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Matrices coming from elliptic Partial Differential Equations have been shown to have a low-rank property which
can be efficiently exploited in multifrontal solvers to provide a substantial reduction of their complexity. Among
the possible low-rank formats, the Block Low-Rank format (BLR) is easy to use in a general purpose multifrontal
solver and its potential compared to standard (full-rank) solvers has been demonstrated. Recently, new variants
have been introduced and it was proved that they can further reduce the complexity but their performance has
never been analyzed. In this paper, we present a multithreaded BLR factorization, and analyze its efficiency and
scalability in shared-memory multicore environments. We identify the challenges posed by the use of BLR ap-
proximations in multifrontal solvers and put forward several algorithmic variants of the BLR factorization that
overcome these challenges by improving its efficiency and scalability. We illustrate the performance analysis of the
BLR multifrontal factorization with numerical experiments on a large set of problems coming from a variety of
real-life applications.
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1. INTRODUCTION
We are interested in efficiently computing the solution of large sparse systems of linear

equations. Such a system is usually referred to as:

Ax = b , (1)

where A is a sparse matrix of order n, x is the unknown vector of size n, and b is the right-
hand side vector of size n.

This paper focuses on solving (1) with direct approaches based on Gaussian elimination
and more particularly the multifrontal method, which was introduced by Duff and Reid
[1983] and, since then, has been the object of numerous studies [Liu 1992; Amestoy et al.
2011a; Duff et al. 1986].

The multifrontal method achieves the factorization of a sparse matrix A as A = LU or
A = LDLT depending on whether the matrix is unsymmetric or symmetric, respectively. A
is factored through a sequence of operations on relatively small dense matrices called frontal
matrices or, simply, fronts, on which a partial factorization is performed, during which some
variables (the fully-summed (FS) variables) are eliminated, i.e. the corresponding factors
are computed, and some other variables (the non fully-summed (NFS) variables) are only
updated. To know which variables come into which front, and in which order the fronts
can be processed, an elimination or assembly tree [Liu 1990; Schreiber 1982] is built, which
represents the dependencies between fronts.

Consequently, the multifrontal factorization consists of a bottom-up traversal of the elim-
ination tree where, each time a node is visited, two operations are performed.
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— assembly: The frontal matrix is formed by summing the initial matrix coefficients in
the rows and columns of the fully-summed variables of the tree node with coefficients pro-
duced by the factorization of its children.

— factorization: Once the frontal matrix is formed, a partial LU factorization is per-
formed in order to eliminate the fully-summed variables associated with the tree node. The
result of this operation is a set of columns/rows of the global LU factors and a Schur com-
plement, also commonly referred to as contribution block (CB), containing coefficients that
will be assembled into the parent node.

In many applications (e.g., those coming from the discretization of elliptic Partial Differ-
ential Equations), the matrix A has been shown to have a low-rank property: conveniently
defined off-diagonal blocks of its Schur complements can be approximated by low-rank prod-
ucts [Bebendorf 2008]. Several formats have been proposed to exploit this property, mainly
differing on whether they use a strong or weak admissibility condition and on whether
they have a nested basis property. The most general of the hierarchical formats is the H-
matrix format [Bebendorf 2008; Hackbusch 1999; Börm et al. 2003], which is non-nested
and strongly-admissible. The H2-matrix format [Börm et al. 2003] is its nested counterpart.
HODLR matrices [Aminfar et al. 2016] are based on the weak admissibility condition and
HSS [Xia et al. 2010; Chandrasekaran et al. 2006] and the closely related HBS [Gillman
et al. 2012] additionally possess nested basis.

These low-rank formats can be efficiently exploited within direct multifrontal solvers to
provide a substantial reduction of their complexity. In comparison to the quadratic complex-
ity of the Full-Rank (FR) solver, most sparse solvers based on hierarchical formats have
been shown to possess near-linear complexity. To cite a few, Xia et al. [2009], Xia [2013],
and Ghysels et al. [2016] are HSS-based, Gillman et al. [2012] is HBS-based, Aminfar and
Darve [2016] is HODLR-based, and Pouransari et al. [2015] is H2-based.

Previously, we have investigated the potential of a so-called Block Low-Rank (BLR)
format [Amestoy et al. 2015] that, unlike hierarchical formats, is based on a flat, non-
hierarchical blocking of the matrix which is defined by conveniently clustering the asso-
ciated unknowns. We have recently shown [Amestoy et al. 2017] that the complexity of the
BLR multifrontal factorization may be as low as O(n4/3) (for 3D problems with constant
ranks). While hierarchical formats may achieve a lower theoretical complexity, the simplic-
ity and flexibility of the BLR format make it easy to use in the context of a general purpose,
algebraic solver. In particular, BLR solvers have the following distinct advantages [Amestoy
et al. 2015; Mary 2017]:

— No relative order is needed between blocks; this allows the clustering to be easily com-
puted and delivers a great flexibility to distribute the data in a parallel environment.

— The size of the blocks is small enough for several of them to fit on a single shared-memory
node; therefore, in a parallel environment, each processor can efficiently and concurrently
work on different blocks.

— The simplicity of the BLR format makes it easy to handle dynamic numerical pivoting, a
critical feature often lacking in other low-rank solvers.

— Non fully-structured BLR solvers, where the current active front is temporarily stored
in full-rank, have the same asymptotic complexity as their fully-structured counterparts,
contrarily to hierarchical formats. In particular, this allows for performing the assembly
in full-rank and thus avoid the slow and complex low-rank extend-add operations.

Therefore, BLR solvers can be competitive with hierarchical formats, at least on some prob-
lem classes and for some range of sizes. We feel the differences between low-rank formats
are a complicated issue and there are still many open questions about their practical behav-
ior on low-rank solvers and their respective advantages and limits. A careful comparison
between existing low-rank solvers would be an interesting issue but is out the scope of this
article. Preliminary results of a comparison between the BLR-based MUMPS solver and the
HSS-based STRUMPACK solver have been reported in Mary [2017].

The so-called standard BLR factorization presented in Amestoy et al. [2015] has been
shown to provide significant gains compared to the Full-Rank solver in a sequential en-
vironment. Since then, BLR approximations have been used in the context of a dense
Cholesky solver for GPU [Akbudak et al. 2017], the PASTIX supernodal solver for multi-
cores [Pichon et al. 2017], and the MUMPS multifrontal solver for distributed-memory archi-
tectures [Amestoy et al. 2016; Shantsev et al. 2017].
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New variants that depend on the strategies used to perform, accumulate, and recompress
the low-rank updates, and on the approaches to handle numerical pivoting have been pre-
sented in Anton et al. [2016] and Amestoy et al. [2016] and it was proved in Amestoy et al.
[2017] that they can further reduce the complexity of the BLR approach. The performance
of these new variants has however never been studied. In this article, we present a mul-
tithreaded BLR factorization for multicore architectures and analyze its performance on a
variety of problems coming from real-life applications. We explain why it is difficult to fully
convert the reduction in the number of operations into a performance gain, especially in
multicore environments, and describe how to improve the efficiency and the scalability of
the BLR factorization.

To conclude, let us briefly describe the organization of this paper. Rather than first pre-
senting all the algorithms and then their analysis, we will present the algorithms incremen-
tally and interlaced with their analysis, to better motivate their use and what improvements
they bring. In Section 2, we provide a brief presentation of the BLR format, the standard
BLR factorization algorithm, so-called FSCU variant, and how it can be used within multi-
frontal solvers; for a more formal and detailed presentation, we refer the reader to Amestoy
et al. [2015] where this method was introduced. In Section 3, we describe our experimen-
tal setting. In Section 4, we motivate our work with an analysis of the performance of the
FSCU algorithm in a sequential setting. We then present in Section 5 the parallelization of
the BLR factorization in a shared-memory context, the challenges that arise, and the algo-
rithmic choices made to overcome these challenges. In Section 6, we analyze the algorithmic
variants of the BLR multifrontal factorization. We show how they can improve the perfor-
mance of the standard algorithm. In Section 7, we provide a complete set of experimental
results on a variety of real-life applications and in different multicore environments. We
provide our concluding remarks in Section 8.

