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Abstract

We provide a mathematically proven, simple and efficient algorithm to build localised Wan-
nier functions, with the only requirement that the system has vanishing Chern numbers. Our
algorithm is able to build localised Wannier for topological insulators such as the Kane-Mele
model. It is based on an explicit and constructive proof of homotopies for the unitary group.
We provide numerical tests validating the methods for several systems, including the Kane-Mele
model.

1 Introduction

The occupied states of a periodic model of independent electrons are described by Bloch waves,
which are (delocalised) modulated plane waves. Wannier functions are localised combinations of
Bloch waves that span the occupied space. Due to the gauge freedom for the Bloch waves, Wan-
nier functions are non-unique, and their localisation properties depend strongly on the choice
of gauge. A specific gauge choice ensuring localisation was made in [MV97]. These maximally-
localised Wannier functions (MLWF) are useful as a conceptual tool, to interpret bonding and
polarisation in crystals [KSV93], as well as a numerical tool, to construct effective tight-binding
models [MV97] and compute exact exchange terms [WSC09]. Methods to construct these ML-
WFs enable their routine use as a post-processing of density functional theory computations in
solids. We refer to [MMY+12] for a review on applications.

The existence of localised Wannier functions for insulators is not guaranteed. Through the
Bloch transform, it is equivalent to the following problem: given a smooth family of rank-N
projectors P (k) defined on the d-dimensional torus Td, can we find a smooth Bloch frame repre-
senting the range of P (k), i.e. a set of N orthogonal smooth functions u(k) := (u1(k), . . . , uN (k))
on Td such that RanP (k) = Vectu(k) for all k ∈ Td. If it is indeed possible, then the inverse
Bloch transform of u(·, x) yields localised Wannier functions.

In dimensions d ≥ 2, such problems involve a competition between local smoothness and
global periodicity. This is because the space RanP (k) might twist with k, analogous to the
twisting of the tangent space of a Möbius strip. Accordingly, there might be topological ob-
structions to finding such a Bloch frame. These obstructions are characterised by Chern numbers
(one number in d = 2, three numbers in d = 3). In dimension 2 and 3, it is possible to con-
struct localised Wannier functions if and only if the Chern numbers vanish [BPC+07, Pan07].
In systems with time-reversal symmetry, one has the additional property that

(TRS) P (−k) = θP (k)θ−1, where θ is an anti-unitary operator.

This implies that all Chern numbers vanish, and it is therefore possible to construct Wannier
functions for such systems. By constrast, Chern insulators (a simple model of which is the Hal-
dane model [Hal88]), characterised by a broken time-reversal symmetry and non-trivial Chern
invariants, can not support localised Wannier functions.

A further distinction appears depending on the type of time-reversal symmetry: bosonic
(BTRS, occuring for instance in electrons whose spin degrees of freedom are neglected) or
fermionic (FTRS, when spin-orbit coupling is present). Mathematically, these different types
are characterised by θ2 = 1 (BTRS) or θ2 = −1 (FTRS). In the FTRS case, but not in the
BTRS case, a further topological obstruction appears when trying to find Wannier functions
respecting the natural symmetry of the problem [FMP16b]. In d = 2, there are two classes
of systems: those for which one can find localised symmetric Wannier functions and those for
which this is not possible. This is reflected by the Z2-valued Fu-Kane-Mele invariant [FKM07].
Physically, this appears as symmetry-protected edge states.

In the common case of BTRS (when spin-orbit coupling is ignored and electrons pairs can be
considered as spinless particles), several algorithms exist to compute localised Wannier functions.
The most popular one was introduced by Marzari and Vanderbilt [MV97]. This optimises the
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locality of Wannier functions, starting from an initial guess. This algorithm is able to yield
exponentially localised Wannier functions [PP13], but depends strongly on the choice of the
initial guess. Recent advances, based on the use of matrix logarithms [CLPS17], selected columns
of the density matrix (SCDM [DLY15, DLY17]) or an extended set of projections [MCCL15],
provide ways to automatically construct initial projections, without any specific physical input.

However, in the topologically non-trivial FTRS case, such as the Kane-Mele model of topo-
logical insulators, substantial difficulties appear. Since no symmetric Bloch frame can exist,
algorithms that do not explicitly break this symmetry fail. This means that the initial guess
for the method of [MV97] has to break this symmetry manually, which often proves challenging
in practice. In the method of [CLPS17], this manifests as a crossing of eigenvalues, making the
logarithm ill-defined (see Appendix of [CLPS17]). In the SCDM method, this appears as a loss
of rank, unless a system-specific choice of columns is imposed [Lin18].

The goal of this paper is to provide an automatic method that constructs localised Wannier
functions even in the FTRS case. Our method is based on a standard reduction of the problem
of finding Wannier functions to that of finding homotopies in the unitary group U(N). This
problem was solved using matrix logarithms in [CLPS17], and using a multi-step logarithm
based on a perturbation argument in [CHN16, CM17]. In this paper, we instead use a iterative
method where the columns of the unitaries are contracted one by one. This method, which is
natural and robust, implements an idea hinted at, but not detailed, in [FMP16a, p.81]. Unlike
the similar method of [CHN16, CM17], it does not exploit the eigenstructure, which proves
unstable in practice.

