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ABSTRACT
Large graphs are prevalent in social networks, traffic networks,

and biology. These graphs are often inexact. For example, in a

friendship network, an edge between two nodes u and v indi-

cates that users u and v have a close relationship. This edge may

only exist with a probability. To model such information, the

uncertain graph model has been proposed, in which each edge e
is augmented with a probability that indicates the chance e exists.
Given a node q in an uncertain graph G, we study the k-NN
query of q, which looks for k nodes in G whose distances from q
are the shortest. The k-NN query can be used in friend-search,

data mining, and pattern-recognition. Despite the importance of

this query, it has not been well studied. In this paper, we develop

a tree-based structure called the U-tree. Given a k-NN query, the

U-tree produces a compact representation of G, based on which

the query can be executed efficiently. Our results on real and

synthetic datasets show that our algorithm can scale to large

graphs, and is 75% faster than state-of-the-art solutions.

1 INTRODUCTION
Graphs are prevalent in social networks [10, 12], traffic network-

s [11], biological networks [32], and mobile ad-hoc networks [13].

Due to noisy measurements [1], hardware limitation [2], infer-

ence models [9], and privacy-preserving perturbation [4, 23],

these graphs are inherently uncertain. To model this error, un-
certain graphs have been studied [1, 6, 15, 19]. In these graphs,

each edge is associated with a probability distribution. Figure 1(a)

shows the protein-protein interaction (PPI) network as an uncer-

tain graph, where each node denotes a protein, and each edge

is an interaction between a pair of proteins. The value on each

edge denotes the probability that the interaction exists (called

existential probability). For instance, the existential probability
between nodes A and B is 0.7.

k-NN query. In this paper, we study the efficient evaluation

of k-nearest neighbor (k-NN) queries on uncertain graphs [1].

Given a node q, the k-NN query returns k nodes with the shortest

“distances” from q, based on a distance function (Table 1). The

k-NN query can help biologists to perform tasks such as protein

complex detection [2, 21], link discovery [17, 32], and protein

function prediction [24]. Security experts can also use k-NN
queries to design privacy-preserving algorithms to protect nodes

in a graph from being identified [4].

Although k-NN queries are useful, the issues of evaluating

them efficiently have only been briefly touched, e.g., [19]. Our

experiments found that they are also not very efficient on large

uncertain graphs. The major reason is that for correct query ex-

ecution, queries running on the uncertain graph should follow

the Possible World Semantics (PWS in short). Figure 1(b) shows
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Figure 1: (a) an uncertain graph G and (b) a possible world
fromGwith existence probability 0.3×0.9×0.6×0.8 = 0.1296.

Table 1: Distance functions for uncertain graphs.

Function Formula
Most-probable [32] dmp (s, t ) = argmax

∏
e∈PATH (s,t ) p (e )

Reliability [35] dr e (s, t ) =
∑
d |d<∞ Ps,t (d )

Median [30] dme (s, t ) = argmax{
∑D
d=0 Ps,t (d ) ≤

1

2
}

Majority [30] dma (s, t ) = argmaxd {Ps,t (d ) }
Expected [32] dex (s, t ) =

∑∞
d=0 Ps,t (d )d

Expected-reliable [35] der (s, t ) =
∑
d |d<∞ d

Ps,t (d )
1−Ps,t (∞)

a possible world instance sampled from G in Figure 1(a). A sim-

ple way to evaluate the query is to get the answer from each

possible world and then collect all these answers to form the

final answer. For example, given a k-NN query of computing the

k nearest neighbors from node A in Figure 1(a), we obtain 2
4

possible worlds, then for each of them, we compute the k nearest

neighbors, and finally obtain the k nodes which are the closest to

A considering all the possible worlds (according to a function in

Table 1). Because an uncertain graph has an exponential number

of possible worlds, a naïve solution can be extremely inefficien-

t. Although existing solutions try to avoid enumerating all the

possible worlds, they are still expensive.

The U-tree framework. In this paper, we develop a new

indexing framework for k-NN requests, which (i) allows efficient

and scalable k-NN query evaluation under the PWS; and (ii) can

be easily adapted to different distance functions (e.g., Table 1).

