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Numerical construction of Wannier functions through homotopy

We provide a mathematically proven, simple and efficient algorithm to build localised Wannier functions, with the only requirement that the system has vanishing Chern numbers. Our algorithm is able to build localised Wannier for topological insulators such as the Kane-Mele model. It is based on an explicit and constructive proof of homotopies for the unitary group. We provide numerical tests validating the methods for several systems, including the Kane-Mele model.

Introduction

The occupied states of a periodic model of independent electrons are described by Bloch waves, which are (delocalised) modulated plane waves. Wannier functions are localised combinations of Bloch waves that span the occupied space. Due to the gauge freedom for the Bloch waves, Wannier functions are non-unique, and their localisation properties depend strongly on the choice of gauge. A specific gauge choice ensuring localisation was made in [START_REF] Marzari | Maximally localized generalized wannier functions for composite energy bands[END_REF]. These maximallylocalised Wannier functions (MLWF) are useful as a conceptual tool, to interpret bonding and polarisation in crystals [START_REF] King-Smith | Theory of polarization of crystalline solids[END_REF], as well as a numerical tool, to construct effective tight-binding models [START_REF] Marzari | Maximally localized generalized wannier functions for composite energy bands[END_REF] and compute exact exchange terms [START_REF] Wu | Order-n implementation of exact exchange in extended insulating systems[END_REF]. Methods to construct these ML-WFs enable their routine use as a post-processing of density functional theory computations in solids. We refer to [MMY + 12] for a review on applications.

The existence of localised Wannier functions for insulators is not guaranteed. Through the Bloch transform, it is equivalent to the following problem: given a smooth family of rank-N projectors P (k) defined on the d-dimensional torus T d , can we find a smooth Bloch frame representing the range of P (k), i.e. a set of N orthogonal smooth functions u(k) := (u1(k), . . . , uN (k)) on T d such that Ran P (k) = Vect u(k) for all k ∈ T d . If it is indeed possible, then the inverse Bloch transform of u(•, x) yields localised Wannier functions.

In dimensions d ≥ 2, such problems involve a competition between local smoothness and global periodicity. This is because the space Ran P (k) might twist with k, analogous to the twisting of the tangent space of a Möbius strip. Accordingly, there might be topological obstructions to finding such a Bloch frame. These obstructions are characterised by Chern numbers (one number in d = 2, three numbers in d = 3). In dimension 2 and 3, it is possible to construct localised Wannier functions if and only if the Chern numbers vanish [BPC + 07, Pan07]. In systems with time-reversal symmetry, one has the additional property that (TRS) P (-k) = θP (k)θ -1 , where θ is an anti-unitary operator.

This implies that all Chern numbers vanish, and it is therefore possible to construct Wannier functions for such systems. By constrast, Chern insulators (a simple model of which is the Haldane model [START_REF] Haldane | Model for a quantum hall effect without landau levels: Condensedmatter realization of the" parity anomaly[END_REF]), characterised by a broken time-reversal symmetry and non-trivial Chern invariants, can not support localised Wannier functions.

A further distinction appears depending on the type of time-reversal symmetry: bosonic (BTRS, occuring for instance in electrons whose spin degrees of freedom are neglected) or fermionic (FTRS, when spin-orbit coupling is present). Mathematically, these different types are characterised by θ 2 = 1 (BTRS) or θ 2 = -1 (FTRS). In the FTRS case, but not in the BTRS case, a further topological obstruction appears when trying to find Wannier functions respecting the natural symmetry of the problem [START_REF] Fiorenza | Z 2 invariants of topological insulators as geometric obstructions[END_REF]. In d = 2, there are two classes of systems: those for which one can find localised symmetric Wannier functions and those for which this is not possible. This is reflected by the Z2-valued Fu-Kane-Mele invariant [START_REF] Fu | Topological insulators in three dimensions[END_REF]. Physically, this appears as symmetry-protected edge states.

In the common case of BTRS (when spin-orbit coupling is ignored and electrons pairs can be considered as spinless particles), several algorithms exist to compute localised Wannier functions. The most popular one was introduced by Marzari and Vanderbilt [START_REF] Marzari | Maximally localized generalized wannier functions for composite energy bands[END_REF]. This optimises the locality of Wannier functions, starting from an initial guess. This algorithm is able to yield exponentially localised Wannier functions [START_REF] Panati | Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions[END_REF], but depends strongly on the choice of the initial guess. Recent advances, based on the use of matrix logarithms [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF], selected columns of the density matrix (SCDM [START_REF] Damle | Compressed representation of kohn-sham orbitals via selected columns of the density matrix[END_REF][START_REF] Damle | Scdm-k: Localized orbitals for solids via selected columns of the density matrix[END_REF]) or an extended set of projections [START_REF] Mustafa | Automated construction of maximally localized wannier functions: Optimized projection functions method[END_REF], provide ways to automatically construct initial projections, without any specific physical input.