We emphasise that methods to construct Wannier functions specifically for the case of Z2

insulators were proposed in [SV11], [SV12], [WST16] and [MCCL16]. These methods however
require model-specific information, while our method is completely automatic.

The paper is organised as follows. We present in Section 2 the definition of Wannier functions,
and the equivalence between localised Wannier functions and smooth Bloch frames. Then, we
recall in Section 3 the standard reduction from the problem of finding smooth Bloch frames to
that of finding homotopies of unitary matrices. We explain in Section 4 the difficulties of this
problem and our solution, which we illustrate numerically in Section 5.

2 From Wannier functions to Bloch frames

2.1 The Schrödinger equation in crystals

The goal of Wannier functions is to represent the subspace of occupied orbitals of a d-dimensional
periodic Hamiltonian H with localised functions. More specifically, we consider a d-dimensional
periodic crystal described by a lattice R ∼ (2πZ)d. We denote by A ∼ Rd/(2πZ)d its unit cell,
by R∗ ∼ Zd its reciprocal lattice, and by B ∼ Rd/Zd the reciprocal unit cell, also called the
Brillouin zone. The behaviour of independent electrons (or electrons in mean-field approaches
such as Kohn-Sham density functional theory) is described by the linear Schrödinger operator
H, given by

H = −1

2
∆ + V, acting on L2(Rd,C),

where V is a (sufficiently well-behaved) R-periodic potential modelling the external (mean-field)
potential. Here, we dropped the spin variable for simplicity, as it plays no role in the argument.

As H commutes with R-translations, it follows from Bloch-Floquet theory [RS78] that H is
described with its fibers H(k), which, in our case, are operators acting on R-periodic functions,
and given by

H(k) =
1

2
(−i∇+ k)2 + V acting on L2(A,C).

For all k ∈ B and K ∈ R′, the operators H(k) and H(k +K) are unitarily equivalent:

H(k +K) = τKH(k)τ∗K with τK(u)(x) := e−iK·xu(x). (1)

The operators Hk have a compact resolvent, with eigenvalues ε1,k ≤ ε2,k ≤ · · · going to infinity.
The functions k 7→ εn,k are continuous and R′-periodic. We assume in the sequel that there is
a gap g > 0 such that

∀k ∈ B, εN+1,k − εN,k ≥ g
where N ∈ N∗ is the number of electrons per unit cell. In this case, the operators H(k) have a
spectral gap, and we can define the projector P (k) := 1(H(k) ≤ εN,k + g/2). This projector is
of rank N , it is smooth with respect to k and satisfies the quasi-periodic conditions

P (k +K) = τKP (k)τ∗K .

The projector on the occupied states P is the operator acting on L2(Cd,C), whose Bloch fibers
are P (k).
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2.2 Bloch frames and localisation of Wannier functions

We say that u(k) := (u1(k), · · · , uN (k)) ∈
(
L2(A,C)

)N
is a Bloch frame for P (k) if, for all

k ∈ Rd, u(k) is an orthonormal family spanning the range of P (k), and if u(k + K) = τKu(k)
for all K ∈ R∗. The Wannier functions are then defined for 1 ≤ n ≤ N and R ∈ R as

wn,R(x) :=
1

|B|

∫
B

eik·(x−R)un(k, x)dk. (2)

We have wn,R(x) = wn,0(x−R). Moreover, as the family {un(k)}1≤n≤N is an orthonormal basis
of RanP (k), the family {wn,R}1≤n≤N,R∈R is orthonormal in L2(Rd,C), and spans the range of
P . Finally, if furthermore the map k 7→ un(k) is smooth, then the functions wn,R are localised,
as can be seen by integrating by part (2).

We deduce that the existence of localised Wannier functions is equivalent to the existence of
a smooth frame u for P . In other words, we have reduced the problem of constructing localised
Wannier functions to that of the following problem: given a smooth map of rank-N projectors
k ∈ Rd 7→ P (k) satisfying P (k+K) = τKP (k)τ∗K for K ∈ R∗, can we find a smooth frame u(k)
for P (k) which satisfies u(k +K) = τKu(k)?

2.3 Symmetries and topology

The existence of smooth Bloch frames (and therefore, of localised Wannier functions) in dimen-
sion d ≥ 2 is not automatic, and depends on the topological properties of the Bloch bundle
[BPC+07]. In dimension 2 and 3, the existence of localised Wannier functions is equivalent
to the vanishing of topological invariants known as Chern numbers (one number in dimension
d = 2, and three numbers in dimension d = 3).

In the important case where the map k 7→ P (k) satisfies the extra time-reversal symmetry
(TRS), that is

P (−k) = θP (k)θ−1, with θ antiunitary, (3)

then these Chern numbers always vanish, and a smooth frame, together with its corresponding
localised Wannier functions, always exists [Nen83, Pan07].

