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Dispersion in two-dimensional periodic channels
with discontinuous profiles

M. Mangeat, T. Guérin, and D. S. Dean
Laboratoire Ondes et Matière d’Aquitaine (LOMA), CNRS, UMR 5798, Université de Bordeaux,
F-33400 Talence, France

The effective diffusivity of Brownian tracer particles confined in periodic micro-channels is smaller 
than the microscopic diffusivity due to entropic trapping. Here, we study diffusion in two-dimensional 
periodic channels whose cross section presents singular points, such as abrupt changes of radius or 
the presence of thin walls, with openings, delimiting periodic compartments composing the channel. 
Dispersion in such systems is analyzed using the Fick-Jacobs (FJ) approximation. This approxi-
mation assumes a much faster equilibration in the lateral than in the axial direction, along which 
the dispersion is measured. If the characteristic width a of the channel is much smaller than the 
period L of the channel, i.e., ε = a/L is small, this assumption is clearly valid for Brownian par-
ticles. For discontinuous channels, the FJ approximation is only valid at the lowest order in ε 
and provides a rough, though on occasions rather accurate, estimate of the effective diffusivity. 
Here we provide formulas for the effective diffusivity in discontinuous channels that are asymp-
totically exact at the next-to-leading order in ε. Each discontinuity leads to a reduction of the 
effective diffusivity. We show that our theory is consistent with the picture of effective trapping 
rates associated with each discontinuity, for which our theory provides explicit and asymptotically 
exact formulas. Our analytical predictions are confirmed by numerical analysis. Our results provide 
a precise quantification of the kinetic entropic barriers associated with profile singularities.

I. INTRODUCTION

Characterizing the dispersion of random walkers in com-
plex heterogeneous media is an important issue that appears
in contexts as various as mixing,1–3 sorting,4 contaminant
spreading,5,6 and diffusion controlled reactions.7 In partic-
ular, the dispersion of Brownian particles in channels is a
paradigm for diffusion in confined and crowded environments
such as biological cells, zeolites, porous media, ion channels,
and microfluidic devices.8–11 The relation between confining
geometry and effective diffusivity has been extensively inves-
tigated in the physics and chemistry literature over the last
decade.9,12–16 One of the most popular theoretical approaches
to diffusion in channels is the so-called Fick-Jacobs (FJ)
approximation,17 based on a dimensional reduction. In the case
of two-dimensional channels of local radius R(x), with x being
the coordinate in the longitudinal direction, the FJ approach
reduced the study of tracer dispersion to that of an effective
one-dimensional particle, with position x(t), diffusing in an
effective entropic potential φ(x) = −kBT ln R(x). In symmet-
ric periodic channels, the late-time effective diffusivity De for
this one-dimensional problem can then be deduced from the
Lifson-Jackson formula,18

De ' DFJ =
D0

〈R〉〈R−1〉
, (1)

where D0 is the microscopic diffusivity and 〈R〉 = ∫
L

0 dxR(x)/L
denotes the uniform average over the channel period L.

This basic FJ approximation is valid when the typical
equilibration time in the lateral direction is much smaller
than the characteristic time scale of the dynamics in the lon-
gitudinal direction. This means that the FJ expression (1)
can be seen as the leading order term of an expansion of
De in powers of the small parameter ε ≡ a/L, where a is
the typical lateral channel width.19 For non-vanishing ε, FJ
theories can be made more accurate by introducing a posi-
tion dependent local diffusion coefficient D(x) in the effec-
tive one-dimensional description.15,20–29 At next-to-leading
order, D(x) ' D0(1 − R′2/3),15,20,21 leading (again using the
Lifson-Jackson formula18) to

De '
D0

〈R〉〈R−1〉

(
1 −
〈R′2/R〉

3〈R−1〉
+ O(ε4)

)
, (2)

where the prime denotes the derivative with respect to x. For
smooth channels, it has been checked30,31 that the above for-
mula is exact at order ε2 and it can be extended to higher
orders.15,30,31 However, in the case of channel profiles pre-
senting a discontinuity, it is straightforward to see that the next
order correction to the dispersivity De given in Eq. (2) diverges.
The appearance of such a divergence usually suggests two pos-
sibilities. First it could be that the basic perturbation series
needs to be resummed; for instance, on resummation, diver-
gent terms appear in a denominator rather than a numerator and
thus give finite contributions. The other possibility is that the
true perturbation series is not analytic in the naive expansion

1



parameter, which in the approaches mentioned above turns out
to be ε2. In our study, we show that it is the latter phenomenon
which is at play and that the perturbation expansion parameter
is in fact ε rather than ε2.

To treat this problem, existing approaches assume that
the effective dynamics for x(t) should include local traps at
the points of discontinuity, and the associated trapping rates
are calculated approximately via the boundary homogeniza-
tion approximation.32,33 Recently,24 this theory has been found
to be consistent with the approaches assuming a local dif-
fusivity D(x). However, the effective dispersivity contains
coefficients which are not known explicitly. In a third class
of approaches, dispersion has been estimated by using first
passage arguments,34,35 which is valid in the limit of small
openings between pores, but whose link with the FJ regime is
unclear.36

The aim of the present paper is to derive a formula for the
effective dispersion in discontinuous channels that is asymptot-
ically exact in the slowly varying limit ε→ 0. We consider two-
dimensional periodic channels which possess a finite number
n of discontinuities in each period. Our main result is that the
dispersion in such channels can be written as

De '
D0

〈R〉〈R−1〉
*
,
1 −

n∑
i=1

µi

L〈R−1〉
+ O(ε2)+

-
. (3)

Here, the positive coefficients µi only depend on the geome-
try of the ith discontinuity (see below). Furthermore the effect
of each distinct discontinuity is additive and thus the result
applies to a wide range of channels in a simple, building
block-like manner. The above formula generalizes Eq. (2) to
the case of discontinuous profiles and shows that the associ-
ated corrections to dispersion are of order ε and are as such
thus much more important than for smooth channels (where
they are of order ε2). Importantly, our approach does not rely
on a reduction of dimensionality: we do not need to define a
local diffusion coefficient near the singular parts of the chan-
nel to obtain it; such local diffusion coefficient would clearly
be ill-defined near the profile discontinuity. Our analysis is,
however, compatible with the notion of associated trapping
rates to model the singularity and provides a means to obtain
asymptotically exact formulas for such trapping rates, which
are shown to be proportional to 1/µ, where µ is the coeffi-
cient appearing in Eq. (3) associated with the discontinuity in
question.