However, in the topologically non-trivial FTRS case, such as the Kane-Mele model of topological insulators, substantial difficulties appear. Since no symmetric Bloch frame can exist, algorithms that do not explicitly break this symmetry fail. This means that the initial guess for the method of [START_REF] Marzari | Maximally localized generalized wannier functions for composite energy bands[END_REF] has to break this symmetry manually, which often proves challenging in practice. In the method of [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF], this manifests as a crossing of eigenvalues, making the logarithm ill-defined (see Appendix of [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF]). In the SCDM method, this appears as a loss of rank, unless a system-specific choice of columns is imposed [Lin18].

The goal of this paper is to provide an automatic method that constructs localised Wannier functions even in the FTRS case. Our method is based on a standard reduction of the problem of finding Wannier functions to that of finding homotopies in the unitary group U(N ). This problem was solved using matrix logarithms in [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF], and using a multi-step logarithm based on a perturbation argument in [START_REF] Cornean | On the construction of composite Wannier functions[END_REF][START_REF] Cornean | On the construction of Wannier functions in topological insulators: the 3D case[END_REF]. In this paper, we instead use a iterative method where the columns of the unitaries are contracted one by one. This method, which is natural and robust, implements an idea hinted at, but not detailed, in [START_REF] Fiorenza | Construction of real-valued localized composite Wannier functions for insulators[END_REF]p.81]. Unlike the similar method of [CHN16, CM17], it does not exploit the eigenstructure, which proves unstable in practice.

We emphasise that methods to construct Wannier functions specifically for the case of Z2 insulators were proposed in [START_REF] Soluyanov | Wannier representation of 2 topological insulators[END_REF], [START_REF] Soluyanov | Smooth gauge for topological insulators[END_REF], [START_REF] Winkler | Smooth gauge and wannier functions for topological band structures in arbitrary dimensions[END_REF] and [START_REF] Mustafa | Automated construction of maximally localized Wannier functions for bands with nontrivial topology[END_REF]. These methods however require model-specific information, while our method is completely automatic.

The paper is organised as follows. We present in Section 2 the definition of Wannier functions, and the equivalence between localised Wannier functions and smooth Bloch frames. Then, we recall in Section 3 the standard reduction from the problem of finding smooth Bloch frames to that of finding homotopies of unitary matrices. We explain in Section 4 the difficulties of this problem and our solution, which we illustrate numerically in Section 5.

2 From Wannier functions to Bloch frames

The Schrödinger equation in crystals

The goal of Wannier functions is to represent the subspace of occupied orbitals of a d-dimensional periodic Hamiltonian H with localised functions. More specifically, we consider a d-dimensional periodic crystal described by a lattice R ∼ (2πZ) d . We denote by A ∼ R d /(2πZ) d its unit cell, by R * ∼ Z d its reciprocal lattice, and by B ∼ R d /Z d the reciprocal unit cell, also called the Brillouin zone. The behaviour of independent electrons (or electrons in mean-field approaches such as Kohn-Sham density functional theory) is described by the linear Schrödinger operator H, given by

H = - 1 2 ∆ + V, acting on L 2 (R d , C),
where V is a (sufficiently well-behaved) R-periodic potential modelling the external (mean-field) potential. Here, we dropped the spin variable for simplicity, as it plays no role in the argument.

As H commutes with R-translations, it follows from Bloch-Floquet theory [START_REF] Reed | IV: Analysis of Operators[END_REF] that H is described with its fibers H(k), which, in our case, are operators acting on R-periodic functions, and given by

H(k) = 1 2 (-i∇ + k) 2 + V acting on L 2 (A, C).
For all k ∈ B and K ∈ R , the operators H(k) and H(k + K) are unitarily equivalent:

H(k + K) = τK H(k)τ * K with τK (u)(x) := e -iK•x u(x). (1) 
The operators H k have a compact resolvent, with eigenvalues

ε 1,k ≤ ε 2,k ≤ • • • going to infinity.
The functions k → ε n,k are continuous and R -periodic. We assume in the sequel that there is a gap g > 0 such that ∀k ∈ B,

ε N +1,k -ε N,k ≥ g
where N ∈ N * is the number of electrons per unit cell. In this case, the operators H(k) have a spectral gap, and we can define the projector P (k) := 1(H(k) ≤ ε N,k + g/2). This projector is of rank N , it is smooth with respect to k and satisfies the quasi-periodic conditions

P (k + K) = τK P (k)τ * K .
The projector on the occupied states P is the operator acting on L 2 (C d , C), whose Bloch fibers are P (k).