In the context of Schrödinger operators, condition (3) is satisfied with θu := u the complex
conjugation operator. This operator is of bosonic type, squaring to 1. If we start instead of
H = − 1

2
∆ + V with a Hamiltonian including spin-orbit coupling, we obtain a TRS of fermionic

type, with an operator θ squaring to −1. In the case of FTRS, it is not always possible to build
localised Wannier functions that additionally respect a natural symmetry condition [FMP16b],
causing many natural algorithms to fail.

Remark 1. The existence of a smooth and quasi-periodic Bloch frame is a topological property.
A consequence of the topological nature of the problem for our purposes is that, provided sufficient
regularity on k 7→ H(k), if a continuous and quasi-periodic Bloch frame exists, then it can be
lifted to a smooth and quasi-periodic one. Hence, in what follows, we will restrict ourselves to
constructing continuous frames, as this can be regularised later, theoretically by the arguments
in [FMP16a] and numerically by using the Marzari-Vanderbilt procedure [MMY+12].

3 From Bloch frames to homotopies

3.1 Parallel transport

An important notion that we use throughout the proof is parallel transport. We recall in this
section the main properties of parallel transport, and explain how to solve it numerically.

Consider a smooth family of orthogonal projectors [0, 1] 3 t 7→ P (t), where P (t) is a rank-N
projector acting on some Hilbert space H. Let u(0) = (u1(0), . . . , um(0)) ∈ Hm be any set of m
vectors in RanP (0), with m ≤ N . Then the solution to the ordinary differential equation

u′(t) =
[
P ′(t), P (t)

]
u(t), with u(t = 0) = u(0) (4)

satisfies

(u∗u)′(t) = (u∗)′(t)u(t) + u∗(t)u′(t) = u∗
(
−
[
P ′(t), P (t)

]
+
[
P ′(t), P (t)

])
u = 0

and

(u∗Pu)
′
(t) = u∗(t)

(
−
[
P ′(t), P (t)

]
P (t) + P ′(t) + P (t)

[
P ′(t), P (t)

])
u(t)

= u∗(t)
(
−P ′(t)P + P (t)P ′(t)P (t) + P ′(t) + P (t)P ′(t)P (t)− P (t)P ′(t)

)
u(t)

= 0,

3



where we used the fact that P 2(t) = P (t), which first leads to P (t)P ′(t) + P ′(t)P (t) = P ′(t),
then to P (t)P ′(t)P (t) = 0. It follows that u(t) is an orthonormal set of vectors in RanP (t) for
all t ∈ [0, 1]. In particular, one can simplify (4) with

u′(t) = P ′(t)P (t)u(t)− P (t)P ′(t)u(t) = P ′(t)u(t)− P (t)P ′(t)P (t)u(t) = P ′(t)u(t),

where we used the fact that P (t)u(t) = u(t), and again the equality P (t)P ′(t)P (t) = 0. This
gives the following orthogonality-preserving discretisation scheme. We assume that we are given
P (ti) for 0 = t0 ≤ t1 ≤ · · · ≤ tI = 1, and u(0) an orthonormal family in the range of P (0).
Then we set {

ũti+1 = P (ti+1)uti ,

uti+1 = ũti+1

[
ũ∗ti+1

ũti+1

]−1/2
.

(5)

This is a convergent discretisation of (4), in the sense that when the spacing supi ti+1 − ti
converges to zero, uti converges to u(ti).

3.2 Obstruction matrices and homotopy

In this section, we explain how to reduce the problem of constructing a smooth Bloch frame
in d dimensions to that of finding a (d − 1)-homotopy of unitary matrices in U(N). This is
a standard construction that was used in several articles (for instance, [CLPS17, SV12] and
references therein). We proceed by induction on the dimension d = 1, 2, 3.

3.2.1 Construction for d = 1

In dimension d = 1, we are given a smooth family of projectors P (k1) with k1 ∈ [0, 1], which
satisfies the quasi-periodic condition P (1) = τ1P (0)τ∗1 . We choose an arbitrary orthonormal
basis ũ(0) of RanP (0). We then use parallel transport (4) to construct a smooth frame ũ(k1)
for P (k1), for all k1 ∈ [0, 1]. The problem is that ũ(1) is not equal to τ1ũ(0) a priori. Still, they
both form an orthonormal basis of RanP (1) = RanP (0), and therefore are related by a unitary
matrix Vobs ∈ U(N), called the obstruction matrix:

ũ(1) = (τ1ũ(0))Vobs

Since Vobs ∈ U(N), there is a anti-hermitian matrix L such that Vobs = exp(L). We then set

u(k1) := ũ(k1) exp(−k1L).

By construction, k1 7→ u(k1) is smooth on [0, 1], and satisfies u(1) = τ1u(0) as wanted. The
continuous map k1 7→ u(k1) can be smoothed out following Remark 1. This gives the desired
Bloch frame for d = 1.

3.2.2 Construction for d = 2

The construction in two dimensions relies on the previous one-dimensional construction. We
assume that we are given a smooth family [0, 1]2 3 (k1, k2) → P (k1, k2) of operators satisfying
P (k +K) = τKP (k)τ∗K for all K ∈ R∗.

