)$ denote the set of initial nodes of the TST of R.

Property: node correspondence
The set of k-mers of $D B G_{k}$ of R is isomorphic to $\operatorname{Init}(R)$.

De Bruin Graph via the TST

Arcs of the de Bruijn Graph

Idea
(1) Take an initial node v
(2) follow its suffix link to node z (lose the first letter of its k-mer)
(3) if needed, go the children of z to find its extensions
(0) check whether the extensions are valid

De Bruin Graph via the TST

Let v be an initial node, u its father, and z the node pointed at by the suffix link of v.

Kinship property of suffix links in suffix trees
Let v be a node of suffix tree. If it exists, the suffix link of v belongs to the sub-tree of the suffix link of $p(v)$.

De Bruin Graph via the TST

Example of construction of arcs of $D B G_{k}$

v is initial exact with a several children

De Bruin Graph via the TST
 DBG construction

Theorem

Given the TST of a set of words R.
The construction of the De Bruijn Graph takes linear time in $\|R\|$.

Proof

All different cases of the typology are processed in constant time.

De Bruin Graph via the TST

$D B G_{2}$ of R embedded in the TST of R

$R=\{$ bbacbaa, cbaac, bacbab, cbabcaa, bcaacb $\}$ and $k=2$

De Bruin Graph via the TST

Linear space construction

Theorem

Given the TST of a set of words R.
The construction of the De Bruijn Graph takes linear space in the size of the De Bruijn Graph.

Proof

The size of the TST is linear in the size of the De Bruijn Graph of the same order.

Conclusion

Conclusion

An algorithm that builds the De Bruijn Graph

from a Truncated Suffix Tree

in linear time in the size of the input and
in linear space in the size of the output.

Conclusion

Funding and acknowledgments

©

Institut de biologie computationnelle

Thanks for your attention

Questions?