As shown in Figure 2, our framework consists of two stages:

• offline index construction (Figure 2(a)). Given an uncertain graph
G and a distance function d , we first employ decomposition tech-
niques (Step A), which converts G into a succinct index structure,

whose edges are encoded with the probability information of

G [5, 14, 16, 22, 31, 33]. These techniques were not designed

for k-NN queries. Hence, we perform customization of the index

(Step B), which adjusts the information and structure of the index,

in order to enhance the performance of k-NN queries.

• online query evaluation (Figure 2(b)). This stage is used to evalu-
ate a k-NN request for a node q online. Particularly, we design an

efficient query algorithm (Step C) that uses the U-tree developed
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Figure 2: Answering k-NN query with the U-tree.

in the offline stage, which then yields the k nodes that are the

closest to q according to distance function d .
Cost model. Upon receiving a k-NN request, the U-tree will

generate another uncertain graph д (Step C above), which is a

proper subgraph of G, but contains the probability information

essential to answering the k-NN query. Because д is often much

smaller than G, the query execution time can be significantly

reduced. To achieve this goal, more information needs to be incor-

porated to the index during customization, which also renders

a larger U-tree (Step B). As we will point out later, there is a

trade-off between the U-tree’s size and the query cost. We will

discuss a cost model that allows us to balance between these two

factors, in order to improve query efficiency without significantly

increasing the U-tree size.

Experiments. To evaluate the performance of the proposed

methods, we conduct experiments on both real and synthetic

datasets. We have also tested different decomposition methods

and distance functions in the U-tree framework. The results show

that U-tree is superior to the state-of-the-art algorithms, and the

query time is significantly reduced by 75%; the overhead of U-

tree is only 23% more than the index generated in Step A. Our

solution is also scalable to large uncertain graphs with over one

million nodes.

Organization. The rest of paper is organized as follows. We

review the related works in Section 2. In Section 3, we present

the formal definition of the problems, and discuss some basic

techniques. We present the U-tree framework in Section 4. In

Section 5, we present our experiment results. Section 6 concludes.

2 RELATEDWORK
We review the existing queries for uncertain graphs, and then

discuss the probabilistic distance functions.

2.1 Queries for Uncertain Graphs
In recent years, the k-NN query for uncertain graphs has received

plenty of attention [19, 29, 30]. As mentioned before, to answer

queries on uncertain graphs, the Possible World Semantics (PWS)

are often used, which assumes that an uncertain graph can be

expressed as a number of graph instances. Because there is an

exponential no. of possible world instances, three methods are

proposed in the literature: (1) The first one finds some represen-

tative deterministic graphs from the uncertain graph and answer

the queries based on them [28]. (2) The second one is to reduce

the size of the uncertain graph by removing some weak nodes

and edges, or only sample part of the uncertain graph [30]. This,

however, will lead to information loss. (3) The last method is

to build some elegant index structures, which can significantly

speed up the query process without information loss, and thus

has received plenty of attention recently [19, 22]. Thus, in this

paper we adopt the third method for the k-NN query.

In [30], Potamias et al. studied the k-NN query on uncertain

graphs by using incremental Dijkstra [29] withMonte Carlo (MC)

sampling. In [19], Khan et al. proposed a novel index for the

probabilistic reliability search problem (reliable set query), which

aims to find all the nodes reachable from a given source node

with probability over a user-defined threshold. Moreover, it can

be adapted for answering the top-k reliability query. However,

it only focuses on reliability search, and it is not clear how to

support other distance functions. Recently, Maniu et al. [22]

proposed a novel tree index, called ProbTree, and studied how to

perform source-to-target query (STQ) using ProbTree. However,

as it is mainly designed for STQ, it works poorly for k-NN queries.

In summary, none of these works can answer the k-NN queries

with arbitrary probabilistic distance functions, and thus they are

not general enough. Therefore, it is desirable to develop a generic

k-NN query framework for any probabilistic distance functions

and graphs with different probability distributions.