First, we use the previous d = 1 construction on the segment k2 = 0, and get a smooth and
quasi-periodic frame ũ(k1, 0) for the family of projectors [0, 1] 3 k1 → P (k1, 0). Now for every
k1 ∈ [0, 1], we parallel transport the frame u(k1, 0) along the second direction, to produce a
frame ũ(k1, k2) on [0, 1]2. The frame is continuous, and satisfies ũ(1, k2) = τ(1,0)ũ(0, k2) for all
k2 ∈ [0, 1]. However, there may be a mismatch on the k2-boundary: for all k1 ∈ [0, 1], there is
Vobs(k1) so that

ũ(k1, 1) = (τ(0,1)ũ(k1, 0))Vobs(k1)

In addition, since ũ(1, 0) = τ(1,0)ũ(0, 0) and = ũ(1, 1) = τ(1,0)ũ(0, 1), we have Vobs(0) = Vobs(1).
The map k 7→ Vobs(k) is periodic, continuous and piecewise smooth on R, and can be seen as a
loop T1 → U(N). We recall the following well-known fact.

Proposition 1. Let T1 3 k 7→ V (k) ∈ U(N) be a continuous and piecewise smooth loop in
U(N). The two following assertions are equivalent:

1. The winding number W (detV ) of the determinant of V vanishes, where

W (detV ) :=
1

2π

∫ 1

0

1

det(V (k))
det(V (k))′dk =

1

2π

∫ 1

0

Tr
(
V ∗(k)V ′(k)

)
dk. (6)

2. There is a homotopy from V (·) to IN , that is a piecewise smooth map T1× [0, 1] 3 (k, t) 7→
V (k, t) ∈ U(N) which satisfies

∀k ∈ T1, V (k, 0) = V (k) and V (k, 1) = IN .
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In the next section, we give a constructive proof of this fact, in the sense that if the winding
number vanishes, we construct algorithmically the homotopy V . In our case, it can be further
shown (see [FMP16a]) that W (detVobs) equals the Chern number of P (k1, k2). According to
this proposition, and assuming that W (detVobs) = 0, there is a homotopy Vobs(k1, t) from Vobs

to IN . We finally set
u(k1, k2) := ũ(k1, k2)Vobs(k1, k2).

By construction, this Bloch frame is continuous and satisfies the quasi-periodic boundary con-
dition. It can be smoothed out following Remark 1.

3.2.3 Construction for d = 3

The extension to the third dimension is identical. First, use the d = 2 procedure on the face
k3 = 0, i.e. on {(k1, k2, 0) , (k1, k2) ∈ [0, 1]2}, to obtain a Bloch frame ũ(k1, k2, 0) on this
face. According to the previous section, this is possible if and only if the winding number of
the obstruction on this face vanishes. Then, we parallel transport this frame along the third
dimension and get ũ(k1, k2, k3). We obtain another obstruction matrix Vobs(k1, k2) ∈ U(N),
such that

∀k1, k2 ∈ [0, 1]2, ũ(k1, k2, 1) = (τ(0,0,1)ũ(k1, k2, 0))Vobs(k1, k2).

As before, we have Vobs(0, k2) = Vobs(1, k2) and Vobs(k1, 0) = Vobs(k1, 1), and so Vobs can be
seen as a map from T2 to U(N). In the sequel, we prove the following classical result, which is
the 2-dimensional counterpart of Proposition 1

Proposition 2. Let T2 3 (k1, k2) 7→ V (k1, k2) ∈ U(N) be a continuous and piecewise smooth
surface in U(N). The two following assertions are equivalent:

1. The winding numbers W (detV (·, 0)) and W (detV (0, ·)) both vanish;

2. There is a 2-homotopy from V to IN , that is a smooth map T2 × [0, 1] 3 (k1, k2, t) 7→
V (k1, k2, t) ∈ U(N) which satisfies

∀k1, k2 ∈ T2, V (k1, k2, 0) = V (k1, k2) and V (k1, k2, 1) = IN .

If the assertions are satisfied for our map Vobs(k1, k2), there is a 2-homotopy Vobs(k1, k2, t)
that contracts Vobs to IN , and we set

u(k1, k2, k3) := ũ(k1, k2, k3)Vobs(k1, k2, k3)

to obtain the final Bloch frame.
As in the d = 2 case, the three winding numbers appearing in the construction correspond

to the three Chern numbers.

Remark 2. This construction process extends trivially to dimensions d > 3, but the analogue
of Propositions 1 and 2 are no longer true, and an additional obstruction (the second Chern
class) appears.

It remains to explain our constructive proof of Propositions 1 and 2. This is the topic of the
next section.

4 Constructive homotopies in the unitary group

In this section, we describe a simple and efficient algorithm to construct 1-homotopies and
2-homotopies in U(N). We first examine how the logarithm algorithm in [CLPS17] fails for
simple systems such as the Kane-Mele model. We then explain our algorithm in the context of
1-homotopies, and then extend our result for 2-homotopies.