Please note that the BLR approximations can reduce the memory consumption of the
factorization and improve the performance of the solution phase, and that this analysis
does not depend on the BLR variant used, as explained in [Amestoy et al. 2017]. Both these
aspects are out of the scope of this paper.

2. PRELIMINARIES
2.1. Block Low-Rank approximations

Unlike hierarchical formats such as H-matrices, the BLR format is based on a flat, non-
hierarchical blocking of the matrix which is defined by conveniently clustering the asso-
ciated unknowns. A BLR representation F̃ of a dense matrix F is shown in Equation (2),
where we assume that p sub-blocks have been defined. Sub-blocks Bij of size mi × nj and
numerical rank kεij are approximated by a low-rank product B̃ij = XijY

T
ij at accuracy ε,

where Xij is a mi × kεij matrix and Yij is a nj × kεij matrix.

F̃ =


B̃11 B̃12 · · · B̃1p

B̃21 · · · · · ·
...

... · · · · · ·
...

B̃p1 · · · · · · B̃pp

 (2)

The B̃ij approximation of each block can be computed in different ways. We have chosen
to use a truncated QR factorization with column pivoting; this corresponds to a QR factor-
ization with pivoting which is truncated as soon as a diagonal coefficient of the R factor falls
below the prescribed threshold ε. This choice allows for a convenient compromise between
cost and accuracy of the compression operation.

2.2. Block Low-Rank LU or LDLT factorization
We describe in Algorithm 1 the standard BLR factorization algorithm for dense matrices,

introduced in Amestoy et al. [2015].
In order to perform the LU or LDLT factorization of a dense BLR matrix, the standard

block LU or LDLT factorization has to be modified so that the low-rank sub-blocks can be
exploited to perform fast operations. Many such algorithms can be defined depending on
where the compression step is performed. We present, in Algorithm 1, a version where the
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compression is performed after the so-called Solve step. We present Algorithm 1 in its LDLT

version, but it can be easily adapted to the unsymmetric case.
As described in detail in Amestoy et al. [2015], this algorithm is fully compatible with

threshold partial pivoting [Duff et al. 1986]. The pivots are selected inside the BLR blocks;
to assess their quality, they are compared to the pivots of the entire column. Therefore,
in practice, to perform numerical pivoting, the Solve step is merged with the Factor step
and done in full-rank (i.e. before the Compress). The pivots that are too small with respect
to a given threshold τ are delayed to the next BLR block, with a mechanism similar to
the delayed pivoting between fronts [Duff and Reid 1983]. These details are omitted in
Algorithm 1 for the sake of clarity.

ALGORITHM 1: Dense BLR LDLT (Right-looking) factorization: standard FSCU variant.
Input: A p× p block matrix F of order m; F = [Fij ]i=1:p,j=1:p

1 for k = 1 to p do
2 Factor: Fkk = LkkDkkL

T
kk

3 for i = k + 1 to p do
4 Solve: Fik ← FikL

−T
kk D−1

kk

5 end for
6 for i = k + 1 to p do
7 Compress: Fik ≈ F̃ik = XikY

T
ik

8 end for
9 for i = k + 1 to p do

10 for j = k + 1 to i do
11 Update Fij :
12 Inner Product: C̃

(k)
ij ← Xik(Y

T
ikDkkYkj)X

T
kj

13 Outer Product: C
(k)
ij ← C̃

(k)
ij

14 Fij ← Fij − C
(k)
ij

15 end for
16 end for
17 end for

This algorithm is referred to as FSCU (standing for Factor, Solve, Compress, and Up-
date), to indicate the order in which the steps are performed. The algorithm is presented in
its Right-looking form. In Section 5, we will also study the performance of its Left-looking
version, referred to as UFSC.

We recall that we denote the low-rank form of a block B by B̃. Thus, the Outer Product on
line 13 consists in decompressing the low-rank block C̃

(j)
ik into the corresponding full-rank

block C(j)
ik .

2.3. Block Low-Rank multifrontal factorization
Because the multifrontal method relies on dense factorizations, the BLR approximations

can be easily incorporated into the multifrontal factorization by representing the frontal
matrices as BLR matrices as defined by Equation (2), and adapting Algorithm 1 to perform
the partial factorization of the fronts.

In addition to the front factorization, one could also exploit the BLR approximations dur-
ing the assembly. In this case, the factorization is called fully-structured [Xia 2013] as the
fronts are never stored in full-rank. In the BLR context, this corresponds to the CUFS vari-
ant [Amestoy et al. 2017], as explained in Section 6. The fully-structured factorization re-
quires relatively complex low-rank extend-add operations and is out of the scope of this
paper. In the experiments of this article, the assembly is therefore performed in full-rank.

To compute the BLR clustering while remaining in a purely algebraic context, we use the
adjacency graph of the matrix A instead of the geometry. The clustering is computed with a
k-way partitioning of the subgraph associated to the fully-summed variables of each front.
A detailed description can be found in Amestoy et al. [2015].
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Table I. List of machines used for Table XV and their properties: number of
processors (np), number of cores per processor (nc), frequency (freq), peak

performance, bandwidth (bw), and memory (mem).

name cpu model np nc freq peak bw mem
(GHz) (GF/s) (GB/s) (GB)

brunch E7-8890 v4 4 24 2.2−3.4∗ 47.1∗ 102 1500
grunch E5-2695 v3 2 14 2.3 36.8 57 768
∗frequency can vary due to turbo; peak is estimated as the dgemm peak

3. EXPERIMENTAL SETTING
The BLR factorization and all its variants have been developed and integrated into the

general purpose symmetric and unsymmetric sparse multifrontal solver MUMPS [Amestoy
et al. 2011b], which was used to run all experiments and constitutes our reference Full-
Rank solver.

The machines we used are listed in Table I. All the experiments reported in this arti-
cle, except those of Table XV, were performed on brunch, a machine equipped with 1.5 TB
of memory and four Intel 24-cores Broadwell processors running at a frequency varying
between 2.2 and 3.4 GHz, due to the turbo technology. We consider as peak per core the mea-
sured performance of the dgemm kernel with one core, 47.1 GF/s. Bandwidth is measured
with the STREAM benchmark. For all experiments on brunch where several threads are
used, the threads are scattered among the four processors to exploit the full bandwidth of
the machine.

To validate our performance analysis, we report in Table XV additional experiments per-
formed on grunch, another machine with similar architecture but different properties (fre-
quency and bandwidth), as described in Section 7.3. For the experiments on grunch, all 28
cores are used.

The above GF/s peak, as well as all the other GF/s values in this article, are computed
counting flops in double-precision real (d) arithmetic, and assuming a complex flop corre-
sponds to four real flops of the same precision.

3.1. Presentation of the test problems
In our experiments, we have used real life problems coming from three applications, as

well as additional matrices coming from the SuiteSparse collection (previously named Uni-
versity of Florida Sparse Matrix Collection [Davis and Hu 2011]). The complete set of ma-
trices and their description is provided in Table II. Each application is separated by a solid
line while each problem subclass is separated by a dashed line.

Our first application is 3D seismic modeling. The main computational bulk of frequency-
domain Full Waveform Inversion (FWI) [Tarantola 1984] is the resolution of the forward
problem, which takes the form of a large, single complex, sparse linear system. Each matrix
corresponds to the finite-difference discretization of the Helmholtz equation at a given fre-
quency (5, 7, and 10 Hz). In collaboration with the SEISCOPE consortium, we have shown
in Amestoy et al. [2016] how the use of BLR can reduce the computational cost of 3D FWI for
seismic imaging on a real-life case-study from the North sea. We found that the biggest low-
rank threshold ε for which the quality of the solution was still exploitable by the application
was 10−3 [Amestoy et al. 2016] and this is therefore the value we chose for the experiments
on these matrices.