Our formula (3) shows that each discontinuity has a nega-
tive contribution to the dispersion, confirming that it effectively
acts as a local trap for the Brownian particles. We have exactly
calculated the coefficients µ, which quantify the impact on dis-
persion, for two different types of basic discontinuities, shown
in Fig. 1. First, we have considered the case where the channel
radius changes locally from a value R− to R+ [see Fig. 1(a)]. In
this case, µ is denoted by µd (where d stands for discontinuous)
and depends only on the parameter ν = R+/R−,

µd(ν) =
1 + ν2

ν π
ln

�����
1 + ν
1 − ν

�����
−

2
π

ln
�����

4ν

1 − ν2

�����
. (4)

Notice that µd(ν) = µd(ν−1); this must be the case as we have
the same diffusion constant upon flipping the direction of the

FIG. 1. Illustration of the three types of discontinuities of periodic channels
that are considered in this paper: (a) discontinuity of the channel radius, (b)
presence of walls separating between compartments, and (c) general case
composed by both type of discontinuities.

channel and thus switching R+ and R−. We have also con-
sidered a second type of discontinuity, in which the profile
contains walls that partially obstruct the channel, forming dif-
ferent compartments [see Fig. 1(b)]. In this case, µ is denoted
by µc (c standing for compartments) and depends on the
geometric parameter ν = R0/R− (where R0 is the radius at min-
imal opening and R− is the radius just next the wall) and is
given by

µc(ν) = −
4
π

ln
(
sin

πν

2

)
. (5)

Both functions µc and µd are plotted in Fig. 2. We also consider
a hybrid case where the discontinuity is a combination of these
types of discontinuities.

The outline of this paper is as follows. In Sec. I, we present
the general formalism used and show that the effective diffu-
sivity can be computed via a partial differential equation for an
auxiliary function over one channel period. In Sec. II, we con-
sider discontinuous channels. We present a method to compute
this auxiliary function with matched asymptotic expansions
and we compute the effective diffusivity. In Sec. III A, we show
how to adapt the calculation for compartmentalized channels,
and in Sec. III B we generalize the result to systems having
hybrid forms of the discontinuous and compartmentalized sin-
gularities. Our formulas are validated by comparison with the
numerical solutions of the relevant partial differential equa-
tions in Sec. IV. In Sec. V, we determine asymptotically exact
expressions for the trapping rates that should be used for the
boundary homogenization method and compare them with
existing approximations.
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FIG. 2. Representation of the function µ(ν) which quantifies the impact on
dispersion of the presence of a radius discontinuity (µc) or of partially obstruct-
ing wall delimiting compartments (µd ). The geometric parameter isν = R−/R+

for discontinuous channels and ν = R−/R0 for compartmentalized channels,
where R−, R0, and R+ are as shown in Fig. 1.

II. GENERAL FORMALISM: EXACT EXPRESSION
OF THE EFFECTIVE DIFFUSIVITY

We consider a symmetric two-dimensional channel of
local radius R(x), where x denotes the longitudinal coordi-
nate. The channel is periodic in x with period L. We denote
by a the channel width at its minimum, and we define the
dimensionless profile ζ by

R(x) = a ζ(x/L), (6)

where ζ(X) is a periodic function of X = x/L, with unit period,
that describes the geometry of the profile.

We aim to calculate the effective diffusivity

De = lim
t→∞

[x(t) − x(0)]2/2t, (7)

where · represents the ensemble average over particle tra-
jectories. Rather than reducing the problem to an effective
one-dimensional dynamics for x(t), we use the following exact
expression of the effective diffusivity:31,37,38

De

D0
= 1 −

1
|V |

∫
∂V

dS nx f . (8)

Here, the integral is performed on the boundary ∂V of the
channel (over one periodic cell), D0 is the microscopic diffu-
sivity, dS represents the surface element, nx is the x component
of the unit normal vector n (oriented toward the exterior of the
channel), and |V | = 2〈R〉L is the volume of one channel period.
Furthermore, De depends on an auxiliary function f (x, y) which
satisfies the Laplace equation

∇2f = ∂2
x f + ∂2

y f = 0, (9)

where y is the transverse coordinate. In addition, f is a periodic
function of x and at the channel boundary it obeys the boundary
condition

[n · ∇f − nx]y=±R(x) = 0. (10)

The above expressions are a particular case of the formu-
las for the effective diffusivity for general periodic systems37,38

and are also consistent with the macrotransport theory of Bren-
ner and Edwards.39 An important dimensionless parameter

of the problem is the ratio of lateral to longitudinal length
scales

ε = a/L (11)

and we will study the limit of slowly varying channels, i.e.,
ε → 0. For smooth channels, De can be systematically
expressed as an expansion in powers of ε. Here we focus on
non-smooth channels, for which only the leading order result
is exactly known [Eq. (1)].

To simplify the notation, without loss of generality, we set
the period length to L = 1 and the microscopic diffusivity to
D0 = 1. In these units, ε is just the typical lateral dimension of
the channel and R = εζ .

III. DISPERSION IN WEAKLY VARYING
DISCONTINUOUS CHANNELS

Here, we first consider the case that ζ(x) presents a single
discontinuity, whose origin is set at the origin x = 0 (modulo
the period). There, ζ(x) is assumed to change sharply from
ζ− ≡ ζ(0−) to ζ+ ≡ ζ(0+), as in Fig. 1(a). In the slowly varying
limit ε→0, characterizing f is a singular perturbation problem,
and it is crucial to distinguish between a region near the channel
discontinuity (called the inner region) and a region far from
the discontinuity (called the outer region).