4.1 Logarithm algorithm

Let T1 3 k 7→ V (k) ∈ U(N) be a smooth loop. A very natural approach, that was used
in [CLPS17], is to find a global logarithm for V (k), that is a smooth loop L(k) of anti-hermitian
matrices such that

V (k) = exp (L(k)) , ∀k ∈ [0, 1].

If such a logarithm exists, then a homotopy from V (k) to IN is given by

∀k ∈ T1,∀t ∈ [0, 1], V (k, t) = exp ((1− t)L(k)) .

The authors of [CLPS17] then proposed to work with the eigenvalues of U(k), to find a continu-
ous phase for each on. However, even if the winding number W (detV ) vanishes, this approach
can fail, as shown by this simple example
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Example 1. Consider the analytic and periodic matrix path

V (k) =

(
exp(2iπk) 0

0 exp(−2iπk)

)
Here, it is impossible to find a logarithm of the path that is continuous and periodic on [0, 1],
since each eigenvalue has a winding number, hence receives a phase increment of ±2π respectively
when going from 0 to 1.

The case of eigenvalues having a winding number appears in practice for systems with
fermionic time-reversal symmetry such as the Kane-Mele model in its QSH phase (see Sec-
tion 5.1). In Figure 1, we display the eigenvalues of the obstruction matrix for a representative
set of parameters. Here, the determinant is identically 1. Hence, we know that a homotopy
does exist, but the logarithm method fails to construct it.

k10
1
2

1Re(
1 ) 1

1
2

0
1
2

1

Im
(

2)

1
1
2

0
1
2

1
1

2

(a) Eigenvalues winding in opposite directions

0 1
2

1
k1

4

2

0

2

4 arg( 1)
arg( 2)

(b) Phase of the eigenvalues, corrected for continuity

Figure 1: Eigenvalues of the obstruction for the Kane-Mele model

A similar method, proposed in [CM17], is to introduce a small perturbation in order to
avoid eigenvalue crossings, which makes each winding number trivial, and look for a family of
logarithms satisfying

V (k) = eL1(k)eL2(k) . . . eLN (k),

where Li(s), i ∈ 1 . . . N are anti-Hermitian. However, small perturbations of eigenvalues can
introduce large changes in the eigenvectors, and hence produce a continuous but irregular path,
which makes this method algorithmically difficult to implement.

4.2 Column interpolation method

From the counter-example given in Example 1, we see that constructing a homotopy of unitary
matrices based from their eigenvalues may fail, as these can wind. In our method, instead of
contracting eigenvalues, we rather contract the columns of V (k) one by one. Algebraically, this
corresponds to exploiting the fibration

U(N − 1)→ U(N)→ S2N−1,

which was suggested (but not explored further) in [FMP16a, p.81].
let T1 3 k 7→ V (k) ∈ U(N) be a smooth map. We write V (k) = (v1(k), . . . , vN (k)) where

vn(k) ∈ S2N−1 is the n-th column of V (k). Our strategy is to first contract the columns vn(k)
iteratively to a fixed column vn, ensuring that they stay orthonormal, and then homotopise
V = (v1, . . . , vN ) to the identity.

Let us assume that at step 1 ≤ n ≤ N , we have found how to contract the first n − 1
columns to some fixed vectors: we have constructed n− 1 smooth maps of orthonormal vectors
v1(k, t), . . . , vn−1(k, t) such that vj(k, t = 0) = vj(k) and vj(k, t = 1) = vj . We denote by

Pn−1(k, t) := IN −
n−1∑
j=1

|vj(k, t)〉〈vj(k, t)|,

the projection on the orthogonal of this family, of rank N − n+ 1. By hypothesis, at t = 1, the
projectors Pn−1(k, t = 1) are equal to a constant projector Pn−1.

We now contract the n-th column vn(k, t) to a fixed column vn ∈ RanPn−1 while satisfying

vn(k, t) ∈ RanPn−1(k, t) for all k, t ∈ T1 ∪ [0, 1]. This ensures that the constructed map for
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the n-th column is orthogonal to the previously constructed ones. First, for all fixed k ∈ T1,
we parallel transport the orthogonal family (vn(k), · · · , vN (k)) with respect to Pn−1(k, ·), and
obtain a smooth family of orthonormal frames (ṽn(k, t), · · · , ṽN (k, t)) for k, t ∈ T1 × [0, 1]. At
this point, ṽn(k, t = 1) forms a non-trivial loop in RanPn−1. We now contract this to a single
vector vn, distinguishing two cases, depending on whether ṽn(k, t = 1) can or cannot cover the
whole of the unit sphere in RanPn−1.

Case n < N . When n < N , the unit sphere in RanPn−1 is a manifold of real dimension
2(N − n) + 1 ≥ 3. The family {ṽn(k, t = 1)}k∈T1 describes a piecewise smooth loop on that

manifold, and from Sard’s lemma it follows that there exists a vector vn ∈ S2N−1 ∩ RanPn−1

such that −vn does not belong to the loop {ṽn(k, t = 1)}k∈T1 (see Remark 3).
For all k ∈ T1, the family (ṽn(k, 1), · · · , ṽN (k, 1)) is a basis of Pn−1, so there exist (smooth)

coefficients c(k) := (cn(k), . . . , cN (k)) ∈ CN−n+1 with |c(k)| = 1 such that

∀k ∈ T1, vn =

N∑
j=n

cj(k)ṽj(k, 1).