Bloch frames and localisation of Wannier functions

We say that u(k

) := (u1(k), • • • , uN (k)) ∈ L 2 (A, C) N is a Bloch frame for P (k) if, for all k ∈ R d , u(k)
is an orthonormal family spanning the range of P (k), and if u(k + K) = τK u(k) for all K ∈ R * . The Wannier functions are then defined for 1 ≤ n ≤ N and R ∈ R as

wn,R(x) := 1 |B| B e ik•(x-R) un(k, x)dk. (2) 
We have wn,R(x) = wn,0(x-R). Moreover, as the family {un(k)} 1≤n≤N is an orthonormal basis of Ran P (k), the family {wn,R} 1≤n≤N,R∈R is orthonormal in L 2 (R d , C), and spans the range of P . Finally, if furthermore the map k → un(k) is smooth, then the functions wn,R are localised, as can be seen by integrating by part (2). We deduce that the existence of localised Wannier functions is equivalent to the existence of a smooth frame u for P . In other words, we have reduced the problem of constructing localised Wannier functions to that of the following problem: given a smooth map of rank-N projectors k ∈ R d → P (k) satisfying P (k + K) = τK P (k)τ * K for K ∈ R * , can we find a smooth frame u(k) for P (k) which satisfies u(k + K) = τK u(k)?

Symmetries and topology

The existence of smooth Bloch frames (and therefore, of localised Wannier functions) in dimension d ≥ 2 is not automatic, and depends on the topological properties of the Bloch bundle [BPC + 07]. In dimension 2 and 3, the existence of localised Wannier functions is equivalent to the vanishing of topological invariants known as Chern numbers (one number in dimension d = 2, and three numbers in dimension d = 3).

In the important case where the map k → P (k) satisfies the extra time-reversal symmetry (TRS), that is

P (-k) = θP (k)θ -1 , with θ antiunitary, (3) 
then these Chern numbers always vanish, and a smooth frame, together with its corresponding localised Wannier functions, always exists [START_REF] Nenciu | Existence of the exponentially localised Wannier functions[END_REF][START_REF] Panati | Triviality of Bloch and Bloch-Dirac bundles[END_REF].

In the context of Schrödinger operators, condition (3) is satisfied with θu := u the complex conjugation operator. This operator is of bosonic type, squaring to 1. If we start instead of H = -1 2 ∆ + V with a Hamiltonian including spin-orbit coupling, we obtain a TRS of fermionic type, with an operator θ squaring to -1. In the case of FTRS, it is not always possible to build localised Wannier functions that additionally respect a natural symmetry condition [START_REF] Fiorenza | Z 2 invariants of topological insulators as geometric obstructions[END_REF], causing many natural algorithms to fail.

Remark 1. The existence of a smooth and quasi-periodic Bloch frame is a topological property. A consequence of the topological nature of the problem for our purposes is that, provided sufficient regularity on k → H(k), if a continuous and quasi-periodic Bloch frame exists, then it can be lifted to a smooth and quasi-periodic one. Hence, in what follows, we will restrict ourselves to constructing continuous frames, as this can be regularised later, theoretically by the arguments in [START_REF] Fiorenza | Construction of real-valued localized composite Wannier functions for insulators[END_REF] and numerically by using the Marzari-Vanderbilt procedure [MMY + 12].

3 From Bloch frames to homotopies

Parallel transport

An important notion that we use throughout the proof is parallel transport. We recall in this section the main properties of parallel transport, and explain how to solve it numerically.

Consider a smooth family of orthogonal projectors [0, 1] t → P (t), where P (t) is a rank-N projector acting on some Hilbert space H. Let u(0) = (u1(0), . . . , um(0)) ∈ H m be any set of m vectors in Ran P (0), with m ≤ N . Then the solution to the ordinary differential equation where we used the fact that P (t)u(t) = u(t), and again the equality P (t)P (t)P (t) = 0. This gives the following orthogonality-preserving discretisation scheme. We assume that we are given P (ti) for 0 = t0 ≤ t1 ≤ • • • ≤ tI = 1, and u(0) an orthonormal family in the range of P (0). Then we set ut i+1 = P (ti+1)ut i ,

u (t) = P (t), P (t) u(t), with u(t = 0) = u(0) (4) satisfies (u * u) (t) = (u * ) (t)u(t) + u * (t)u (t) = u * -P (t
ut i+1 = ut i+1 u * t i+1 ut i+1 -1/2 . ( 5 
)
This is a convergent discretisation of (4), in the sense that when the spacing sup i ti+1 -ti converges to zero, ut i converges to u(ti).

Obstruction matrices and homotopy

In this section, we explain how to reduce the problem of constructing a smooth Bloch frame in d dimensions to that of finding a (d -1)-homotopy of unitary matrices in U (N ). This is a standard construction that was used in several articles (for instance, [CLPS17, SV12] and references therein). We proceed by induction on the dimension d = 1, 2, 3.

Construction for d = 1

In dimension d = 1, we are given a smooth family of projectors P (k1) with k1 ∈ [0, 1], which satisfies the quasi-periodic condition P (1) = τ1P (0)τ * 1 . We choose an arbitrary orthonormal basis u(0) of Ran P (0). We then use parallel transport (4) to construct a smooth frame u(k1) for P (k1), for all k1 ∈ [0, 1]. The problem is that u(1) is not equal to τ1 u(0) a priori. Still, they both form an orthonormal basis of Ran P (1) = Ran P (0), and therefore are related by a unitary matrix V obs ∈ U(N ), called the obstruction matrix:

u(1) = (τ1 u(0))V obs Since V obs ∈ U (N )
, there is a anti-hermitian matrix L such that V obs = exp(L). We then set u(k1) := u(k1) exp(-k1L).