A. The solution far from the discontinuity

We first describe the expansion of f in the outer region,
where it is convenient to use the rescaled variables

Y = y/ε, X = x (12)

so that the ranges of X, Y become independent of ε. We define
the function F such that

f (x, y) = F(X, Y ). (13)

It is important to note that F is periodic but may present an
irregular behavior (to be determined below) near the disconti-
nuity, at X = 0 (modulo 1). The equation satisfied by F in the
bulk follows from Eq. (9),

ε2∂2
XF + ∂2

Y F = 0, (14)

and the boundary conditions Eq. (10) become

[ε2ζ ′(X)∂XF − ∂Y F]Y=±ζ (X) = ε
2ζ ′(X). (15)

In the limit ε→ 0, we look for solutions of the form

F(X , Y ) =
∞∑

i=0

εiFi(X, Y ). (16)

Note that here it is essential to use ε as the small parameter
and not ε2 which is the relevant small parameter used to study
smooth channels.30

Inserting this series expansion into the above equations
leads to recurrence equations for the functions F i. This calcu-
lation is very similar to the approach presented by Dorfman
and Yariv30 and the details are given in Appendix A. To lead-
ing order, we find that F0 is independent of Y and its derivative
with respect to X is given by
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F ′0(X) = 1 −
1

〈ζ−1〉ζ(X)
. (17)

At next order, we find that F1 is discontinuous at 0 (and hence
at 1 by periodicity) and its derivative is given by

F ′1(X) =
F1(0−) − F1(0+)

〈ζ−1〉ζ(X)
. (18)

The unknown value of the jump F1(0−) − F1(0+) will be
deduced from the matching condition with the inner solution
in Sec. III B.

B. The solution near the discontinuity

We now consider the function f near the channel discon-
tinuity (located at X = 0 modulo 1). In this region, the relevant
length scale for the transverse direction is the channel width
∼ε. Since the change of the profile is abrupt, we expect that
f varies with the same length scale in the longitudinal direction.
This suggests that the relevant variables in the inner region are
x̃ and ỹ defined by

x̃ = x/ε = X/ε, ỹ = y/ε = Y . (19)

We note that, if |x|� 1, one can simplify the domain by noting
that R(x) ' εζ+ for x > 0 and R(x) ' εζ− for x < 0. It is
convenient to introduce the function φ defined by

φ(x̃, ỹ) = f (x, y) − x. (20)

This function φ satisfies Laplace’s equation,

(∂2
x̃ + ∂2

ỹ )φ = 0, (21)

and it follows from Eq. (10) that Neumann conditions
n · ∇̃φ = 0 hold at the channel boundary. We again look for an
expansion of the form

φ(x̃, ỹ) = φ0(x̃, ỹ) + εφ1(x̃, ỹ) + . . . . (22)

As a result, all the functions φi satisfy Laplace’s equation with
Neumann boundary conditions at the channel boundary, but
an additional condition is needed to determine them. This
additional condition comes from the requirement that both
expansions (16) and (22) must lead to the same value of f
when ε � |x| � 1. Thus the value of F for small X must be
equal to x + φ when x̃ → ±∞. This condition can be written
explicitly as

φ + εx̃ '
x̃→±∞

F0(0) + ε[x̃F ′0(0±) + F1(0±)] + . . . . (23)

At leading order in ε, the above equations imply that
φ0→ F0(0) for x̃ → ±∞, and the solution for φ0 is thus simply
the uniform solution φ0 = F0(0). At order ε, using Eqs. (23)
and (17), we see that the asymptotic behavior of φ1 is

φ1(x̃ → ±∞, ỹ) = F1(0±) −
x̃

ζ±〈ζ−1〉
. (24)

We also note that, by symmetry, the boundary condi-
tions at y = −R(x) can be replaced by Neumann conditions
∂ỹφ1 = 0 at the center-line ỹ = 0. At this stage, we are thus
left with the problem of finding a harmonic function φ1 in a
corner-shaped domain [Fig. 3(a)], with Neumann conditions

FIG. 3. Transformation of the boundaries close to the discontinuity for dis-
continuous (a), compartmentalized (b), and discontinuous-compartmentalized
(c) channels after the conformal mapping Wd (Ω) given by Eq. (26), Wc(Ω)
given by Eq. (44), and Wdc(Ω) given by Eq. (C1).

at the channel boundary and at the centerline and the behavior
of φ1 at infinity being specified by (24). The solution to this
problem can be obtained with a complex analysis.

We introduce the complex variable z̃ = x̃ + iỹ and we
consider a conformal mapping

z̃ = Wd(Ω) (25)

such that the channel boundary and its centerline are the images
of, respectively, the positive and negative real axis [Fig. 3(a)]
in the (complex) Ω-plane. Such a mapping can be found by
using the Schwarz-Christoffel method (see Appendix B for
details), leading to

Wd(Ω) =
ζ−

π

{
1
√

k
arccosh

[
(k + 1)Ω − 2k

(k − 1)Ω

]

− arccosh

[
2Ω − (k + 1)

k − 1

]}
+ iζ−, (26)

where the parameter

k = (ζ−/ζ+)2 (27)

is assumed to be larger than one (without loss of generality).
Note that the image of Ω = 1 is Wd(1) = iζ+, the image of
Ω = k is Wd(k) = iζ−, while the image of the negative real
axis is the center-line of the channel. A similar mapping has
recently been used,24 but did not lead to explicit expressions
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of the effective diffusivity. We check in Appendix D that our
approach is compatible with it.

Now, since Wd is a conformal mapping, the function φ1

seen as a function of Ωx = Re(Ω), Ωy = Im(Ω) must satisfy
Laplace’s equation, with Neumann conditions on the bound-
aries which are now the positive and negative real axes. The
solutions are thus of the form

φ1 = C1 + C2 ln |Ω|, (28)

where C1 and C2 are constants. These constants are determined
by making explicit the relation x̃ = Re Wd(Ω) for x̃ → −∞
(or, equivalently, large Ω) and for x̃ → +∞ (or, equivalently,
small Ω). We find

x̃ '
|Ω |→+∞

ζ−

π
*
,

1
√

k
ln

√
k + 1
√

k − 1
− ln

4|Ω|
k − 1

+
-

(29)

and

x̃ '
|Ω |→0

ζ−

π
√

k
*
,
ln

4k
(k − 1)|Ω|

−
√

k ln

√
k + 1
√

k − 1
+
-
. (30)

Inserting the value of ln |Ω| deduced from these expressions
into (28) and comparing with (24) enables the identification
of C2,

C2 =
1

π〈ζ−1〉
, (31)

and of the jump of F1,

F1(0−) − F1(0+) =
1

π〈ζ−1〉
*
,

1 + k
√

k
ln

√
k + 1
√

k − 1
− 2 ln

4
√

k
k − 1

+
-
.