2.2 Probabilistic Distance Functions
All the distance functions that can be used for k-NN queries are

summarized in Table 1, where Ps,t (a)=
∑
G |dG (s,t )=a Pr (G ) is the

probability that the shortest path distance (SPD) between two

nodes s and t equals to a [30]. Given a query node s , a k-NN
query can return the top-k nodes with the smallest values of dme ,

dma , dex , and der from s , or the top-k nodes with the biggest

values of dmp or dr e from s .
The function dmp measures the length of the most-probable-

path (i.e., a path with the highest probability) between nodes s
and t . The function dr e measures the probability that there exists

a path between nodes s and t , which is meaningful in situations

such as delivering packages in a sensor network, but it cannot

deal with the cases that prefer distance rather than reliability. The

function dme measures the median SPD among all the possible

worlds, and it can be used when the user wants to get any k-th
order statistic, but its value may be infinite. The function dma
computes the SPD that is the most likely to be observed when

sampling a graph from G. It is useful in uncertain graphs with

irregular distance distributions on edges, where the value has a

limited discrete domain, but it cannot deal with infinity, e.g., most

values of dma will become infinite when searching in the uncer-

tain graphs with small probability on each edge. The functions

dex and der are often used to compute the expected distances,

and der is better when there are infinite distances in uncertain

graphs. It is worth mentioning that, there is no consensus on

which distance function is the best, because different functions

can be used in different applications.

Consider the example graph in Figure 3(a), where the number

on an edge represents the probability that it exits and ϵ is an

infinitely small number. Suppose that our goal is to compute the

SPD from S to T. Then, dme will return the length of the path

on the top, while dmp will return the length of the path on the

bottom as the SPD although it may contain infinite edges in the

path.

Because of space limitations, we mainly focus on reliability
and expected-reliable distances in this paper, as they are the most

well studied ones in recent years [19, 22, 30], but other distance

functions can also be easily incorporated into our indexing frame-

work.
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(a) (b)

Figure 3: Examples for (a) distance functions and (b)PCD
results.

3 PRELIMINARIES
In this section, we first introduce the problem we studied in

Section 3.1, then discuss the MC sampling in Section 3.2, and

finally present the uncertain graph decomposition (UGD) and

UGD-based index in Sections 3.3 and 3.4.

3.1 Problem Definition
In line with previous studies [19, 30], we consider an uncertain

graph as follows. Note that all the notations frequently used in

the paper are summarized in Table 2.

Definition 1 (Uncertain Graph). An uncertain graph G is a
triple (V , E, p), whereV is the set of nodes, E is the set of edges, and
p is the function of assigning probabilities, i.e., for any edge e ∈ E,
the probability that it has a valuew is p (w |e ), and

∑
w ∈W

p (w |e )=1,

whereW contains all the possible values on the edges.

Let us take the graph in Figure 1(a) as an example, where

each edge follows a Bernoulli distribution (e.g., for e=(A, C) we
have p (0|e )=0.1 and p (1|e )=0.9). For each edge, if its valuew=0,

it means that the edge does not exist; otherwise, it exists. Notice

that the function p allows any kind of probability distributions

(e.g., multi-valued or normal distributions) to be assigned for an

edge.

According to the possible world semantics [19, 22, 30], an un-

certain graph G can be thought of as a probabilistic distribution,

containing an exponential number of possible worlds, each hav-

ing different probabilities. The probability of a possible world is

defined as follows:

Definition 2. Given an uncertain graph G=(V , E, p), the prob-
ability of observing a possible world G=(V , EG ) is

Pr (G ) =
∏

e ∈EG&i ∈W \{0}

p (i |e )
∏

e ∈E\EG

p (0|e ). (1)

For simplicity, if the edges follow Bernoulli distributions (see

Figure 1(a)), the probability of observing a possible world is:

Pr (G ) =
∏
e ∈EG

p (e )
∏

e ∈E\EG

(1 − p (e )). (2)

Next, we formally define STQ and k-NN query as follows
1
. We

illustrate them via Example 1.

Definition 3. Given an uncertain graph G(V , E, p), a distance
function d , and two nodes s and t (s , t ∈ V ), the source-to-target
query (STQ) qd (s, t ) aims to compute the distance between s and t
based on the distance function d .

Definition 4. Given an uncertain graph G(V , E, p), a function
d , a node s (s ∈ V ), and an integer k >0, the k-nearest neighbors
1
For convenience, the subscript d can be omitted when the type of distance function

is not required.

Table 2: Notations used in this paper.