By construction, k1 → u(k1) is smooth on [0, 1], and satisfies u(1) = τ1u(0) as wanted. The continuous map k1 → u(k1) can be smoothed out following Remark 1. This gives the desired Bloch frame for d = 1.

Construction for d = 2

The construction in two dimensions relies on the previous one-dimensional construction. We assume that we are given a smooth family [0, 1] 2 (k1, k2) → P (k1, k2) of operators satisfying P (k + K) = τK P (k)τ * K for all K ∈ R * . First, we use the previous d = 1 construction on the segment k2 = 0, and get a smooth and quasi-periodic frame u(k1, 0) for the family of projectors [0, 1] k1 → P (k1, 0). Now for every k1 ∈ [0, 1], we parallel transport the frame u(k1, 0) along the second direction, to produce a frame u(k1, k2) on [0, 1] 2 . The frame is continuous, and satisfies u(1, k2) = τ (1,0) u(0, k2) for all k2 ∈ [0, 1]. However, there may be a mismatch on the k2-boundary: for all k1 ∈ [0, 1], there is

V obs (k1) so that u(k1, 1) = (τ (0,1) u(k1, 0))V obs (k1) In addition, since u(1, 0) = τ (1,0) u(0, 0) and = u(1, 1) = τ (1,0) u(0, 1), we have V obs (0) = V obs (1).
The map k → V obs (k) is periodic, continuous and piecewise smooth on R, and can be seen as a loop T 1 → U(N ). We recall the following well-known fact.

Proposition 1. Let T 1 k → V (k) ∈ U(N )
be a continuous and piecewise smooth loop in U(N ). The two following assertions are equivalent:

1. The winding number W (det V ) of the determinant of V vanishes, where

W (det V ) := 1 2π 1 0 1 det(V (k)) det(V (k)) dk = 1 2π 1 0 Tr V * (k)V (k) dk. (6)
2. There is a homotopy from

V (•) to IN , that is a piecewise smooth map T 1 × [0, 1] (k, t) → V (k, t) ∈ U(N ) which satisfies ∀k ∈ T 1 , V (k, 0) = V (k) and V (k, 1) = IN .
In the next section, we give a constructive proof of this fact, in the sense that if the winding number vanishes, we construct algorithmically the homotopy V . In our case, it can be further shown (see [START_REF] Fiorenza | Construction of real-valued localized composite Wannier functions for insulators[END_REF]) that W (det V obs ) equals the Chern number of P (k1, k2). According to this proposition, and assuming that W (det V obs ) = 0, there is a homotopy V obs (k1, t) from V obs to IN . We finally set u(k1, k2) := u(k1, k2)V obs (k1, k2).

By construction, this Bloch frame is continuous and satisfies the quasi-periodic boundary condition. It can be smoothed out following Remark 1.

Construction for d = 3

The extension to the third dimension is identical. First, use the d = 2 procedure on the face k3 = 0, i.e. on {(k1, k2, 0) , (k1, k2) ∈ [0, 1] 2 }, to obtain a Bloch frame u(k1, k2, 0) on this face. According to the previous section, this is possible if and only if the winding number of the obstruction on this face vanishes. Then, we parallel transport this frame along the third dimension and get u(k1, k2, k3). We obtain another obstruction matrix V obs (k1, k2) ∈ U(N ), such that ∀k1, k2 ∈ [0, 1] 2 , u(k1, k2, 1) = (τ (0,0,1) u(k1, k2, 0))V obs (k1, k2).

As before, we have V obs (0, k2) = V obs (1, k2) and V obs (k1, 0) = V obs (k1, 1), and so V obs can be seen as a map from T 2 to U(N ). In the sequel, we prove the following classical result, which is the 2-dimensional counterpart of Proposition 1

Proposition 2. Let T 2 (k1, k2) → V (k1, k2) ∈ U(N ) be a continuous and piecewise smooth surface in U(N ). The two following assertions are equivalent:

1. The winding numbers W (det V (•, 0)) and W (det V (0, •)) both vanish;

2. There is a 2-homotopy from V to IN , that is a smooth map

T 2 × [0, 1] (k1, k2, t) → V (k1, k2, t) ∈ U(N ) which satisfies ∀k1, k2 ∈ T 2 , V (k1, k2, 0) = V (k1, k2) and V (k1, k2, 1) = IN .
If the assertions are satisfied for our map V obs (k1, k2), there is a 2-homotopy V obs (k1, k2, t) that contracts V obs to IN , and we set u(k1, k2, k3) := u(k1, k2, k3)V obs (k1, k2, k3) to obtain the final Bloch frame.

As in the d = 2 case, the three winding numbers appearing in the construction correspond to the three Chern numbers.