Our second application is 3D electromagnetic modeling applied to marine Controlled-
Source Electromagnetic (CSEM) surveying, a widely used method for detecting hydrocar-
bon reservoirs and other resistive structures embedded in conductive formations [Consta-
ble 2010]. The matrices, arising from a finite-difference discretization of frequency-domain
Maxwell equations, were used in Shantsev et al. [2017] to carry out simulations over large-
scale 3D resistivity models representing typical scenarios for the marine CSEM surveying.
In particular, the S-matrices (S3, S21) correspond to the SEG SEAM model, a complex 3D
earth model representative of the geology of the Gulf of Mexico. For this application, the
biggest acceptable low-rank threshold is ε = 10−7 [Shantsev et al. 2017].

Our third application is 3D structural mechanics, in the context of the industrial applica-
tions from Électricité De France (EDF). EDF has to guarantee the technical and economical
control of its means of production and transportation of electricity. The safety and the avail-
ability of the industrial and engineering installations require mechanical studies, which are
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Table II. Complete set of matrices and their Full-Rank statistics: order (n), number of nonzeros (nnz), number of
operations for the factorization (flops), memory required to store the factor entries (factor size), and arithmetic

(c=single complex, z=double complex, d=double real).

application matrix ID arith. fact. type n nnz flops factor size

seismic modeling
(SEISCOPE)

5Hz 1 c LU 2.9M 70M 69.5 TF 61.4 GB
7Hz 2 c LU 7.2M 177M 471.1 TF 219.6 GB
10Hz 3 c LU 17.2M 446M 2.7 PF 728.1 GB

electromagnetic
modeling
(EMGS)

H3 4 z LDLT 2.9M 37M 57.9 TF 77.5 GB
H17 5 z LDLT 17.4M 226M 2.2 PF 891.1 GB
S3 6 z LDLT 3.3M 43M 78.0 TF 94.6 GB
S21 7 z LDLT 20.6M 266M 3.2 PF 1.1 TB

structural mechanics
(EDF Code Aster)

perf008d 8 d LDLT 1.9M 81M 101.0 TF 52.6 GB
perf008ar 9 d LDLT 3.9M 159M 377.5 TF 129.8 GB
perf008cr 10 d LDLT 7.9M 321M 1.6 PF 341.1 GB
perf009ar 11 d LDLT 5.4M 209M 23.6 TF 40.5 GB

computational
fluid dynamics
(SuiteSparse)

StocF-1465 12 d LDLT 1.5M 11M 4.7 TF 9.6 GB
atmosmodd 13 d LU 1.3M 9M 13.8 TF 16.7 GB
HV15R 14 d LU 2.0M 283M 1.9 PF 414.1 GB

structural problems
(SuiteSparse)

Serena 15 d LDLT 1.4M 33M 31.6 TF 23.1 GB
Geo 1438 16 d LU 1.4M 32M 39.3 TF 41.6 GB
Cube Coup dt0 17 d LDLT 2.2M 65M 98.9 TF 55.0 GB
Queen 4147 18 d LDLT 4.1M 167M 261.1 TF 114.5 GB

DNA electrophoresis
(SuiteSparse)

cage13 19 d LU 0.4M 7M 80.1 TF 35.9 GB
cage14 20 d LU 1.5M 27M 4.1 PF 442.7 GB

optimization
(SuiteSparse)

nlpkkt80 21 d LDLT 1.1M 15M 15.1 TF 14.4 GB
nlpkkt120 22 d LDLT 3.5M 50M 248.4 TF 86.5 GB

often based on numerical simulations. These simulations are carried out using Code Aster1

and require the solution of sparse linear systems such as the ones used in this paper. A pre-
vious study [Weisbecker 2013] showed that using BLR with ε = 10−9 leads to an accurate
enough solution for this class of problems.

To demonstrate the generality and robustness of our solver, we complete our set of prob-
lems with SuiteSparse matrices coming from different fields: computational fluid dynamics
(CFD), structural mechanics and optimization. For these matrices, we have arbitrarily set
the low-rank threshold to ε = 10−6, except for the more difficult matrix nlpkkt120 where we
used ε = 10−9 (see Section 7).

For all experiments, we have used a right-hand side b such that the solution x is the vector
containing only ones.

We provide in Section 7 experimental results on the complete set of matrices. For the sake
of conciseness, the performance analysis in the main body of this paper (Sections 4 to 6) will
focus on matrix S3.

Both the nested-dissection matrix reordering and the BLR clustering of the unknowns are
computed with METIS in a purely algebraic way (i.e., without any knowledge of the geometry
of the problem domain). For this set of problems, the time spent computing the BLR cluster-
ing is very small with respect to the time for analysis; its performance analysis is out of the
scope of this article.

When threshold partial pivoting is performed during the FR and BLR factorizations, the
Factor and Solve steps are merged together into a panel factorization operation. In order
to improve the overall efficiency of the factorization, an internal blocking is used in the
panel factorization to benefit from BLAS-3 kernels. The internal block size is set to 32 for all
experiments.

In FR, the (external) panel size is constant and set to 128. In BLR, it is chosen to match the
BLR cluster size (defined in Section 2.1). A good choice of block size should find a compromise
between the number of operations and their speed (GF/s rate). That choice is automatically
made according to the theoretical result reported in Amestoy et al. [2017], which states that
the block size should increase with the size of the fronts.

The threshold for partial pivoting is set to τ = 0.01 for all experiments.

1http://www.code-aster.org
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Table III. Sequential run (1 thread) on matrix
S3

FR BLR ratio

flops (×1012) 77.97 10.19 7.7
time (s) 7390.1 2241.9 3.3

Table IV. Performance analysis of sequential run of Table III on matrix S3 (LAI: Low Arithmetic
Intensity)

FR BLR
step flops % time (s) % flops % time (s) %

(×1012) (×1012)

Factor+Solve 1.51 1.9 671.0 9.1 1.51 14.9 671.0 29.9
Update 76.22 97.8 6467.0 87.5 7.85 77.0 1063.7 47.4
Compress 0.00 0.0 0.0 0.0 0.59 5.8 255.1 11.4
LAI parts 0.24 0.3 252.1 3.4 0.24 2.3 252.1 11.2

Total 77.97 100.0 7390.1 100.0 10.19 100.0 2241.9 100.0

4. PERFORMANCE ANALYSIS OF SEQUENTIAL FSCU ALGORITHM
In this section, we analyze the performance of the FSCU algorithm in a sequential setting.

Our analysis underlines several issues, which will be addressed in subsequent sections.
In Table III, we compare the number of flops and execution time of the sequential FR and

BLR factorizations. While the use of BLR reduces the number of flops by a factor 7.7, the
time is only reduced by a factor 3.3. Thus, the potential gain in terms of flops is not fully
translated in terms of time.

To understand why, we report in Table IV the time spent in each step of the factorization,
in the FR and BLR cases. The relative weight of each step is also provided in percentage of
the total. In addition to the four main steps Factor, Solve, Compress and Update, we also
provide the time spent in parts with low arithmetic intensity (LAI parts). This includes the
time spent in assembly, memory copies and factorization of the fronts at the bottom of the
tree, which are too small to benefit from BLR and are thus treated in FR.

The FR factorization is clearly dominated by the Update, which represents 87.5% of the
total time. In BLR, the Update operations are done exploiting the low-rank property of the
blocks and thus the number of operations performed in the Update is divided by a factor 9.7.
The Factor+Solve and LAI steps remain in FR and thus do not change. From this result, we
can identify three main issues with the performance of the BLR factorization:

Issue 1: lower granularity: the flop reduction by a factor 9.7 in the Update is not fully
captured, as its execution time is only reduced by a factor 6.1. This is due to the lower
granularity of the operations involved in low-rank products, which have thus a lower per-
formance: the speed of the Update step is 47.1 GF/s in FR and 29.5 GF/s in BLR.