(32)

To summarize, we have obtained an exact solution for φ1, seen
as a functionΩ instead of x̃, ỹ. We shall see in Subsection III C
that there is no need to know x̃ as a function ofΩ to obtain the
effective diffusivity.

C. Expression of the effective diffusivity
for a discontinuous channel

We now use our expressions for the auxiliary function to
deduce the value of the effective diffusivity. Rewriting Eq. (8)
leads to

De = 1 + Douter + Dinner, (33)

Douter =
1
〈ζ〉

∫ 1

0
dxζ ′(x)f (x, R(x)), (34)

Dinner = −
1

ε〈ζ〉

∫ εζ−

εζ+
dyf (0, y), (35)

where we have separated the contributions coming from the
inner and the outer regions. The contribution of the inner
region is

Dinner = −
1
〈ζ〉

∫ ζ−

ζ+
dỹ[φ0 + εφ1(0, ỹ)]. (36)

However, we remark that for any harmonic function φ(x, y),
we have the relation for any closed domain V

∮∂V
dS nxφ =

∫
V

dV ∇φex

= −

∫
V

dV x∇2φ + ∮∂V
dS xn · ∇φ

= ∮∂V
dS xn · ∇φ. (37)

Applying this formula when region V is large but in the bound-
ary layer and φ = φ0 + εφ1 and taking into account its boundary
conditions leads to

Dinner =
ζ+[F0(0) + εF1(0+)] − ζ−[F0(0) + εF1(0−)]

〈ζ〉
. (38)

In turn, the integral for Douter is dominated by the contribution
coming from the outer solution (the contributions coming from
the inner-solution are of higher order since ζ ′ vanishes in the
inner region). Hence,

Douter =
1
〈ζ〉

∫ 1

0
dXζ ′(X)[F0(X) + εF1(X)]. (39)

Integrating by parts, we obtain

Douter = −
1
〈ζ〉

∫ 1

0
dXζ(X)[F ′0(X) + εF ′1(X)]

+
ζ−

〈ζ〉
[F0(1) + εF1(1−)]

−
ζ+

〈ζ〉
[F0(0) + εF1(0+)]. (40)

Collecting the results (38) and (40), we see that

De =
1

〈ζ〉〈ζ−1〉

{
1 − ε

[
F1(0−) − F1(0+)

] }
, (41)

which means that De is simply related to the jump of the func-
tion F1 at the discontinuity. Using Eq. (32) with k = 1/ν2 finally
leads to

De =
1

〈ζ〉〈ζ−1〉

[
1 −

εµd(ν)

〈ζ−1〉

]
, (42)

where µd is given by Eq. (4). This is the announced result in
the case of channels presenting discontinuities. We notice that
µd(ν) = µd(1/ν), which is a consequence of invariance of De

under the transformation x→ −x.

D. Presence of several discontinuities

We now consider a channel containing several disconti-
nuities; an example is shown in Fig. 1(a). In this case, we
can decompose the channel into several outer regions where
Eqs. (17) and (18) are still verified by F ′0 and F ′1, respectively,
which means that the expressions for F0 and F1 are identical
on all outer regions up to an additive constant.

Moreover, close to the discontinuity present at x = xi, we
see that to the leading order F0(x+

i ) = F0(x−i ), which means
that F0 is continuous in the entire channel. At the first order
of perturbation, the jump F1(x−i ) − F1(x+

i ) of the function F1

is given by Eq. (32), which depends only on the geometry of
the ith discontinuity. These conditions on F0 and F1 close to
all singularities of the channel impose that the expressions for
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F0 and F1 do not involve any constant depending on the outer
region, just a global one. Due to the relation ∫ ∂V dS nx = 0,
the effective diffusivity De is independent of this global con-
stant in Eq. (8). Furthermore, all discontinuities give an addi-
tive contribution to the diffusivity as can be seen from Eq. (42)
at first order in ε. This leads to the expression (3). Let us finally
note that the above only applies in the case where the dis-
continuities are separated by distances O(1), and when they
are separated by distances O(ε), the analysis breaks down
and the full inner solution with both discontinuities must be
solved.

IV. GENERALIZATION TO OTHER TYPES
OF DISCONTINUITIES
A. Dispersion for weakly varying
compartmentalized channels

We now show how to adapt the results of Sec. III to
consider dispersion in channels with different types of profile
singularities. We consider here symmetric two-dimensional
channels, which are partially obstructed by walls taken to be
at the position x = 0. We refer to these kinds of channels as com-
partmentalized ones. At the center of these walls, we assume
the presence of an opening whose (reduced) radius is ζ0. We
denote ζ− as the radius just after (and before) the wall; this
geometry is shown in Fig. 1(b).

As in the case of a discontinuous channel, we distinguish
between an inner and an outer region. In the outer region, the
analysis is exactly the same, and the auxiliary function satisfies
Eqs. (17) and (18). In the inner region, the function f has the
same structure, φ(x̃, ỹ) = f (x, y) − x (with the same definition
of the coordinates in the boundary layer). The modification of
Eq. (24) for the matching condition, which gives the value of
φ1 for large arguments, is given by

φ1(x̃ → ±∞, ỹ) = F1(0±) −
x̃

ζ−〈ζ−1〉
. (43)

The function φ1 satisfies Laplace’s equation in the domain
drawn in Fig. 3(b), with Neumann conditions at the channel
boundaries and at the centerline. We apply again the Schwarz-
Christoffel method to find a conformal mapping enabling us
to solve for φ1. We find in Appendix B that