Remark 2. This construction process extends trivially to dimensions d > 3, but the analogue of Propositions 1 and 2 are no longer true, and an additional obstruction (the second Chern class) appears.

It remains to explain our constructive proof of Propositions 1 and 2. This is the topic of the next section.

Constructive homotopies in the unitary group

In this section, we describe a simple and efficient algorithm to construct 1-homotopies and 2-homotopies in U(N ). We first examine how the logarithm algorithm in [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF] fails for simple systems such as the Kane-Mele model. We then explain our algorithm in the context of 1-homotopies, and then extend our result for 2-homotopies.

Logarithm algorithm

Let T 1 k → V (k) ∈ U(N ) be a smooth loop. A very natural approach, that was used in [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF], is to find a global logarithm for V (k), that is a smooth loop L(k) of anti-hermitian matrices such that

V (k) = exp (L(k)) , ∀k ∈ [0, 1].
If such a logarithm exists, then a homotopy from V (k) to IN is given by

∀k ∈ T 1 , ∀t ∈ [0, 1], V (k, t) = exp ((1 -t)L(k)) .
The authors of [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF] then proposed to work with the eigenvalues of U (k), to find a continuous phase for each on. However, even if the winding number W (det V ) vanishes, this approach can fail, as shown by this simple example

Example 1. Consider the analytic and periodic matrix path

V (k) = exp(2iπk) 0 0 exp(-2iπk)
Here, it is impossible to find a logarithm of the path that is continuous and periodic on [0, 1], since each eigenvalue has a winding number, hence receives a phase increment of ±2π respectively when going from 0 to 1.

The case of eigenvalues having a winding number appears in practice for systems with fermionic time-reversal symmetry such as the Kane-Mele model in its QSH phase (see Section 5.1). In Figure 1, we display the eigenvalues of the obstruction matrix for a representative set of parameters. Here, the determinant is identically 1. Hence, we know that a homotopy does exist, but the logarithm method fails to construct it. A similar method, proposed in [START_REF] Cornean | On the construction of Wannier functions in topological insulators: the 3D case[END_REF], is to introduce a small perturbation in order to avoid eigenvalue crossings, which makes each winding number trivial, and look for a family of logarithms satisfying

k1 0 1 2 1 R e ( 1 ) 1 1 2 0 1 2 1 Im( 2 ) 1 1 2 0 1 2 1 1 2 (a)
V (k) = e L 1 (k) e L 2 (k) . . . e L N (k) ,
where Li(s), i ∈ 1 . . . N are anti-Hermitian. However, small perturbations of eigenvalues can introduce large changes in the eigenvectors, and hence produce a continuous but irregular path, which makes this method algorithmically difficult to implement.

Column interpolation method

From the counter-example given in Example 1, we see that constructing a homotopy of unitary matrices based from their eigenvalues may fail, as these can wind. In our method, instead of contracting eigenvalues, we rather contract the columns of V (k) one by one. Algebraically, this corresponds to exploiting the fibration

U(N -1) → U(N ) → S 2N -1 ,
which was suggested (but not explored further) in [FMP16a, p.81]. let T 1 k → V (k) ∈ U(N ) be a smooth map. We write V (k) = (v1(k), . . . , vN (k)) where vn(k) ∈ S 2N -1 is the n-th column of V (k). Our strategy is to first contract the columns vn(k) iteratively to a fixed column vn, ensuring that they stay orthonormal, and then homotopise V = (v1, . . . , vN ) to the identity.

Let us assume that at step 1 ≤ n ≤ N , we have found how to contract the first n -1 columns to some fixed vectors: we have constructed n -1 smooth maps of orthonormal vectors v1(k, t), . . . , vn-1(k, t) such that vj(k, t = 0) = vj(k) and vj(k, t = 1) = vj. We denote by

Pn-1(k, t) := IN - n-1 j=1 |vj(k, t) vj(k, t)|,
the projection on the orthogonal of this family, of rank N -n + 1. By hypothesis, at t = 1, the projectors Pn-1(k, t = 1) are equal to a constant projector Pn-1.

We now contract the n-th column vn(k, t) to a fixed column vn ∈ Ran Pn-1 while satisfying vn(k, t) ∈ Ran Pn-1(k, t) for all k, t ∈ T 1 ∪ [0, 1]. This ensures that the constructed map for the n-th column is orthogonal to the previously constructed ones. First, for all fixed k ∈ T 1 , we parallel transport the orthogonal family (vn(k), • • • , vN (k)) with respect to Pn-1(k, •), and obtain a smooth family of orthonormal frames ( vn(k, t), • • • , vN (k, t)) for k, t ∈ T 1 × [0, 1]. At this point, vn(k, t = 1) forms a non-trivial loop in Ran Pn-1. We now contract this to a single vector vn, distinguishing two cases, depending on whether vn(k, t = 1) can or cannot cover the whole of the unit sphere in Ran Pn-1.