The map T1 3 k 7→ c(k) is a loop on the sphere S2(N−n)+1. In addition, since −vn never
touches the loop {ṽn(k, t = 1)}k∈T1 , c(k) never touches the vector −e1 := (−1, 0, · · · , 0). We

can therefore contract the loop c(k) to e1 on S2(N−n)+1 with the explicit contraction

c(k, t) :=
(1− t)c(k) + te1
‖(1− s)c(k) + te1‖

, (7)

which is a well-defined smooth map from T1×[0, 1] to S2(N−n)+1. This contraction of coefficients
directly translates into a contraction of vn(k) to vn by setting

vn(k, t) :=

N∑
j=n

cj(k, t)ṽj(k, t).

By construction, vn(k, t) is a normalised vector which is orthogonal to (v1(k, t), . . . , vn−1(k, t))
for all k, t ∈ T1 × [0, 1]. This concludes the construction in this case.

Remark 3. In practice, in order to find numerically vn, we draw several random or well-chosen
points pj ∈ S2N−1, which we project on Pn−1 and normalise. We then pick

vn := arg max
j

min
k∈T1

‖ṽn(k, 1) + pj‖.

This ensures that the denominator in (7) is not too close to zero.

Case n = N . For the last vector, i.e. when n = N , the previous construction can fail because
ṽN (k, t = 1) can cover the whole of the unit sphere in RanPn−1. We therefore follow a different

route. For all k ∈ T1, the vector ṽN (k, t = 1) always lies in the same one-dimensional subspace.
In particular, there is a smooth phase φ : [0, 1]→ R so that

∀k ∈ [0, 1], ṽN (k) = vNeiφ(k) with vN := ṽN (0) (for instance).

By periodicity, one must have φ(1) = φ(0) + 2πm with m ∈ Z. This gives

m =
1

2π
(φ(1)− φ(0)) =

1

2π

∫ 1

0

φ′(k)dk =
1

2πi

∫ 1

0

〈
ṽN (k),

d

dk
ṽN (k)

〉
dk.

We set Ṽ (k, t) := (v1(k, t), . . . vN−1(k, t), ṽN (k, t)) ∈ U(N). This is a smooth deformation

between V (k) at t = 0 and Ṽ (k, 1) = (v1, . . . vN−1, ṽN (k, 1)) at t = 1. Also, we have〈
ṽN (k),

d

dk
ṽN (k)

〉
= Tr

(
Ṽ (k, 1)∗

d

dk
Ṽ (k, 1)

)
dk.

This leads to

m =
1

2πi

∫ 1

0

Tr

(
Ṽ (k, 1)∗

d

dk
Ṽ (k, 1)

)
dk = W

(
det Ṽ (·, 1)

)
= W (detV (·)), (8)

where we recall thatW (·) was defined in (6), and where we used the fact that the winding number

is not affected by a smooth deformation: W
(
Ṽ (·, t)

)
does not depend on t. We conclude that

can contract the vector ṽN to vN if and only if m = 0, or equivalently if W (detV ) = 0. In this
case, an explicit contraction is given by

vN (k, t) = ṽN (k, t)e−itφ(k).

7



Last step. At this point, we have algorithmically constructed a smooth map T1 × [0, 1] 3
(k, t) 7→ V (k, t) ∈ U(N) such that V (k, t = 0) = V (k) and V (k, t = 1) = V := (v1, · · · , vN ). To
get a contraction to the identity matrix IN , we write V = exp(L), where L is anti-hermitian,
and we take as our final homotopy

(k, t) 7→ V (k, t)e−tL.

This concludes our constructive proof for Proposition 1.

Remark 4. In our algorithm, we have tried to make the homotopy as smooth as possible.
This means that we avoid composing homotopies sequentially, which is inefficient numerically,
and that we wish that the method reduces to the logarithm method in the case where V (k)
is constant (where we know that the logarithm gives the geodesic in U(N) and therefore the
most efficient path). If that is not a concern, then a simpler version of the algorithm can
be given. After the first column is homotopised to a column v1, this vector can further be
deformed to e1, and therefore we can assume that v1 = e1. This implies that the homotopy

Ṽ (k, t) := (v1(k, t), ṽ2(k, t), . . . , ṽN (k, t))) satisfies V (k, 0) = V (k) and

Ṽ (k, 1) =


1 ṽ1,2(k, 1) · · · ṽ1,N (k, 1)
0 ṽ2,2(k, 1) · · · ṽ2,N (k, 1)
...

... · · ·
...

0 ṽ2,N (k, 1) · · · ṽN,N (k, 1)

 =:

(
1 0
0 V1(k)

)
,

where we used the fact that Ṽ (k, 1) is unitary, so that ṽ1,2(k, 1) = · · · = ṽ1,N (k, 1) = 0. We have
reduced the homotopy problem in U(N) to the homotopy problem in U(N − 1), and therefore
solve the problem by induction on N , using the case n = N above to treat the base step.