Notation Meaning
G(V , E , p) An uncertain graph

n,m The sizes of V and E respectively

G (V , EG ) A possible world from G

STQ The source-to-target query

SPD The shortest path distance

q (s, t ) An STQ between two nodes s and t
qk (s ) An k-NN query for a node s
ϕ (G ) The diameter of the uncertain graph G

(B, T )
The tree index of an uncertain graph with

the bag set B and tree structure T

д (G, ϵ, δ )
The sampling times for G with error rate ϵ
and failure rate δ

f (G) The cost function of the uncertain graph G

query (k-NN) qk (s ) aims to find a set of nodes C such that for any
r ∈ C , the value of d (s, r ) is in the top-k list w.r.t. the function d .

In this paper, we will focus on the k-NN query. One naïve way

to answer k-NN query is to run (n−1) times of STQs like the way

to answer q1 (A) in Example 1. These STQs are called sub-queries

of qk (s ).

Example 1. Consider the uncertain graph in Figure 1(a). (1)
Let s=A, t=B and d = der . There are 3 kinds of possible SPD values
betweenA and B on G, that is, Pr (SPD = 1) = 0.7, Pr (SPD = 3) =
0.3× 0.9× 0.6× 0.8 = 0.1296 (see Figure 1(b)) and Pr (SPD = 0) =
0.3 × (1 − 0.9 × 0.6 × 0.8) = 0.1704. Therefore, q(A,B) = (0.7 +
0.1296 × 3)/(1 − 0.1704) = 1.31. (2) Let s=A, k=1 and d = der . We
first calculate the three SPD values der (A,B) = 1.31,der (A,C ) =
1.07 and der (A,D) = 2. Therefore, q1 (A) = {C}.

Since the number of possible worlds is exponentially large, it

is impractical to enumerate all the possible worlds. To alleviate

this issue, people often sample a small number of possible worlds,

then perform queries on these sampled graphs, and obtain the

final answer by accumulating the results in a particular manner.

Next, we will introduce Monte Carlo Sampling, which is the

popular way for approximate query processing in an efficient

way.

3.2 Monte Carlo Sampling
To address the curse of exponentiation, the Monte Carlo (MC)
sampling is used to sample a small number of graph instances [22,

30], and estimate the query results by performing queries on

these sampled graph instances. To sample an instance graph G,
we can sequentially consider each edge of G and sample it as a

deterministic edge in G following the probability distribution on

the edge. Intuitively, if a possible world is repeatedly sampled

multiple times, it should have a high probability to exist.

To achieve a theoretical estimation accuracy, the Chernoff
bound [30] can be applied to determine the number of possible

worlds needed for a k-NN query. Given an uncertain graph G,

a distance function d , and a pair of nodes s and t , the accuracy
of estimating the value of d (s, t ) by MC sampling can be well

guaranteed by Lemma 1:

Lemma 1. [30] To achieve an error rate of ϵ >0 with a failure
probability of δ >0, i.e., Pr( |d (s, t ) − d ′(s, t ) | ≥ ϵd (s, t )) ≤ δ , the
number of samples needed is

д(G, s, t , ϵ,δ ) = max

{
3

ϵ2d (s, t )
,
ϕ (G)2

2ϵ2

}
· ln
(
2

δ

)
, (3)
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Table 3: UGD methods.

Method Lossless Time Pros&cons

JSD [33] Yes Cubic

Smaller decomposition result,

accurate but slow.

SPQR [14] No Linear

Smaller decomposition result

but not lossless.

FWD [31] Yes Linear

Information lossless whenW = 2

with more redundancy.

LIN [22] Yes Linear

Compromise between SPQR

and FWD.

PCD [5] Yes #P -hard Layered decomposition

without information loss.

PTD [16] Yes #P -hard Layered decomposition

without information loss.

where d ′(s, t ) is the estimated value of d (s, t ), and the function
ϕ (G)= max

(s,t )∈V×V
d (s, t ) is the diameter of G.