Issue 2: higher relative weight of the FR parts (Factor, Solve, and LAI parts): because
the Update is reduced in BLR, the relative weight of the parts that remain FR increases
from 12.5% to 41.1%. Thus, even if the Update step is further accelerated, one cannot expect
the global reduction to follow as the FR part will become the bottleneck.

Issue 3: cost of the Compress step: even though the overhead cost of the Compress step
is negligible in terms of flops (5.8% of the total), it is a very slow operation (9.2 GF/s) and
thus represents a non-negligible part of the total time (11.4%).

A visual representation of this analysis is given on Figure 1 (compare Figures 1(a) and
1(b)).

In the next section, we first extend the BLR factorization to the multithreaded case, for
which previous observations are even more critical. Issues 1 and 2 will then be addressed
by introducing algorithmic variants of the BLR factorization in Section 6. Issue 3 is a topic
of an article by itself; it is out of the scope of this article and we only comment on possible
ways to reduce the cost of the Compress step in Section 8.2.

5. MULTITHREADING THE BLR FACTORIZATION
In this section, we describe the shared-memory parallelization of the BLR factorization

(Algorithm 1).
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Fig. 1. Normalized (FR = 100%) flops and time on matrix S3

Table V. Multithreaded run on matrix S3

FR BLR ratio

time (1 thread) 7390.1 2241.9 3.3
time (24 threads) 508.5 306.8 1.7
speedup 14.5 7.3

5.1. Performance analysis of multithreaded FSCU algorithm
Our reference Full-Rank implementation is based on a fork-join approach combining

OpenMP directives with multithreaded BLAS libraries. While this approach can have lim-
ited performance on very small matrices, on the set of problems considered, it achieves
quite satisfactory performance and speedups on 24 threads (around 20 for the largest prob-
lems) because the bottleneck consists of matrix-matrix product operations. It must be noted
that better performance may be achieved using task-based parallelism as in state-of-the-
art dense and sparse factorization libraries such as PLASMA [Dongarra et al. 2010] or
qr mumps [Agullo et al. 2016]; however, for a fair and meaningful assessment of the gains
that can be expected thanks to BLR approximations this would also require our BLR solver
to be based on task parallelism and, as mentioned in the perspectives (Section 8.2), it raises
open questions that are out of the scope of this article. Therefore, the fork-join approach will
be taken as a reference for our performance analysis.

In the BLR factorization, the Update operations have a finer granularity and thus a lower
speed and a lower potential for exploiting efficiently multithreaded BLAS. To overcome this
obstacle, more OpenMP-based multithreading exploiting serial BLAS has been introduced.
This allows for a larger granularity of computations per thread than multithreaded BLAS
on low-rank kernels. In our implementation, we simply parallelize the loops of the Com-
press and Update operations on different blocks (lines 6, and 9-10) of Algorithm 1. The Fac-
tor+Solve step remains full-rank, as well as the FR factorization of the fronts at the bottom
of the elimination tree. By skipping the compression step of the BLR code we obtain a “Block
Full-Rank” variant relying on the same parallelization approach as the BLR one. We have
observed that this “Block Full-Rank” variant is slower than the standard FR code based on
multithreaded BLAS, and will therefore compare our BLR variants with the standard FR
code.

Because each block has a different rank, the task load of the parallel loops is very irregular
in the BLR case. To account for this irregularity, we use the dynamic OpenMP schedule (with
a chunk size equal to 1), which achieves the best performance.

In Table V, we compare the execution time of the FR and BLR factorization on 24 threads.
The multithreaded FR factorization achieves a speedup of 14.5 on 24 threads. However, the
BLR factorization achieves a much lower speedup of 7.3. The gain factor of BLR with respect
to FR is therefore reduced from 3.3 to 1.7.

The BLR multithreading is thus less efficient than the FR one. To understand why, we
provide in Table VI the time spent in each step for the multithreaded FR and BLR factor-
izations. We additionally provide for each step the speedup achieved on 24 threads.
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Table VI. Performance analysis of multithreaded run (24 threads) of Table V
on matrix S3

FR BLR
step time % speedup time % speedup

Factor+Solve 38.9 7.7 17.3 38.9 12.7 17.3
Update 361.2 71.0 17.9 121.6 39.6 8.8
Compress 0.0 0.0 37.9 12.4 6.7
LAI parts 108.4 21.3 2.3 108.4 35.3 2.3

Total 508.5 100.0 14.5 306.8 100.0 7.3

thr0 thr1 thr2 thr3

Node
parallelism

Tree
parallelism

L0 layer

thr0-3 thr0-3

thr0-3

Fig. 2. Illustration with four threads of how both node and tree multithreading can be exploited.

From this analysis, one can identify two additional issues related to the multithreading
of the BLR factorization:

Issue 4: low arithmetic intensity parts become critical: the LAI parts expectedly achieve
a very low speedup of 2.3. While their relative weight with respect to the total remains
reasonably limited in FR, it becomes quite significant in BLR, with over 35% of time spent
in them. Thus, the impact of the poor multithreading of the LAI parts is higher on the BLR
factorization than on the FR one.

Issue 5: scalability of the BLR Update: not only is the BLR Update less efficient than
the FR one in sequential, it also achieves a lower speedup of 8.8 on 24 threads, compared
to a FR speedup of 17.9. This comes from the fact that the BLR Update, due to its smaller
granularities, is limited by the speed of memory transfers instead of the CPU peak as in
FR. As a consequence, the Outer Product operation runs at the poor speed of 8.8 GF/s, to
compare to 35.2 GF/s in FR.

A visual representation of this analysis is given on Figure 1 (compare Figures 1(b) and
1(c)).

In the rest of this section, we will revisit our algorithmic choices to address both of these
issues.

5.2. Exploiting tree-based multithreading
In our standard shared-memory implementation, multithreading is exploited at the node

parallelism level only, i.e. different fronts are not factored concurrently. However, in multi-
frontal methods, multithreading may exploit both node and tree parallelism. Such an ap-
proach has been proposed, in the FR context, by L’Excellent and Sid-Lakhdar [2014] and
relies on the idea of separating the fronts by a so-called L0 layer, as illustrated in Figure 2.
Each subtree rooted at the L0 layer is treated sequentially by a single thread; therefore,
below the L0 layer pure tree parallelism is exploited by using all the available threads to
process concurrently multiple sequential subtrees. When all the sequential subtrees have
been processed, the approach reverts to pure node parallelism: all the fronts above the L0

layer are processed sequentially (i.e., one after the other) but all the available threads are
used to assemble and factorize each one of them.

In Table VII, we quantify and analyze the impact of this strategy on the BLR factorization.
The majority of the time spent in LAI parts is localized under the L0 layer. Indeed, all the
fronts too small to benefit from BLR are under it; in addition, the time spent in assembly
and memory copies for the fronts under the L0 layer represents 60% of the total time spent
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Table VII. Execution time of FR and BLR factorizations on matrix S3 on 24
threads, exploiting both node and tree parallelism

FR BLR
step time % speedup time % speedup

Factor+Solve 33.2 7.9 20.2 33.2 15.1 20.2
Update 331.7 79.4 19.5 110.2 50.0 9.7
Compress 0.0 0.0 24.1 10.9 10.6
LAI parts 53.0 12.7 4.8 53.0 24.0 4.8

Total 417.9 100.0 17.4 220.5 100.0 10.2

Table VIII. Execution time of Right-looking and Left-looking
factorizations on matrix S3

FR BLR
parallelism step RL LL RL LL

1 thread Update 6467.0 6549.8 1063.7 899.1
Total 7390.1 7463.9 2241.9 2074.5

24 threads, Update 331.7 335.6 110.2 66.9
node+tree// Total 417.9 420.6 220.5 174.7

in the assembly and memory copies. Therefore, the LAI parts are significantly accelerated,
by a factor over 2, by exploiting tree multithreading.