Case n < N . When n < N , the unit sphere in Ran Pn-1 is a manifold of real dimension 2(N -n) + 1 ≥ 3. The family { vn(k, t = 1)} k∈T 1 describes a piecewise smooth loop on that manifold, and from Sard's lemma it follows that there exists a vector vn ∈ S 2N -1 ∩ Ran Pn-1 such that -vn does not belong to the loop { vn(k, t = 1)} k∈T 1 (see Remark 3).

For all k ∈ T 1 , the family ( vn(k, 1), • • • , vN (k, 1)) is a basis of Pn-1, so there exist (smooth) coefficients c(k

) := (cn(k), . . . , cN (k)) ∈ C N -n+1 with |c(k)| = 1 such that ∀k ∈ T 1 , vn = N j=n cj(k) vj(k, 1). The map T 1 k → c(k)
is a loop on the sphere S 2(N -n)+1 . In addition, since -vn never touches the loop { vn(k, t = 1)} k∈T 1 , c(k) never touches the vector -e1 := (-1, 0, • • • , 0). We can therefore contract the loop c(k) to e1 on S 2(N -n)+1 with the explicit contraction

c(k, t) := (1 -t)c(k) + te1 (1 -s)c(k) + te1 , (7) 
which is a well-defined smooth map from

T 1 ×[0, 1] to S 2(N -n)+1
. This contraction of coefficients directly translates into a contraction of vn(k) to vn by setting

vn(k, t) := N j=n cj(k, t) vj(k, t).
By construction, vn(k, t) is a normalised vector which is orthogonal to (v1(k, t), . . . , vn-1(k, t)) for all k, t ∈ T 1 × [0, 1]. This concludes the construction in this case.

Remark 3. In practice, in order to find numerically vn, we draw several random or well-chosen points pj ∈ S 2N -1 , which we project on Pn-1 and normalise. We then pick vn := arg max j min k∈T 1 vn(k, 1) + pj .

This ensures that the denominator in (7) is not too close to zero.

Case n = N . For the last vector, i.e. when n = N , the previous construction can fail because vN (k, t = 1) can cover the whole of the unit sphere in Ran Pn-1. We therefore follow a different route. For all k ∈ T 1 , the vector vN (k, t = 1) always lies in the same one-dimensional subspace.

In particular, there is a smooth phase φ : k) with vN := vN (0) (for instance).

[0, 1] → R so that ∀k ∈ [0, 1], vN (k) = vN e iφ(
By periodicity, one must have φ(1) = φ(0) + 2πm with m ∈ Z. This gives

m = 1 2π (φ(1) -φ(0)) = 1 2π 1 0 φ (k)dk = 1 2πi 1 0 vN (k), d dk vN (k) dk. We set V (k, t) := (v1(k, t), . . . vN-1(k, t), vN (k, t)) ∈ U(N )
. This is a smooth deformation between V (k) at t = 0 and V (k, 1) = (v1, . . . vN-1, vN (k, 1)) at t = 1. Also, we have

vN (k), d dk vN (k) = Tr V (k, 1) * d dk V (k, 1) dk.
This leads to

m = 1 2πi 1 0 Tr V (k, 1) * d dk V (k, 1) dk = W det V (•, 1) = W (det V (•)), ( 8 
)
where we recall that W (•) was defined in (6), and where we used the fact that the winding number is not affected by a smooth deformation: W V (•, t) does not depend on t. We conclude that can contract the vector vN to vN if and only if m = 0, or equivalently if W (det V ) = 0. In this case, an explicit contraction is given by

vN (k, t) = vN (k, t)e -itφ(k) .
Last step. At this point, we have algorithmically constructed a smooth map

T 1 × [0, 1] (k, t) → V (k, t) ∈ U(N ) such that V (k, t = 0) = V (k) and V (k, t = 1) = V := (v1, • • • , vN ).
To get a contraction to the identity matrix IN , we write V = exp(L), where L is anti-hermitian, and we take as our final homotopy

(k, t) → V (k, t)e -tL .
This concludes our constructive proof for Proposition 1.

Remark 4. In our algorithm, we have tried to make the homotopy as smooth as possible. This means that we avoid composing homotopies sequentially, which is inefficient numerically, and that we wish that the method reduces to the logarithm method in the case where V (k) is constant (where we know that the logarithm gives the geodesic in U(N ) and therefore the most efficient path). If that is not a concern, then a simpler version of the algorithm can be given. After the first column is homotopised to a column v1, this vector can further be deformed to e1, and therefore we can assume that v1 = e1. This implies that the homotopy

V (k, t) := (v1(k, t), v2(k, t), . . . , vN (k, t))) satisfies V (k, 0) = V (k) and V (k, 1) =      1 v1,2(k, 1) • • • v1,N (k, 1) 0 v2,2(k, 1) • • • v2,N (k, 1) . . . . . . • • • . . . 0 v2,N (k, 1) • • • vN,N (k, 1)      =: 1 0 0 V1(k) ,
where we used the fact that V (k, 1) is unitary, so that v1,2(k, 1) = • • • = v1,N (k, 1) = 0. We have reduced the homotopy problem in U(N ) to the homotopy problem in U(N -1), and therefore solve the problem by induction on N , using the case n = N above to treat the base step.