Wc(Ω) =
2ζ−

π

[
ln*

,

√
kΩ − 1 +

√
Ω/k − 1

√
(k − 1/k)Ω

+
-

− ln*
,

√
Ω − k +

√
Ω − 1/k

√
k − 1/k

+
-

]
+ iζ−, (44)

where the parameter k is given by

k = cotan2 πζ0

4ζ−
(45)

and is assumed to be larger than one. Note that W c(1/k) = W c(k)
= iζ−, W c(1) = iζ0, while the image of the negative real axis is
the centerline of the channel and the image of the positive real
axis is the channel boundary [Fig. 3(b)]. Following the same
reasoning as before, we can express φ1 as a function of the
complex variable Ω, as in Eq. (28),

φ1 = C1 + C2 ln |Ω|. (46)

We can thus deduce the jump for F1 from these expressions by
inverting explicitly the mapping x̃ = Re Wc(Ω) for x̃ → −∞
(or, equivalently, |Ω|→∞) where

x̃ '
|Ω |→∞

−
ζ−

π
ln

4k |Ω|

(k + 1)2
(47)

and for x̃ → +∞ (or, equivalently, small |Ω|), for which

x̃ '
|Ω |→0

−
ζ−

π
ln

(k + 1)2 |Ω|

4k
. (48)

Comparing these expressions with Eq. (43), we identify the
jump of the function F1,

F1(0−) − F1(0+) =
2

π〈ζ−1〉
ln

(k + 1)2

4k
, (49)

and the value of the constant C2,

C2 =
1

π〈ζ−1〉
. (50)

We can check that Eq. (41) still holds here,

De =
1

〈ζ〉〈ζ−1〉

{
1 − ε

[
F1(0−) − F1(0+)

] }
(51)

so that the effective diffusivity is straightforwardly deduced
from the jump of the function F1. Setting ν = ζ0/ζ− and using
the definition (45) of k, we finally obtain

De '
1

〈ζ〉〈ζ−1〉

(
1 −

εµc(ν)

〈ζ−1〉

)
, (52)

which is the expression for µc given in Eq. (5) and is
the announced result for dispersion in compartmentalized
channels.

B. The case of weakly varying
discontinuous-compartmentalized channels

We now consider the dispersion in channels with a gen-
eral type of singularity mixing the two previous cases, shown
in Fig. 1(c). Here, we assume that the channel is partially
obstructed by walls (at x = 0, 1, 2, . . .) with a different radius
between the negative (before the wall) and positive (after the
wall) regions. We denote by ζ0 the reduced channel radius at
the opening, whereas ζ− is the radius just before the wall and
ζ+ is the radius just after the wall, as shown in the left figure
of Fig. 3(c).

Following exactly the same steps as in Sec. IV A, we
obtain for this class of channels

De '
1

〈ζ〉〈ζ−1〉

(
1 −

εµdc(k, k̃)

〈ζ−1〉

)
. (53)

Here, µdc is defined by

µdc(k, k̃) =
1 + kk̃√

kk̃
ln

√
k +

√
k̃

√
k −

√
k̃
− 2 ln

4
√

kk̃

k − k̃
(54)

and the parameters k and k̃ are defined by the system
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kk̃ =

(
ζ−

ζ+

)2

, (55)

π

2

(
ζ0

ζ−
− 1

)
=

1√
kk̃

arctan

√
k̃(k − 1)

k(1 − k̃)
− arctan

√
k − 1

1 − k̃
.

(56)

In the limit that ν = ζ0/ζ−→∞ and fixed ζ+/ζ0 (i.e., when the
opening is small compared to at least one radius outside the
discontinuity), we obtain the following behavior:

µdc '




− 4
π ln πζ0

2
√
ζ+ζ−

(if ζ+ , ζ0),

2
π

(
1 − ln 4ζ+

ζ−

)
(if ζ+ = ζ0).

(57)

V. COMPARISON WITH NUMERICAL SOLUTIONS
AND THE LITERATURE

We now validate our analytical approach by comparing
with the exact numerical integration of the set of partial dif-
ferential equations (8)–(10). In Fig. 4, we show the results for
an example of a discontinuous channel, whose shape is rep-
resented in the inset of Fig. 4(b). We first check in Fig. 4(a)
that the first corrections to the basic Fick-Jacobs approxima-
tion results are of order ε, as opposed to smooth channels for
which the correction is of order ε2. Furthermore, Fig. 4(b)
shows that the coefficient of the ε-correction to De is correctly

FIG. 4. Numerical check of the expression (4) for the effective diffusivity
of discontinuous channels, whose profile is given by ζ (X) = 1 + ξ[0.39 −
0.41 sin((4X + 1)π/3) + 0.20 sin((8X + 1)π/3))] for 0 < X < 1. Here ν = 1/(1 +
ξ) and ξ is the amplitude of variation of the channel radius. (a) 1 − De/DFJ is
represented for various ξ [symbols: numerical solution of Eqs. (8)–(10) and
dashed lines: analytical prediction (3)]. (b) Full line: Value of µ predicted by
(4) and symbols: value of µ obtained from a linear fit of the data of (a) and
assuming the behavior (3). Inset: the shape of the channel for ξ = 2.

predicted by our formula (4), thus validating our analytical
approach. We perform a similar analysis for an example of
channel presenting local walls defining compartments, repre-
sented in the inset of Fig. 5. The numerical analysis clearly
demonstrates that the next-to-leading order term for the dis-
persion is correctly predicted by Eq. (5), validating our analysis
for this class of channels as well.

Furthermore, the case of discontinuous channels was con-
sidered in Ref. 24. We check in Appendix D that our theory
and that of Ref. 24 are consistent in the case ζ− = 2ζ+ (which
is the only case for which explicit expressions are given in
Ref. 24).