In addition, the other steps (the Update and especially the Compress) are also accelerated
thanks to the improved multithreading behaviour of the relatively smaller BLR fronts under
the L0 layer which do not expose much node parallelism.

Please note that the relative gain due to introducing tree multithreading can be larger
even in FR, for 2D or very small 3D problems, for which the relative weight of the LAI
parts is important. However, for large 3D problems the relative weight of the LAI parts is
limited, and the overall gain in FR remains marginal. In BLR, the weight of the LAI parts
is much more important so that exploiting tree parallelism becomes critical: the overall gain
is significant in BLR. We have thus addressed Issue 4, identified in Subsection 5.1.

The approach described in L’Excellent and Sid-Lakhdar [2014] additionally involves a so-
called Idle Core Recycling (ICR) algorithm which consists in reusing the idle cores that have
already finished factorizing their subtrees to help factorizing the subtrees assigned to other
cores. This results in the use of both tree and node parallelism when the workload below the
L0 layer is unbalanced.

The maximal potential gain of using ICR can be computed by measuring the difference
between the maximal and average time spent under the L0 layer by the threads (this corre-
sponds to the work unbalance). For the run of Table VII, the potential gain is equal to 3.3s
in FR (i.e., 0.8% of the total) and 5.1s in BLR (i.e., 2.3% of the total). Thus, even though the
potential gain in FR is marginal, it is higher in BLR, due to load inbalance generated by the
irregularity of the compressions: indeed, the compression rate can greatly vary from front
to front and thus from subtree to subtree.

Activating ICR brings a gain of 3.0s in FR and 4.7s in BLR; thus, roughly 90% of the
potential gain is captured in both cases. While the absolute gain with respect to the total is
relatively small even in BLR, this analysis illustrates that Idle Core Recycling becomes an
even more relevant feature for the multithreaded BLR factorization.

Exploiting tree multithreading is thus very critical in the BLR context. It will be used for
the rest of the experiments for both FR and BLR.

5.3. Right-looking vs. Left-looking
Algorithm 1 has been presented in its Right-looking (RL) version. In Table VIII, we com-

pare it to its Left-looking (LL) equivalent, referred to as UFSC. The RL and LL variants
perform the same operations but in a different order, which results in a different memory
access pattern [Dongarra et al. 1998].

The impact of using a RL or LL factorization is mainly observed on the Update step. In
FR, there is almost no difference between the two, RL being slightly (less than 1%) faster
than LL. In BLR however, the Update is significantly faster in LL than in RL. This effect is
especially clear on 24 threads (40% faster Update, which leads to a global gain of 20%).
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read once

written at
each step

(a) RL factorization

read at
each step

written once

(b) LL factorization

Fig. 3. Illustration of the memory access pattern in the RL and LL BLR Update during step k of the factorization
of a matrix of p× p blocks (here, p = 8 and k = 4)

We explain this result by a lower volume of memory transfers in LL BLR than RL BLR.
As illustrated in Figure 3, during the BLR LDLT factorization of a p × p block matrix, the
Update will require loading the following blocks stored in main memory:

— in RL (Figure 3(a)), at each step k, the FR blocks of the trailing sub-matrix are written
and therefore they are loaded many times (at each step of the factorization), while the LR
blocks of the current panel are read once and never loaded again.

— in LL (Figure 3(b)), at each step k, the FR blocks of the current panel are written for
the first and last time of the factorization, while the LR blocks of all the previous panels are
read, and therefore they are loaded many times during the entire factorization.

Thus, while the number of loaded blocks is roughly the same in RL and LL (which explains
the absence of difference between the RL FR and LL FR factorizations), the difference lies
in the fact that the LL BLR factorization tends to load more often LR blocks and less FR
blocks, while the RL one has the opposite behavior. To be precise:

— Under the assumption that one FR block and two LR blocks fit in cache, the LL BLR
factorization loads O(p2) FR blocks and O(p3) LR blocks.

— Under the assumption that one FR block and an entire LR panel fit in cache (which is
a stronger assumption so the number of loaded blocks may in fact be even worse), the RL
BLR factorization loads O(p3) FR blocks and O(p2) LR blocks.

Thus, switching from RL to LL reduces the volume of memory transfers and therefore
accelerates the BLR factorization, which addresses Issue 5, identified in Subsection 5.1.

Throughout the rest of this article, the best algorithm is considered: LL for BLR and RL
for FR.

Thanks to both the tree multithreading and the Left-looking BLR factorization, the factor
of gain due to BLR with respect to FR on 24 threads has increased from 1.7 (Table V) to 2.4
(Table VIII).

Next, we introduce algorithmic variants of the BLR factorization that further improve its
performance.

6. BLR ALGORITHMIC VARIANTS
Thanks to the flexibility of the BLR format, it is possible to easily define variants of Algo-

rithm 1. We present in Algorithm 2 the so-called UFCS+LUAR factorization. It consists of
two main modifications of Algorithm 1, which are described in the following two subsections.

In Amestoy et al. [2017], it was proved that they lead to a lower theoretical complexity;
their performance has never been studied. In this section, we quantify the flop reduction
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achieved by these variants and how well this flop reduction can be translated into a time re-
duction. We analyze how they can improve the efficiency and scalability of the factorization.

6.1. LUAR: Low-rank Updates Accumulation and Recompression
The first modification is referred to as Low-rank Updates Accumulation and Recompres-

sion (LUAR). It consists in accumulating the update matrices C̃(j)
ik together, as shown on

line 6 of Algorithm 2:

C̃
(acc)
ik := C̃

(acc)
ik + C̃

(j)
ik

Note that in the previous equation, the + sign denotes a low-rank sum operation. Specifi-
cally, if we note A = C

(acc)
ik and B = C

(j)
ik , then

B̃ = C̃
(j)
ik = Xij(Y

T
ijDjjYjk)X

T
jk = XBCBY

T
B

with XB = Xij , CB = Y T
ijDjjYkj , and YB = Xkj . Similarly, Ã = C̃

(acc)
ik = XACAY

T
A . Then the

low-rank sum operation is defined by:

Ã + B̃ = XACAY
T
A + XBCBY

T
B = (XA XB)

(
CA

CB

)
(YA YB)

T
= XSCSY

T
S = S̃

where S̃ is a low-rank approximant of S = A+B.
This algorithm has two advantages: first, accumulating the update matrices together

leads to higher granularities in the Outer Product step (line 9 of Algorithm 2), which is thus
performed more efficiently. This should address Issue 1, identified in Section 4. Second, it
allows for additional compression, as the accumulated updates C̃(acc)

ik can be recompressed
(as shown on line 8) before the Outer Product. A visual representation is given in Figure 4.

Note that there are several strategies to recompress the accumulated updates, which have
been analyzed in Anton et al. [2016]. On Figure 4(a),XS , CS , and YS can all be recompressed.
In our experiments, we have observed that recompressing CS only is the best strategy as,
due to the small size of CS , it leads to a lower Recompress cost while capturing most of the
recompression potential.