Remark 5 (Parallelisability of the sphere). In the case N = 2, we can use the identification of
SU(2) with S(3) given by (

a −b∗
b a∗

)
7→
(
a
b

)
to simplify the algorithm, as done in [FMP16a]. More generally, if given a vector x ∈ {z ∈
CN , |z| = 1} we had a systematic way to build an orthogonal basis of the (complex-)orthogonal
x⊥ in a way that is smooth with respect to x, we could exploit that in our algorithm. This is
easily achieved in dimension 2 by the mapping (a, b) 7→ (−b∗, a∗). However, this is impossible
when N = 3 (because this would imply the parallelisability of the 5-dimensional sphere, which is
false). We therefore have to follow a different route, using parallel transport to build this basis
incrementally.

4.2.1 Extension for 2-homotopies

We now consider the case of 2-homotopies, and we want to contract a map T2 3 (k1, k2) 7→
V (k1, k2) ∈ U(N). Following the same iterations as in the previous section, we see that at
step n < N , the n-th column ṽ(k1, k2, t = 1) defines a 2-dimensional sub-manifold on S2N−1 ∩
RanPn−1 of dimension 2(N −n) + 1 ≥ 3, and we can find vn so that vn does not belong to this
sub-manifold. We then follow the same steps.

For the last step n = N , there is a smooth phase function T2 3 (k1, k2) 7→ φ(k1, k2) such
that

∀k1, k2 ∈ [0, 1]2, ṽN (k1, k2, 1) = vN exp(iφ(k1, k2)) with vN := ṽN (0, 0, 1) for instance.

By periodicity and continuity, there is m1,m2 ∈ Z such that φ(k1 + 1, k2) = φ(k1, k2) + 2πm1

and φ(k1, k2 + 1) = φ(k1, k2) + 2πm2. As in (8), we find

∀k2 ∈ T1, m1 = W (detV (·, k2)) and ∀k2 ∈ T1, m2 = W (detV (k1, ·)).

If both number vanish, then a contraction is given by vn(k1, k2, t) := ṽn(k1, k2, t) exp(−itφ(k1, k2)).
The constructive proof of Proposition 2 follows.

Remark 6. This proof fails for 3-homotopies. The reason is that with N = 2, the first vector
of T3 3 (k1, k2, t3) 7→ V (k1, k2, t3) ∈ U(2) is now a 3-dimensional sub-manifold in S3, hence can
wrap the whole sphere S3. This is a manifestation of the second Chern class.
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5 Numerical results

In this section, we apply the constructive method outlined above to the case of the Kane-Mele
model (d = 2), and silicon (d = 3). We discretise the Brillouin zone with equispaced points
(the Monkhorst-Pack grid). At each discrete point k, we diagonalise H(k) and obtain the
eigenvectors (un,k)1≤n≤N corresponding to the N lowest eigenvalues of H(k). We then seek a
unitary matrix Um,n(k) that makes u′n(k) =

∑
1≤m≤N umkUmn(k) as smooth as possible. The

quantities needed by our algorithm are the overlaps 〈umk, un,k+b〉 between neighbouring points
k and k + b, similar to other methods such as Wannier90 [MYP+14]. More information on this
methodology can be found in [CLPS17].

5.1 The Kane-Mele model

The Kane-Mele model, first proposed in [KM05], is a toy model of a Z2 topological insulator. It
is a tight-binding model on a 2D hexagonal lattice, with four degrees of freedom per site (two
orbitals and two spins), two of which are occupied (H(k) is a 4× 4 matrix, and N = 2).

5.1.1 Description of the model

The Bloch representation of this model can be written as follows.

Hk =

5∑
a=1

da(k)Γa +

5∑
a,b=1
a<b

dab(k)Γab, (9)

where Γab := 1
2i

[Γa,Γb], and Γa are the Dirac matrices (σx⊗IN , σz⊗IN , σy⊗sx, σy⊗sy, σy⊗sz),
σj and sj being the Pauli matrices of sublattice and spin respectively.

The functions da(k) and dab(k) in (9) are chosen as in [KM05]. In particular, da is even
and dab odd, and the model satisfies a fermionic time-reversal symmetry. The model has 4 free
parameters: t, λS0, λν and λR. Here, we fix the parameters t = 1, λSO = 1, and only vary λν
and λR < 2

√
3. For every value of λR < 2

√
3, the system undergoes a phase transition at the

critical value λν = 3
√

3 ≈ 5.2:

• For λν > 3
√

3, the material is in a regular insulating phase.

• For λν = 3
√

3, the material is in a transitional metallic phase: the gap closes, which means
that the material is conducting.

• For λν < 3
√

3, the material is in the Quantum Spin Hall (QSH) phase.

5.1.2 Numerical construction of Wannier functions for the Kane-Mele model

In order to construct localised Wannier functions for the Kane-Mele model, one needs to provide
a Bloch frame that is regular enough on the Brillouin zone. In the QSH phase, no continuous and
symmetric frame exists, but since the Chern number is trivial for any time-reversal symmetric
Bloch bundle, there exists a non-symmetric continuous frame. Moreover, in this case, the
eigenvalues of the obstruction have a non-trivial winding number, so the logarithm method of
[CLPS17] cannot provide a homotopy of the obstruction.