We can also check our analytical, asymptotically exact,
result for the case of the ratchet-like channel, where the profile
is a periodic repetition of a linear profile ζ(x) = a + x for x ∈ [0,
1[, thus presenting discontinuities at x = 0, 1, 2, . . .. We present
in Fig. 6 the exact numerical integration of the set of partial
differential equations (8)–(10) compared to our first order cor-
rection to Fick-Jacobs approximation given by Eq. (3). We
also show here the asymptotic results obtained by using the
Kalinay and Percus15 formula for a position-dependent coef-
ficient D(x) = arctan(R′(x))/R′(x) that is, in principle, exact in
the linearly expanding parts of the channel. Here there are two
possible procedures to apply the Lifson and Jackson formula18

to determine the diffusion constant: the first, where we ignore
the discontinuity of the channel and find

FIG. 5. Numerical checks of the expression (5) for the effective diffusivity,
in the case ζ (X , 0) = 1 + 0.5ξ[1 − cos(2πX)], in the presence of a wall
with reduced opening radius ζ0 = 1 at X = 0, 1, . . .. Here ν = 1/(1 + ξ).
(a) 1 − De/DFJ represented for various ξ [symbols: numerical solution of
Eqs. (8)–(10) and dashed lines: analytical prediction (3)]. (b) Full line: Value
of µ predicted by (5) and symbols: value of µ obtained from a linear fit of the
data of (a) and assuming the behavior (3). Inset: shape of the channel. The
channel shape is represented in the inset for ξ = 2.
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FIG. 6. Effective diffusivity of the ratchet channel ζ (x) = 0.25 + x. The
dots correspond to the numerical solution of the partial differential equations
Eqs. (8)–(10) and the straight line represents the first order correction to FJ
given by Eqs. (3) and (4). We also show the results obtained by using the
partially resumed formula for D(x) given in Ref. 15 [dashed line: Eq. (58) and
dash-dotted line: Eq. (59); see the text].

De

D0
'

arctan ε

〈ζ〉〈ζ−1〉ε
, (58)

which gives a correction to the Fick-Jacobs approximation
result of order ε2 and is thus clearly incompatible with our
exact results (see Fig. 6). Second the vertical line at the end of
the channel between y = 1 + a and y = a can be replaced by a
straight line of finite slope between (1 − δ, 1 + a) and (1, a)
applying the Lifson-Jackson formula and then taking the limit
δ→ 0. Following this procedure leads to31

De

D0
=

1

〈ζ〉〈ζ−1〉
(

2
π ε + ε

arctan ε

) . (59)

Interestingly, this result includes a correction of order ε, but
with a prefactor that disagrees with the exact result Eq. (3).
This is not surprising since the arctangent formula for D(x) is
obtained by neglecting all high-order derivatives of R(x) in the
expansion series, whereas such terms are infinite at the discon-
tinuity. Hence, our approach provides more precise results for
these kinds of channels, even if it does not include the effect
of higher order terms in the ε expansion.

VI. EFFECTIVE TRAPPING RATES

A widely used approach to deal with discontinu-
ous channels is the use of the boundary homogenization
method.32,33,41–43 In this class of approaches, one assumes that
one can define a one-dimensional stochastic dynamics for x(t),
with associated probability density function p(x, t) that satis-
fies a diffusion equation in the smooth part of the channel. The
presence of discontinuities is taken into account by introducing
trapping rates κ± in the flux continuity equation,

− D0∂xp|x=0+ = −D0∂xp|x=0− = κ
−px=0− − κ

+px=0+ . (60)

Roughly speaking, κ− quantifies the likelihood for a particle
on one side of the discontinuity to cross it (and thus be re-
injected on the other side of it). The ratio of trapping rates
can be deduced from the detailed balance (here in the two-
dimensional case)

κ+

κ−
=
ζ−

ζ+ . (61)

Here we show that our approach is compatible with the
concept of trapping rates and that it provides a means to deter-
mine them exactly in the limit ε → 0. Consider first the case
of a channel formed by wide (w) and narrow (n) portions of
constant radius Rw , Rn and length lw , ln, with L = ln + lw . One
introduces two kinds of trapping rates: κw quantifying the tran-
sitions from the wide to the narrow portions and conversely
κn that quantifies the transitions from the narrow to the wide
portions. The effective diffusivity in such channels reads [see
Eq. (31) of Ref. 41]

De =
D0L2

l2
n + l2

w + lnlw
(
κw
κn

+ κn
κw

)
+ 2D0

(
ln
κn

+ lw
κw

) . (62)

Using the detailed balance condition (61), we find that the
above formula simplifies to

De =
D0

〈R〉〈R−1〉 + 2D0
RwκwL 〈R〉

(63)

and in the weakly varying limit we obtain

De '
D0

〈R〉〈R−1〉

(
1 −

2D0

Rwκw〈R−1〉L
+ O(ε2)

)
. (64)

For the same channel, our approach leads to

De '
D0

〈R〉〈R−1〉

(
1 − 2

µd

L〈R−1〉
+ O(ε2)

)
, (65)

where the factor 2 comes from the fact that there are two dis-
continuities per channel period. Comparing the above formulas
gives

Rwκw
D0

=
Rnκn

D0
=

1
µd

. (66)

The above formula suggests that asymptotically exact results
for the trapping rates are obtained from our analysis.

In the boundary homogenization method, trapping rates
are usually determined by considering the flux of particles on a
surface presenting sticky patches. Although in most cases this
method is applied to the three-dimensional case, it is interest-
ing to test its validity in the present two-dimensional situation.
The corresponding problem is that of particles diffusing to a
surface presenting straight strips. Two different approximate
formulas40 were proposed for the trapping rate; the first one in
the constant flux approximation (CFA) leads to

Rwκ
(cfa)
w

D0
'

1
2ν

π3ν3∑∞
n=1(1/n3) sin2(πnν)

, (67)

where ν = Rn/Rw . In Ref. 40, another (interpolation) formula
is proposed

Rwκ
(interp)
w

D0
'

π

2(1 − ν)2 ln(2.6 + 0.7/ν)
. (68)

It is interesting to compare these approximate values of the
trapping rates with our exact calculation. We see in Fig. 7 that
the three formulas give similar values for κw . For ν → 0, all
expressions of κw have the same dominant behavior 1/ln ν,
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FIG. 7. Trapping rate κwRw /D0 as a function of ν = Rn/Rw . Our theory
(continuous black line) is compared to expressions for trapping rates proposed
in Ref. 40, obtained by the constant flux approximation [CFA, Eq. (67), dashed
red line], or interpolation [interp, Eq. (68), green dashed-dotted line]. In the
inset, we compare the ratio of trapping rates for the discontinuities and for
compartmentalized channels, which is found to differ from unity.

given by Eq. (57) for our exact value. They, however, differ
for finite values of ν, which is quantified by our approach.