XS

CS Y T
S

(a) Accumulated updates before recompression

X̃S

C̃S

Ỹ T
S

(b) Accumulated updates after recom-
pression

Fig. 4. Low-rank Updates Accumulation and Recompression

In Table IX, we analyze the performance of the UFSC+LUAR variant. We separate the
gain due to accumulation (UFSC+LUA, without recompression) and the gain due to the re-
compression (UFSC+LUAR). We provide the flops, time and speed of both the Outer Product
(which is the step impacted by this variant) and the total (to show the global gain). We also
provide the average (inner) size of the Outer Product operation, which corresponds to the
rank of C̃(acc)

ik on line 9 in Algorithm 2. It also corresponds to the number of columns of XS

and YS in Figure 4.
Thanks to the accumulation, the average size of the Outer Product increases from 16.5

to 61.0. As illustrated by Figure 5, this higher granularity improves the speed of the Outer
Product from 29.3 to 44.7 GF/s (compared to a peak of 47.1 GF/s) and thus accelerates it
by 35%. The impact of accumulation on the total time depends on both the matrix and the
computer properties and will be further discussed in Section 7.

Next, we analyze the gain obtained by recompressing the accumulated low-rank updates
(Figure 4(b)). While the total flops are reduced by 20%, the execution time is only accelerated

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



Performance and Scalability of BLR Multifrontal Factorization on Multicores A:13

ALGORITHM 2: Dense BLR LDLT (Left-looking) factorization: UFCS+LUAR variant.
Input: A p× p block matrix F of order m; F = [Fij ]i=1:p,j=1:p

1 for k = 1 to p do
2 for i = k to p do
3 Update Fik:
4 for j = 1 to k − 1 do
5 Inner Product: C̃

(j)
ik ← Xij(Y

T
ij DjjYkj)X

T
kj

6 Accumulate update: C̃
(acc)
ik ← C̃

(acc)
ik + C̃

(j)
ik

7 end for
8 C̃

(acc)
ik ← Recompress(C̃(acc)

ik )

9 C
(acc)
ik ← Outer Product(C̃(acc)

ik )

10 Fik ← Fik − C
(acc)
ik

11 end for
12 Factor: Fkk = LkkDkkL

T
kk

13 for i = k + 1 to p do
14 Compress: Fik ≈ F̃ik = XikY

T
ik

15 end for
16 for i = k + 1 to p do
17 Solve: F̃ik ← F̃ikL

−T
kk D−1

kk = Xik(Y
T
ikL

−T
kk D−1

kk )
18 end for
19 end for

Table IX. Performance analysis of the UFSC+LUAR factorization on
matrix S3 on 24 threads

UFSC +LUA +LUAR

average size of Outer Product 16.5 61.0 32.8

flops
(×1012) Outer Product 3.76 3.76 1.59
(×109) Recompress 0.00 0.00 5.39
(×1012) Total 10.19 10.19 8.15

Outer Product 21.4 14.0 6.0
time (s) Recompress 0.0 0.0 1.2

Total 174.7 167.1 160.0

Outer Product 29.3 44.7 44.4
speed (GF/s) Recompress 0.7

Total 9.7 10.2 8.5

scaled residual 1.5e-09 1.5e-09 1.5e-09

by 5%. This is partly due to the fact that the Outer Product only represents a small part of
the total, but could also come from two other reasons:

— The recompression decreases the average size of the Outer Product back to 32.8. As il-
lustrated by Figure 5, its speed remains at 44.4 GF/s and is thus not significantly decreased,
but it can be the case for other matrices or machines.

— The speed of the Recompress operation itself is 0.7 GF/s, an extremely low value. Thus,
even though the Recompress overhead is negligible in terms of flops, it can limit the global
gain in terms of time. Here, the time overhead is 1.2s for an 8s gain, i.e. 15% overhead.

We also report in Table IX the scaled residual ‖Ax−b‖∞
‖A‖∞‖x‖∞ , which on this test matrix is

unchanged by the LUAR algorithm.

6.2. UFCS algorithm
In all the previous experiments, threshold partial pivoting was performed during the FR

and BLR factorizations, which means the Factor and Solve steps were merged together as
described in Section 3. For many problems, numerical pivoting can be restricted to a smaller
area of the panel (for example, the diagonal BLR blocks). In this case, the Solve step can be
separated from the Factor step and applied directly on the entire panel, thus solely relying
on BLAS-3 operations.
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Fig. 5. Performance benchmark of the Outer Product step on brunch. Please note that the average sizes (first line)
and speed values (eighth line) of Table IX cannot be directly linked using this figure because the average size would
need to be weighted by its number of flops.

Furthermore, in BLR, when numerical pivoting is restricted, it is natural and more effi-
cient to perform the Compress before the Solve (thus leading to the so-called UFCS factor-
ization). Indeed UFCS makes further use of the low-rank property of the blocks since the
Solve step can then be performed in low-rank as shown on line 17 in Algorithm 2. Note that
for the matrices where pivoting cannot be restricted, we briefly discuss possible extensions
to pivoting strategies in Section 8.2.

In Table X, we report the gain achieved by UFCS and its accuracy, measured by the scaled
residual ‖Ax−b‖∞

‖A‖∞‖x‖∞ . We first compare the factorization with either standard or restricted
pivoting. Restricting the pivoting allows the Solve to be performed with more BLAS-3 and
thus the factorization is accelerated. This does not degrade the solution because on this test
matrix restricted pivoting is enough to preserve accuracy.

Table X. Performance and accuracy of UFSC and UFCS variants on 24
threads on matrix S3

standard pivoting restricted pivoting
FR UFSC FR UFSC UFCS

+LUAR +LUAR +LUAR

flops (×1012) 77.97 8.15 77.97 8.15 3.95
time (s) 417.9 160.0 401.3 140.4 110.7
scaled residual 4.5e-16 1.5e-09 5.0e-16 1.9e-09 2.7e-09

We then compare UFSC and UFCS (with LUAR used in both cases). The flops for the
UFCS factorization are reduced by a factor 2.1 with respect to UFSC. This can at first be
surprising as the Solve step represents less than 20% of the total flops of the UFSC factor-
ization.

To explain the relatively high gain observed in Table X, we analyze in detail the difference
between UFSC and UFCS in Table XI. By performing the Solve in low-rank, we reduce its
number of operations of the Factor+Solve step by a factor 4.2, which translates to a time

Table XI. Detailed analysis of UFSC and UFCS results of
Table X on matrix S3

flops (×1012) time (s)
UFSC UFCS UFSC UFCS

Factor+Solve 1.52 0.36 12.4 6.6
Update 5.78 2.93 53.4 34.0
Compress 0.62 0.43 24.1 20.4
LAI parts 0.24 0.24 50.5 49.7

Total 8.15 3.95 140.4 110.7
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reduction of this step by a factor of 1.9. Furthermore, the flops of the Compress and Update
steps are also significantly reduced, leading to a time reduction of 15% and 35%, respectively.
This is because the Compress is performed earlier, which decreases the ranks of the blocks.
On our test problem, the average rank decreases from 21.6 in UFSC to 16.2 in UFCS, leading
a very small relative increase of the scaled residual. The smaller ranks also lead to a smaller
average size of the Outer Product, which decreases from 32.8 (last column of Table IX) to
24.4. This makes the LUAR variant even more critical when combined with UFCS: with no
accumulation, the average size of the Outer Product in UFCS would be 10.9 (to compare to
16.5 in UFSC, first column of Table IX).

Finally, note that it is possible to define a last variant, so-called CUFS [Amestoy et al.
2017], where the Compress is performed even earlier, before the Update. Since we perform
the Solve in low-rank, we don’t need to decompress the update matrices of the low-rank
off-diagonal blocks. Thus, we can further reduce the cost of the factorization by keeping the
recompressed accumulated updates C̃(acc)

ik as the low-rank representation of the block Fik,
and thus suppress the Outer Product (line 9 of Algorithm 2). However, in a multifrontal
context, this requires the assembly (or extend-add) operations to be performed on low-rank
blocks, which is out of the scope of this paper.

Thanks to both the LUAR and UFCS variants, the factor of gain due to BLR with respect
to FR on 24 threads has increased from 2.4 (Table VIII) to 3.6 (Table X).