In this section, we use the algorithm described above to construct a continuous initial guess
of the Bloch frame, which can then be refined to a more regular one by a smoothing method,
thus providing a well-localised Wannier function. The Brillouin zone was discretised with a
200 × 200 grid. In the topologically trivial case, both methods produce a reasonable output
(Figures 2a and 2b).

In order to measure localisation, we follow [MV97], and measure the spread of the Wannier
functions Ω. We also measure the quantity ‖∇kuk‖, estimated using finite differences. Localised
Wannier functions correspond to smooth gauge, and singularities in this quantity is therefore a
sign of delocalisation.

In Figure 3a, the log interpolation method fails at constructing a continuous map in the
topologically non-trivial QSH phase, as the measure of regularity ‖∇ku‖ exhibits lines of dis-
continuity, with very high maximal values. In contrast, in Figure 3b, the column interpolation
produces a smoother output, which also yields a lower maximal value of the regularity ‖∇ku‖.

The (dis)continuity of the resulting Bloch frame after each method is further demonstrated
by the convergence with respect to k point discretisation, displayed in Figure 4. In the log
interpolation method, the discrete Bloch frames converge to a discontinuous one, as we see from
the divergence of the norm of the gradient (estimated with finite differences). In contrast, the
column interpolation produces a frame that has a smooth limit.

Figures 5a and 5b display selected components of k1 7→ Vobs(k1, k2) for k2 = 1, 2
3
, 1
3
. In

Figure 5a, we see how the obstruction path is contracted into the null path by our algorithm, in
the QSH phase, with no Rashba term. In this case, the system decomposes into two independent
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Figure 2: Local regularity ‖∇ku‖, λν = 6 and λR = 1 (regular insulating phase).
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Figure 3: Local regularity ‖∇ku‖, λν = 0 and λR = 1 (QSH phase).

25 50 75 100 125 150 175 200
Number of k points

200

400

600

800

1000

1200

1400
column interpolation
log interpolation

Figure 4: Convergence of Ω obtained by both methods, in the QSH phase (λν = 0, λR = 1)

copies of the Haldane model, one for each spin, which implies that the obstruction matrix is
diagonal. This explains that the obstruction (the largest path in the plot) is horizontal, since
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Figure 5: Contraction of the first column of the obstruction, with the initial path in green (k2 = 1)
being deformed to a single point (yellow at k2 = 2

3 then blue at k2 = 1
3 ).

V21 = 0. Notice also that the diagonality of the obstruction, as well as time reversal symmetry,
implying that k 7→ ReV21(k) is odd (which is verified up to rounding errors in the horizontal
path), is broken by the method, as expected.

In Figure 5b, for a Rashba term λR = 1, the obstruction (the largest path, in green) is
no longer diagonal (it has non-zero off-diagonal elements), but it still satisfies time-reversal
symmetry, since k 7→ ReV21(k) is odd. The method breaks time-reversal symmetry to construct
the continuous interpolation to the trivial path.

5.2 Numerical results for Silicon

Using Quantum Espresso, [GSB+09], the Bloch waves of Silicon for various discretisations of the
Brillouin zone were provided to the homotopy constructing methods, in order to compare the
numerical results of our column interpolation algorithm with the ones provided by the logarithm
method of [CLPS17].

Table 1: Value of the Marzari-Vanderbilt localisation functional Ω (in Bohr2) for frames on various
discretisations of the Brillouin zone

Discretisation of the BZ 5× 5× 5 10× 10× 10 15× 15× 15 20× 20× 20
After logarithm method 25.72 29.70 30.62 30.94

After column interpolation 40.88 35.31 53.68 46.80
After MV optimisation

(log initial guess) 19.30 22.06 22.71 22.95
After MV optimisation

(col initial guess) 19.30 22.06 22.71 22.95

In Table 1, we can see that the value of the localisation functional Ω is better for the logarithm
method than for ours, but, after optimisation of the Marzari-Vanderbilt procedure [MMY+12],
both methods agree.

In Figure 6, we display some Wannier functions computed by both methods, before op-
timisation. The representation was done through Wannier90 [MYP+14] and VESTA [MI11].
The localisation of both is not optimal, which is expected, but the Wannier functions are still
localised, and physically relevant.

Conclusion

We presented a new method to construct localised Wannier functions. It is proven to work
even in the case of topological insulators which causes most published algorithms to fail. In the
“easy” cases, it works similarly to the method of [CLPS17]. As that method, it only localises
Wannier functions across unit cells, and does not attempt to localise the functions inside the
unit cell. This is problematic in the case of large unit cells, which is the case of many real
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(a) Logarithm method (b) Column interpolation method

Figure 6: One of the four Wannier functions of silicon, isosurface plot at 20% of maximal value.

topological insulators. The efficient numerical construction of Wannier functions in these cases
remains therefore an open problem.
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