Next, in the case of channels made of a periodic arrange-
ment of compartments of constant radius Rw and length L,
separated by infinitely thin walls, with openings of radius
Rn, we call κc the trapping rate (which is usually called the
permeability P), and the effective diffusivity reads43

De =
D0

1 + D0/(κcL)
' D0

(
1 −

D0

κcL

)
, (69)

which leads to
κcRw
D0

=
1
µc

. (70)

In the literature,43 it is suggested that κc ' κw/2 since a particle
that is exactly between the two compartments can switch with
equal probability on each side. However, our theory clearly
shows that such an argument is only an approximation: in the
inset of Fig. 7, we see that the exact ratio of 2κc/κd , which
in our theory is given by 2µd /µc, is clearly different from
unity.

VII. CONCLUSION

Let us now summarize our findings. We have calculated
the effective diffusivity of non-interacting tracer particles dif-
fusing in symmetric channels of non-uniform radius presenting
singularities. In such channels, the usual Fick-Jacobs (FJ)
approach is valid at lowest order only and provides only a
rough approximation of the diffusion coefficient. This is in
contrast to smooth channels, where the FJ theory can be sys-
tematically improved by taking into account higher order terms
of the parameter ε, which measures the ratio of equilibration
time in the lateral and axial directions. Here, we have identified
the next-to-leading order term for the Fick-Jacobs approach in
two-dimensional discontinuous channels. We found that each
discontinuity gives rise to an additive negative correction to the
diffusion constant. This is compatible with modeling of dis-
continuities in terms of localized trapping rates. Our theory
enables us to identify exact expressions of these trapping rates

(by requiring that their use leads asymptotically to the exact
expressions of the diffusivity obtained here). The approach
here provides explicit expressions for these trapping rates in
terms of the geometrical parameters of the discontinuity. Here
we have considered two types of discontinuities: (i) the case
of an abrupt change of radius and (ii) the presence of thin
walls with small openings that separate the channel into com-
partments. The formalism developed here could be used to
explore dispersion properties for other singularities and can
also be extended to the case of three-dimensional channels.
In the latter case, the resulting Laplace equation is not two
dimensional and therefore complex analysis methods cannot
be directly applied; however, the underlying boundary layer
approach will still be valid. Our results help in precisely quan-
tifying the concepts of kinetic entropic barriers associated with
profile singularities.

APPENDIX A: CALCULATION OF THE FUNCTIONS F i

Here we describe how to calculate the functions F0, F1, . . .
appearing in the expansion (16). At order ε0 and ε1, Eq. (14)
becomes

∂2
Y F0 = ∂

2
Y F1 = 0 (A1)

in the bulk and the boundary conditions read

∂Y F0 |Y=ζ (X) = ∂Y F1 |Y=ζ (X) = 0, (A2)

∂Y F0 |Y=0 = ∂Y F1 |Y=0 = 0. (A3)

We thus deduce that the functions F0 and F1 do not depend
on Y and we denote them by F0(X) and F1(X). Examining the
O(ε2) terms in (14) yields

∂2
Y F2(X, Y ) + F ′′0 (X) = 0. (A4)

Integrating this equation with respect to Y and using
∂Y F2|Y =0 = 0 yields

∂Y F2(X, Y ) = −F ′′0 (X)Y . (A5)

Now, expanding Eq. (15) at order ε2 enables us to identify the
boundary condition for F2 as

∂Y F2 |Y=ζ (X) = ζ
′(X)[F ′0(X) − 1], (A6)

which can be inserted into Eq. (A5) yielding

ζ ′(X)[F ′0(X) − 1] = −F ′′0 (X)ζ(X). (A7)

The solutions to this equation are of the form

F ′0(X) = 1 −
λ0

ζ(X)
, (A8)

where λ0 is, so far, an undetermined constant. We can proceed
further by anticipating here that F0 is a continuous func-
tion at X = 0 (modulo 1). Such property can be justified by
considering the matching condition with the solution in the
inner region (see Sec. III B) and it is also justified since we
do not expect that the discontinuity of the profile modifies
the leading order term of the FJ approximation. With this
assumption, the periodicity implies that λ0 = 〈ζ

−1〉−1 and
thus

F ′0(X) = 1 −
1

〈ζ−1〉ζ(X)
, (A9)
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which is Eq. (17).
Now, expanding at order ε3, the equations for F yields

∂2
Y F3 + F ′′1 (X) = 0, (A10)

∂Y F3 |Y=ζ (X) = ζ
′(X)F ′1(X). (A11)

Integrating Eq. (A10) and using ∂Y F3|Y =0 = 0 yields
∂Y F3(X , Y ) = −F ′′1 (X)Y , and comparing to Eq. (A11), we
obtain

ζ ′(X)F ′1(X) = −F ′′1 (X)ζ(X). (A12)

The solutions of this equation are of the form

F ′1(X) =
λ1

ζ(X)
, (A13)

where λ1 is a constant. Note that λ1 is related to the difference
of the values on each side of the profile discontinuity by

λ1 =
F1(1−) − F1(0+)

〈ζ−1〉
=

F1(0−) − F1(0+)

〈ζ−1〉
, (A14)

where we have used the periodicity of F in the second equality.
F ′1 is thus given by

F ′1(X) =
F1(0−) − F1(0+)

〈ζ−1〉ζ(X)
, (A15)

which is exactly Eq. (18).