7. COMPLETE SET OF RESULTS
This section serves two purposes. First, we show that the results and the analysis reported

on a representative matrix on a given computer hold for a large number of matrices coming
from a variety of real-life applications and in different multicore environments. Second, we
will further comment on specificities that depend on the matrix or machine properties.

The results on the matrices coming from the three real-life applications from SEISCOPE,
EMGS and EDF (described in Section 3.1) are reported in Table XII. To demonstrate the
generality and robustness of our solver, these results are completed with those of Table XIII
on matrices from the SuiteSparse collection. We summarize the main results of Tables XII
and XIII with a visual representation in Figure 6. Then, for the biggest problems, we report
in Table XIV results obtained using 48 threads instead of 24. We recall that the test matrices
are described and assigned an ID in Table II.

7.1. Results on the complete set of matrices
We report the flops and time on 24 threads for all variants of the FR and BLR factor-

izations and report the speedup and scaled residual ‖Ax−b‖∞
‖A‖∞‖x‖∞ for the best FR and BLR

variants. The scaled residual in FR is taken as a reference. In BLR, the scaled residual also
depends on the low-rank threshold ε (whose choice of value is justified in Section 3). One can
see in Tables XII and XIII that in BLR the scaled residual correctly reflects the influence of
the low-rank approximations with threshold ε on the FR precision. Matrix nlpkkt120 (ma-
trix ID 22) is a numerically difficult problem for which the FR residual (1.9e-08) is several
digits lower than the machine precision; on this matrix the low-rank threshold is set to a
smaller value (10−9) to preserve a scaled residual comparable to those obtained with the
other matrices from the SuiteSparse collection.

On this set of problems, BLR always reduces the number of operations with respect to FR
by a significant factor. This factor is never fully translated in terms of time, but the time
gains remain important, even for the smaller problems.

Tree parallelism (tree//), the Left-looking factorization (UFSC) and the accumulation
(LUA) always improve the performance of the BLR factorization. For some smaller prob-
lems where the factorization of the fronts at the bottom of the elimination tree represents a
considerable part of the total computations, such as StocF-1465 and atmosmodd (matrix ID
12 and 13), exploiting tree parallelism is especially critical, even in FR.

Even though the recompression (LUAR) is always beneficial in terms of flops, it is not
always the case in terms of time. Especially for the smaller problems, the low speed of the
computations may lead to slowdowns. When LUAR is not beneficial (in terms of time), the
“+UFCS” lines in Tables XII and XIII correspond to a UFCS factorization without Recom-
pression (LUA only). For all problems, the LUAR algorithm obtained a scaled residual of the
same order of magnitude as the one obtained without recompression.
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For most of the problems, the UFCS factorization obtained a scaled residual of the same
order of magnitude as the one obtained by UFSC. This was the case even for some matrices
where pivoting cannot be suppressed, but can be restricted to the diagonal BLR blocks,
such as perf008{d,ar,cr} (matrix ID 8-10). Only for problems perf009ar and nlpkkt{80,120}
(matrix ID 11 and 21-22), standard threshold pivoting was needed to preserve accuracy and
thus the restricted pivoting and UFCS results are not available. To further improve the
performance of this class of matrices and as mentioned in Sections 6.2 and 8.2, pivoting on
the low-rank blocks could have been performed. This will be the object of future work.

We now analyze how these algorithmic variants evolve with the size of the matrix, by
comparing the results on matrices of different sizes from the same problem class, such as
perf008{d,ar,cr} (matrix ID 8-10) or {5,7,10}Hz (matrix ID 1-3). Tree parallelism becomes
slightly less critical as the matrix gets bigger, due to the decreasing weight of the bottom
of the elimination tree. On the contrary, improving the efficiency of the BLR factorization
(UFSC+LUA variant, with reduced memory transfers and increased granularities) becomes
more and more critical (e.g., 16% gain on perf008d compared to 40% gain on perf008cr). Both
the gains due to the Recompression (LUAR) and the Compress before Solve (UFCS) increase
with the problem size (e.g., 20% gain on perf008d compared to 34% gain on perf008cr), which
is due to the improved complexity of these variants [Amestoy et al. 2017].

We also analyze the parallel efficiency of the FR and BLR factorization by reporting the
speedup on 24 threads. The speedup achieved in FR for the small and medium problems is
of 16.4 in average and up to 20.4. As for the biggest problems, they would take too long to run
in sequential in FR; this is indicated by a “—” in the corresponding row of Tables XII and
XIII. However, for these problems, we can estimate the speedup assuming they would run
at the same speed as the fastest problem of the same class that can be run in sequential.
Under this assumption (which is conservative because the smaller problems already run
very close to the CPU peak speed), these big problems all achieve a speedup close to or over
20. Overall, it shows that our parallel FR solver is a good reference to be compared with.

The speedups achieved in BLR are lower than in FR, but they remain satisfactory, aver-
aging at 10.5 and reaching up to 13.8, and leading to quite interesting overall time ratios
between the best FR and the best BLR variants. It is worthy to note that bigger problems
do not necessarily lead to better speedups than smaller ones, because they achieve higher
compression and thus lower efficiency.

We summarize the main results of Tables XII and XIII with a visual representation in Fig-
ure 6. We compare the time using 24 threads for four versions of the factorization: reference
(ref.) FR and BLR, and improved (impr.) FR and BLR. Reference versions correspond to the
initial versions of the factorization with only node parallelism, standard partial threshold
pivoting and the standard FSCU variant for the BLR factorization. The improved FR ver-
sion exploits tree parallelism and restricts numerical pivoting when possible. The improved
BLR version additionally uses a UFCS factorization with accumulation (LUA), and possibly
recompression (LUAR, only when beneficial). While the time ratio between the reference FR
and BLR versions is only of 1.9 in average (and up to 6.9), that of the improved versions is
of 4.6 in average (and up to 18.8).

7.2. Results on 48 threads
Next, we report in Table XIV the results obtained using 48 threads on brunch. For

these experiments, we have selected the biggest of our test problems: 10Hz, H17, S21, and
perf008cr (matrix ID 3, 5, 7, and 10). On these big problems, we compute the speedup ob-
tained using 48 threads with respect to 24 threads (and thus, the optimal speedup value is
2). With the reference FR factorization, a speedup between 1.51 and 1.71 is achieved, which
is quite satisfactory. The improved FR version, thanks to tree parallelism and restricted
pivoting, increases the speedup to between 1.53 and 1.73, a relatively minor improvement.

The results are quite different for the BLR factorization. The speedup achieved by the
reference version is much smaller: between 1.13 and 1.36, which illustrates that exploiting
a high number of cores in BLR is a challenging problem. We then distinguish two types of
improvements of the BLR factorization:

— The improvements that increase its scalability: tree parallelism but also the UFSC
(i.e., Left-looking) factorization (due to a lower volume of memory accesses) and the LUA
accumulation (due to increased granularities). All these changes combined lead to a major

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.



Performance and Scalability of BLR Multifrontal Factorization on Multicores A:19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Matrix ID

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 ti
m

e 
(r

ef
er

en
ce

 F
R

 =
 1

)

FR (ref.) FR (impr.) BLR (ref.) BLR (impr.)

Fig. 6. Visual representation of summarized results of Tables XII and XIII (ref.: reference; impr.: improved).

Table XIV. Results on 48 threads for the largest problems

time (48 threads) speedup w.r.t 24 threads
matrix ID 3 5 7 10 3 5 7 10

FR 4100.5 5949.8 8387.0 1508.7 1.54 1.70 1.71 1.51
+ tree// + rest. piv. 3402.1 5599.0 7987.4 1350.4 1.66 1.72 1.73 1.53

BLR 1764.9 2478.3 3142.7 828.8 1.13 1.20 1.18 1.36
+ tree// + UFSC + LUA 1056.7 1071.3 1234.3 389.9 1.18 1.53 1.50 1.46
+ LUAR + UFCS 590.1 519.0 604.9 328.2 1.31 1.26 1.22 1.15

ratio best FR/best BLR 6.1 10.8 13.2 4.1

improvement of the achieved speedup, between 1.18 and 1.53, and illustrate the ability of
the improved BLR factorization to scale reasonably well, even on higher numbers of cores.