Remark 5 (Parallelisability of the sphere). In the case N = 2, we can use the identification of SU(2) with S(3) given by

a -b * b a * → a b
to simplify the algorithm, as done in [START_REF] Fiorenza | Construction of real-valued localized composite Wannier functions for insulators[END_REF]. More generally, if given a vector x ∈ {z ∈ C N , |z| = 1} we had a systematic way to build an orthogonal basis of the (complex-)orthogonal x ⊥ in a way that is smooth with respect to x, we could exploit that in our algorithm. This is easily achieved in dimension 2 by the mapping (a, b) → (-b * , a * ). However, this is impossible when N = 3 (because this would imply the parallelisability of the 5-dimensional sphere, which is false). We therefore have to follow a different route, using parallel transport to build this basis incrementally.

Extension for 2-homotopies

We now consider the case of 2-homotopies, and we want to contract a map T 2 (k1, k2) → V (k1, k2) ∈ U(N ). Following the same iterations as in the previous section, we see that at step n < N , the n-th column v(k1, k2, t = 1) defines a 2-dimensional sub-manifold on S 2N -1 ∩ Ran Pn-1 of dimension 2(N -n) + 1 ≥ 3, and we can find vn so that vn does not belong to this sub-manifold. We then follow the same steps.

For the last step n = N , there is a smooth phase function T 2 (k1, k2) → φ(k1, k2) such that ∀k1, k2 ∈ [0, 1] 2 , vN (k1, k2, 1) = vN exp(iφ(k1, k2)) with vN := vN (0, 0, 1) for instance.

By periodicity and continuity, there is m1, m2 ∈ Z such that φ(k1 + 1, k2) = φ(k1, k2) + 2πm1 and φ(k1, k2 + 1) = φ(k1, k2) + 2πm2. As in (8), we find

∀k2 ∈ T 1 , m1 = W (det V (•, k2)) and ∀k2 ∈ T 1 , m2 = W (det V (k1, •)).
If both number vanish, then a contraction is given by vn(k1, k2, t) := vn(k1, k2, t) exp(-itφ(k1, k2)). The constructive proof of Proposition 2 follows.

Remark 6. This proof fails for 3-homotopies. The reason is that with N = 2, the first vector of T 3 (k1, k2, t3) → V (k1, k2, t3) ∈ U(2) is now a 3-dimensional sub-manifold in S 3 , hence can wrap the whole sphere S 3 . This is a manifestation of the second Chern class.

Numerical results

In this section, we apply the constructive method outlined above to the case of the Kane-Mele model (d = 2), and silicon (d = 3). We discretise the Brillouin zone with equispaced points (the Monkhorst-Pack grid). At each discrete point k, we diagonalise H(k) and obtain the eigenvectors (u n,k ) 1≤n≤N corresponding to the N lowest eigenvalues of H(k). We then seek a unitary matrix Um,n(k) that makes u n (k) = 1≤m≤N u mk Umn(k) as smooth as possible. The quantities needed by our algorithm are the overlaps u mk , u n,k+b between neighbouring points k and k + b, similar to other methods such as Wannier90 [MYP + 14]. More information on this methodology can be found in [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF].

The Kane-Mele model

The Kane-Mele model, first proposed in [START_REF] Kane | Z2 topological order and the quantum spin Hall effect[END_REF], is a toy model of a Z 2 topological insulator. It is a tight-binding model on a 2D hexagonal lattice, with four degrees of freedom per site (two orbitals and two spins), two of which are occupied (H(k) is a 4 × 4 matrix, and N = 2).

Description of the model

The Bloch representation of this model can be written as follows.

H k = 5 a=1 da(k)Γ a + 5 a,b=1 a<b d ab (k)Γ ab , (9) 
where Γ ab := 1 2i [Γ a , Γ b ], and Γ a are the Dirac matrices (σ x ⊗IN , σ z ⊗IN , σ y ⊗s x , σ y ⊗s y , σ y ⊗s z ), σ j and s j being the Pauli matrices of sublattice and spin respectively.

The functions da(k) and d ab (k) in ( 9) are chosen as in [START_REF] Kane | Z2 topological order and the quantum spin Hall effect[END_REF]. In particular, da is even and d ab odd, and the model satisfies a fermionic time-reversal symmetry. The model has 4 free parameters: t, λS0, λν and λR. Here, we fix the parameters t = 1, λSO = 1, and only vary λν and λR < 2 √ 3. For every value of λR < 2 √ 3, the system undergoes a phase transition at the critical value λν = 3 √ 3 ≈ 5.2:

• For λν > 3 √ 3, the material is in a regular insulating phase.

• For λν = 3 √ 3, the material is in a transitional metallic phase: the gap closes, which means that the material is conducting.

• For λν < 3 √ 3, the material is in the Quantum Spin Hall (QSH) phase.