APPENDIX B: DETAILS ON CONFORMAL MAPS

According to the rules of the Schwarz Christoffel map-
ping,44 the complex derivative of the mapping x̃ = Wd(Ω)
in the case of a discontinuous channel [Fig. 3(a)] is of the
form

W ′
d(Ω) = K0

√
Ω − 1

Ω
√
Ω − k

, (B1)

where K0 and k are constants to be determined below.
Integrating the above expression yields

Wd(Ω) = K0

{
arccosh

[
2Ω − (k + 1)

k − 1

]

−
1
√

k
arccosh

[
(k + 1)Ω − 2k

(k − 1)Ω

]}
+ K1. (B2)

The conditions that Wd(1) = iζ+, Wd(k) = iζ−, and Im Wd(0−)
= 0 then fix the values of k, K0, and K1 and we find

√
k =

ζ−

ζ+ , K1 = iζ−, K0 = −
ζ−

π
. (B3)

In the case of compartmentalized channels [Fig. 3(b)], we look
for a mapping of the form

W ′
c(Ω) = K0

Ω − 1

Ω

√
(Ω − k)(Ω − k̃)

. (B4)

Integrating leads to

Wc(Ω) = − 2K0

[
1√
kk̃

ln
*..
,

√
k(Ω − k̃) +

√
k̃(Ω − k)√

(k − k̃)Ω

+//
-

− ln
(√
Ω − k +

√
Ω − k̃

)]
+ K1. (B5)

The conditions W c(1) = iζ0, Wc(k) = Wc(k̃) = iζ−, and Im
W c(0−) = 0 then determine the values of k, k̃, K0, and K1; we
find

k =
1

k̃
= cotan2 πζ0

4ζ−
, K0 = −

ζ−

π
, (B6)

K1 = iζ− +
ζ−

π
ln(k − 1/k). (B7)

APPENDIX C: CALCULATIONS FOR WEAKLY
VARYING DISCONTINUOUS-COMPARTMENTALIZED
CHANNELS

Here we describe the calculations leading to the result (54)
for channels partially obstructed by walls at a given position
x = 0 and with a discontinuity of the radius between the negative
(before the wall) and positive (after the wall) regions. The nota-
tions are those of Fig. 3(c). As in the case of a discontinuous
channel, we distinguish between an inner and an outer region.
In the outer region, the analysis is exactly the same and the aux-
iliary function satisfies Eqs. (17) and (18). In the inner region,
the function f has the same structure, φ(x̃, ỹ) = f (x, y) − x
(with the same definition of the coordinates in the bound-
ary layer). The matching condition given by Eq. (24) is still
satisfied.

The function φ1 satisfies Laplace’s equation in the domain
drawn in Fig. 3(c), with Neumann conditions at the channel
boundaries and at the centerline. We apply again the Schwarz-
Christoffel method to find a conformal mapping enabling us
to solve for φ1. We find from the expression (B5) that

Wdc(Ω) =
2ζ−

π

[
1√
kk̃

ln
*..
,

√
k(Ω − k̃) +

√
k̃(Ω − k)√

(k − k̃)Ω

+//
-

− ln*
,

√
Ω − k +

√
Ω − k̃√

k − k̃
+
-

]
+ iζ−. (C1)

Here, the parameters k and k̃ are chosen such that Wdc(k̃) = iζ+,
Wdc(k) = iζ−, and Wdc(1) = iζ0, while the image of the negative
real axis is the centerline of the channel and the image of the
positive real axis is the channel boundary [Fig. 3(c)]. This leads
to the system

kk̃ =

(
ζ−

ζ+

)2

, (C2)

π

2

(
ζ0

ζ−
− 1

)
=

1√
kk̃

arctan

√
k̃(k − 1)

k(1 − k̃)
− arctan

√
k − 1

1 − k̃
.

(C3)

Following the same reasoning as before, we can express φ1 as
a function of the complex variable Ω, following Eq. (28). We
can thus deduce the jump for F1 from these expressions by
inverting explicitly the mapping x̃ = Re Wdc(Ω) for x̃ → −∞
(or, equivalently, |Ω|→∞) where
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x̃ '
|Ω |→∞

ζ−

π



1√
kk̃

ln

√
k +

√
k̃

√
k −

√
k̃
− ln

4|Ω|

k − k̃


(C4)

and for x̃ → +∞ (or, equivalently, small |Ω|), for which

x̃ '
|Ω |→0

ζ−

π



1√
kk̃

ln
4kk̃

(k − k̃)Ω
− ln

√
k +

√
k̃

√
k −

√
k̃


. (C5)

Comparing these expressions with Eq. (24), we identify the
jump of the function F1

F1(0−) − F1(0+) =
1

π〈ζ−1〉



1 + kk̃√
kk̃

ln

√
k +

√
k̃

√
k −

√
k̃
− 2 ln

4
√

kk̃

k − k̃


.

(C6)

We can check that Eq. (41) still holds here, and we finally
obtain Eq. (54).

APPENDIX D: COMPARISON WITH THE KALINAY
AND PERCUS APPROACH

Here we control that our approach is consistent with the
results of Kalinay and Percus,24 who mapped the dynamics
of x(t) on a one-dimensional diffusive dynamics, whose dif-
fusion coefficient at the vicinity of a discontinuity at x = 0
reads

D0

D(x)
= R(x)

d
dx

x + CtΘ(x) + C0

R(x)
, (D1)

where Ct and C0 depend on ζ±. Let us recall here the Lifson-
Jackson18 formula which provides the effective diffusivity
for one-dimensional particles with diffusion coefficient D(x)
moving in two-dimensional channels,

De =
1

〈R〉〈[D(x)R(x)]−1〉
. (D2)

If we insert (D1) into the above expression, we see that for a
periodic channel, made of flat portions with radii Rw and Rn

for, respectively, wide and narrow regions (as in Sec. V), we
obtain

De =
D0

〈R〉〈R−1〉 + 2
(

Ct+C0
Rn
−

C0
Rw

)
〈R〉

. (D3)

This formula is compatible with Eq. (63) for an inverse
trapping rate equal to

D0

Rwκw
=

Ct + C0

Rn
−

C0

Rw
. (D4)

From Eq. (66), we can thus identify

µd

(
Rn

Rw

)
=

(
Ct + C0

Rn
−

C0

Rw

)
. (D5)

The values of Ct and C0 are given by Kalinay and Percus24

for the radii Rn = π/2 and Rw = π, yielding Ct = 1.216 40 and
C0 =−1.647 92. This leads to the value of the inverse of trap-
ping rate D0/(Rwκw) ' 0.2498. For ν = Rn/Rw = 0.5, our
approach gives D0/(Rwκw) = µd(ν = 0.5) ' 0.2498. Our result
is thus compatible with that of Kalinay and Percus24 for
ν = 0.5.
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