— The improvements that increase its compression: the recompression (LUAR) and the
UFCS factorization. By decreasing the number of operations, these changes may degrade
the scalability of the factorization. This explains why the achieved speedup may be lower
than that of the UFSC+LUA variant, or sometimes even that of the reference BLR version.
Despite this observation, these changes do reduce the time by an important factor and il-
lustrate the ability of the improved BLR factorization to achieve significant gains, even on
higher numbers of cores.

7.3. Impact of bandwidth and frequency on BLR performance
In this Section, we report additional experiments performed on two machines and analyze

the impact of their properties on the performance.
The machines and their properties are listed in Table I. brunch is the machine used for

all previous experiments. grunch is a machine with very similar architecture but with lower
frequency and bandwidth.

In Table XV, we compare the results obtained on brunch and grunch. We report the exe-
cution time of the BLR factorization in Right-looking (RL), Left-looking (LL), and with the
LUA variant. On brunch, as observed and analyzed in Sections 5.3 and 6.1, the gain due
to the LL factorization is significant while that of the LUA variant is limited. However, on
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Fig. 7. Roofline model analysis of the Outer Product operation.

grunch, we have the opposite effect, the difference between RL and LL is limited while the
gain due to LUA is significant.

Table XV. Time (s) for BLR factorization
on matrix S3 (on 24 threads on brunch

and 28 threads on grunch)

machine RL LL LUA

brunch 220.5 174.7 167.1
grunch 247.7 228.3 196.8

These results can be qualitatively analyzed using the Roofline Model [Williams et al.
2009]. This model provides an upper bound for the speed of an operation as a function of
its arithmetic intensity, defined as the ratio between number of operations and number of
memory transfers, the memory bandwidth and the CPU peak performance:

Attainable
GF/s = min


Peak Floating-point

Performance
Peak Memory

Bandwidth × Operational
intensity

The Roofline Model is plotted for the grunch and brunch machines in Figure 7 consid-
ering the bandwidth and CPU peak performance values reported in Table I. Algorithms
whose arithmetic intensity lies on the slope of the curve are commonly referred to as
memory-bound because their performance is limited by the speed at which data can be trans-
ferred from memory; those whose arithmetic intensity lies on the plateau are referred to as
compute-bound and can get close to the peak CPU speed.

Although it is very difficult to compute the exact arithmetic intensity for the algorithms
presented above, the following relative order can be established:

— because of the unsuitable data access pattern (as explained in Section 5.3) and the low
granularity of operations, the RL method is memory bound as proved by the fact that the
Outer Product operation runs, on brunch, at the poor speed of 8.8 GF/s;

— as explained in Section 5.3, the LL method does the same operations as the RL one but
in a different order which results is a lower volume of memory transfers. Consequently,
the LL method enjoys a higher arithmetic intensity although it is still memory bound as
shown by the fact that the Outer Product operation runs, on brunch, at 29.3 GF/s (see
Table IX) which is still relatively far from the CPU peak;

— the LUA method is based on higher granularity operations; this likely allows for a better
use of cache memories within BLAS operations which ultimately results in an increased
arithmetic intensity; in conclusion the LUA method is compute-bound (or very close to)
as shown by the fact that the Outer Product runs at 44.7 GF/s on brunch (see Table IX).
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This leads to the following interpretation of the results of Table XV. Compared to grunch,
brunch has a higher bandwidth; this translates by a steeper curve in the memory-bound
area of the roofline figure. As a consequence, the difference between the RL and LL algo-
rithms (which are both memory-bound) is greater on brunch than on grunch. However, the
higher bandwidth also makes the LL factorization closer to being compute-bound on brunch
than on grunch. Therefore, the difference between LL and LUA (for which the Outer Product
is compute-bound) is greater on grunch.

8. CONCLUSION
8.1. Summary

We have presented a multithreaded Block Low-Rank factorization for shared-memory
multicore architectures.

We have first identified challenges of multithreaded performance in the use of BLR ap-
proximations within multifrontal solvers. This has motivated us to both revisit the algorith-
mic choices of our Full-Rank Right-looking solver based on node parallelism, and also to
introduce algorithmic variants of the BLR factorization.

Regarding the algorithmic changes for the FR factorization, even though exploiting tree
parallelism brings only a marginal gain in FR, we have shown that it is critical for the BLR
factorization. This is because the factorization of the fronts at the bottom of the elimination
tree is of much higher weight in BLR. We have then observed that, contrarily to the FR case,
the Left-looking BLR factorization outperforms the Right-looking one by a significant factor.
We have shown that it is due to a lower volume of memory transfers.

Regarding the BLR algorithmic variants, firstly we have shown that accumulating to-
gether the low-rank updates (so-called LUA algorithm) improves the granularity and the
performance of the BLAS kernels. This approach also offers potential for recompression (so-
called LUAR algorithm) which can often be translated into time reduction. Secondly, for
problems on which the constraint of numerical pivoting can be relaxed, we have presented
the UFCS variant which improves both the efficiency and compression rate of the factoriza-
tion.

8.2. Perspectives
We briefly discuss remaining challenges and open questions that could be the object of

further research.
A task-based multithreading could further improve the performance of the factorization;

this approach (described, for example, in Anton et al. [2016], Sergent et al. [2016], Akbudak
et al. [2017]) would allow for a pipelining of the successive stages of the factorization of each
frontal matrix as opposed to the fork-join approach hereby presented. However, the taski-
fication of the BLR factorization is not straightforward as it raises two questions: how to
control the memory consumption; and how much of the gain due to the Left-looking factor-
ization, which also makes possible the accumulation and recompression of low-rank updates,
can be preserved?

We have shown that, compared to the FR factorization, the BLR factorization has a lower
granularity of operations and is more memory-bound. These two issues will be even more
critical in the context of accelerators such as GPUs or MICs which require larger granular-
ities and higher amounts of parallelism.

Moreover, as mentioned in Section 4, the cost of the Compress step is not negligible in
terms of time. With all the improvements proposed in this paper, this observation becomes
even more critical: the Compress is close to being the bottleneck for several problems. We
leave the performance analysis of this step for future work. In particular, alternative com-
pression kernels could be investigated, such as randomized QR with column pivoting [Lib-
erty et al. 2007; Halko et al. 2011] or Adaptive Cross Approximation (ACA) [Bebendorf
2000].

Finally, as mentioned in Section 6.2, the threshold partial pivoting strategy needs to be
extended for the UFCS variant. Assuming that QR with column pivoting is used for off-
diagonal block compression, the quality of a candidate pivot could be estimated with respect
to the column entries of the R matrices of the low-rank off-diagonal blocks. Strategies close
to those suggested in Duff and Pralet [2007] for distributed-memory settings, where off-
diagonal blocks are not available locally, could also be applied.
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8.3. Extension to distributed-memory
The extension of the BLR factorization to distributed-memory architectures is an ongoing

effort which is out of the scope of this paper. We briefly indicate a few additional issues that
should be addressed.

In a distributed-memory environment, the unpredictability of BLR compressions raises
the difficulty of load balancing work between MPI processes. Mapping and scheduling
strategies suitable to the BLR case should be designed. As the number of processes in-
creases, synchronizations become more critical. Recent work from Sid-Lakhdar [2014] aim-
ing at avoiding such synchronizations in the FR case should be extended to the BLR case,
for which it will certainly be even more critical. Finally, the LUAR variant presented in Sec-
tion 6 requires the factorization to be performed in Left-looking. Its influence on the pattern
of communications will have to be carefully analyzed.
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versité de Toulouse.
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