Numerical construction of Wannier functions for the Kane-Mele model

In order to construct localised Wannier functions for the Kane-Mele model, one needs to provide a Bloch frame that is regular enough on the Brillouin zone. In the QSH phase, no continuous and symmetric frame exists, but since the Chern number is trivial for any time-reversal symmetric Bloch bundle, there exists a non-symmetric continuous frame. Moreover, in this case, the eigenvalues of the obstruction have a non-trivial winding number, so the logarithm method of [CLPS17] cannot provide a homotopy of the obstruction.

In this section, we use the algorithm described above to construct a continuous initial guess of the Bloch frame, which can then be refined to a more regular one by a smoothing method, thus providing a well-localised Wannier function. The Brillouin zone was discretised with a 200 × 200 grid. In the topologically trivial case, both methods produce a reasonable output (Figures 2a and2b).

In order to measure localisation, we follow [START_REF] Marzari | Maximally localized generalized wannier functions for composite energy bands[END_REF], and measure the spread of the Wannier functions Ω. We also measure the quantity ∇ k u k , estimated using finite differences. Localised Wannier functions correspond to smooth gauge, and singularities in this quantity is therefore a sign of delocalisation.

In Figure 3a, the log interpolation method fails at constructing a continuous map in the topologically non-trivial QSH phase, as the measure of regularity ∇ k u exhibits lines of discontinuity, with very high maximal values. In contrast, in Figure 3b, the column interpolation produces a smoother output, which also yields a lower maximal value of the regularity ∇ k u .

The (dis)continuity of the resulting Bloch frame after each method is further demonstrated by the convergence with respect to k point discretisation, displayed in Figure 4. In the log interpolation method, the discrete Bloch frames converge to a discontinuous one, as we see from the divergence of the norm of the gradient (estimated with finite differences). In contrast, the column interpolation produces a frame that has a smooth limit.

Figures 5a and 5b display selected components of k1 → V obs (k1, k2) for k2 = 1, 2 3 , 1 3 . In Figure 5a, we see how the obstruction path is contracted into the null path by our algorithm, in the QSH phase, with no Rashba term. In this case, the system decomposes into two independent V21 = 0. Notice also that the diagonality of the obstruction, as well as time reversal symmetry, implying that k → Re V21(k) is odd (which is verified up to rounding errors in the horizontal path), is broken by the method, as expected.

In Figure 5b, for a Rashba term λR = 1, the obstruction (the largest path, in green) is no longer diagonal (it has non-zero off-diagonal elements), but it still satisfies time-reversal symmetry, since k → Re V21(k) is odd. The method breaks time-reversal symmetry to construct the continuous interpolation to the trivial path.

Numerical results for Silicon

Using Quantum Espresso, [GSB + 09], the Bloch waves of Silicon for various discretisations of the Brillouin zone were provided to the homotopy constructing methods, in order to compare the numerical results of our column interpolation algorithm with the ones provided by the logarithm method of [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF]. In Table 1, we can see that the value of the localisation functional Ω is better for the logarithm method than for ours, but, after optimisation of the Marzari-Vanderbilt procedure [MMY + 12], both methods agree.

In Figure 6, we display some Wannier functions computed by both methods, before optimisation. The representation was done through Wannier90 [MYP + 14] and VESTA [START_REF] Momma | VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data[END_REF]. The localisation of both is not optimal, which is expected, but the Wannier functions are still localised, and physically relevant.

Conclusion

We presented a new method to construct localised Wannier functions. It is proven to work even in the case of topological insulators which causes most published algorithms to fail. In the "easy" cases, it works similarly to the method of [START_REF] Cancès | Robust determination of maximally localized Wannier functions[END_REF]. As that method, it only localises Wannier functions across unit cells, and does not attempt to localise the functions inside the unit cell. This is problematic in the case of large unit cells, which is the case of many real 
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 1 Figure 1: Eigenvalues of the obstruction for the Kane-Mele model
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 2 Figure 2: Local regularity ∇ k u , λ ν = 6 and λ R = 1 (regular insulating phase).
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 3 Figure 3: Local regularity ∇ k u , λ ν = 0 and λ R = 1 (QSH phase).
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 45 Figure 4: Convergence of Ω obtained by both methods, in the QSH phase (λ ν = 0, λ R = 1)

  (a) Logarithm method (b) Column interpolation method
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 6 Figure 6: One of the four Wannier functions of silicon, isosurface plot at 20% of maximal value.

Table 1 :

 1 Value of the Marzari-Vanderbilt localisation functional Ω (in Bohr 2 ) for frames on various discretisations of the Brillouin zone Discretisation of the BZ 5 × 5 × 5 10 × 10 × 10 15 × 15 × 15 20 × 20 × 20

	After logarithm method	25.72	29.70	30.62	30.94
	After column interpolation	40.88	35.31	53.68	46.80
	After MV optimisation				
	(log initial guess)	19.30	22.06	22.71	22.95
	After MV optimisation				
	(col initial guess)	19.30	22.06	22.71	22.95
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