In practice, one usually focuses on finding the pairs with a

given threshold ρ. Note that in general ρ is not too small [30],

and thus we have
ϕ (G)2

2ϵ 2 ≥
3

ϵ 2ρ . Therefore, the number of needed

samples is:

д(G, ϵ,δ ) =
ϕ (G)2

2ϵ2
ln
(
2

δ

)
. (4)

3.3 Uncertain Graph Decomposition
To enable efficientk-NN queries, offline index are usually used [34,

36–38], often based on graph decomposition methods. In Table 2,

we list all the uncertain graph decomposition (UGD) methods,

including junction scan decomposition (JSD), SPQR decomposi-

tion [14], lineage tree decomposition (LIN) [22], probabilistic core
decomposition (PCD) [5], and probabilistic truss decomposition

(PTD) [16].

In [33], Na et al. proposed JSD
2
for dividing a deterministic

graph into several partitions by finding the junction nodes. This

method can also be adapted for UGD by simply regarding the

probabilities of edges as their weights.SPQR [14] is named from

the optimal tree obtained by decomposing the graph into a tree of

tri-connected components. FWD [31] also decomposes the tree,

but limits itself at bags which have at most a limited number of

nodes, which is called their treewidthW . LIN [22] behaves the

same as FWD, but keeps more information in the bags for better

query processing. SPQR can decompose the uncertain graph

optimally, but during the process it will lose some information.

FWD computes probabilities exactly in the bags, but can lead

to decompositions that do not reduce much the graphs. LIN can

both reduce the graph drastically and allow exact computation

of probabilities, but comes at a high cost in space.

PCD [5] and PTD [16] are recently proposed layered uncer-

tain graph decomposition methods. They can extract a dense

part of the uncertain graph called (k,η)-core and (k,η)-truss
respectively, which has higher probability to exist. This extrac-

tion can be executed iteratively. Note that even though the exact

algorithm for finding (k,η)-core or (k,η)-truss is #P-hard, approx-
imation algorithms are provided so that they can be completed

in linear time [5, 16]. For example, there are three (k,η)-cores in
Figure 3(b), and the smaller ones are more dense and reliable in

the uncertain graph.

2
Also called partition-based road network index in [33]. We call it JSD because it

scans the junction nodes.

3.4 UGD-based Tree Index
A naïve index is to pre-compute all the pairwise distances and

store them in a matrix, and then answer a query by simply look-

ing up the matrix. This index, however, has a space complexity

of O (n2), and it is not affordable if G is large. Thus, it is desir-

able to develop more effective indexes. Recently, people often

build an index based on UGD. The rationality behind is that, by

decomposing G into several sub-graphs, the k-NN query can be

performed on a few sub-graphs, rather than the entire graph,

resulting in high query efficiency.

To build an index for G, a specific UGD method from Table 3

is used to decompose it into several bags, each of which contains

a set of nodes of G. The bags are then organized into a tree

structure. Below, we present a formal definition of the tree index.

Definition 5. Given an uncertain graph G (V ,E,p), the index
of G is a tuple (B, T ), where B={Bi |i = 1, 2, · · · , l } is a set of l
bags from the decomposition of G and T is a tree, such that:

(1) ∪Bi ∈BBi = V ;
(2) For each (u,v ) ∈ E, there is Bi ∈ B, s .t . u,v ∈ Bi ;
(3) There is a link between Bi and Bj in T if Bi ∩ Bj , ∅.

We illustrate the index by taking FWD decomposition as an

example. We first adopt FWD to compute all the bags limited by

the tree widthW = 2. After that, for each pair of bags, if they

share some nodes, we link them with an edge. Since only one bag

serves as the root, this index is a tree structure. For example, the

tree index in Figure 5 is an example from the FWD decomposition

of Figure 4(a). Especially, for PCD and PTD, we only link the two

bags when a bag is directly a subset of another bag, to keep the

tree structure of the index. For example, if (k1,η1)-core⊂ (k2,η2)-
core and (k2,η2)-core ⊂ (k3,η3)-core, we only link (k1,η1)-core
with (k2,η2)-core and (k2,η2)-core with (k3,η3)-core.

Recall that we have discussed six UGD methods in Section 3.3.

Generally, all these methods can be adopted in the index. Due to

the space limitation, in this paper we mainly focus on FWD and

PCD, since most of existing k-NN queries on uncertain graphs

are based on expected distance search [30] or density search [35].

For the expected distance based k-NN queries (e.g., the k-NN
queries based on Expected-reliable distance [30]), FWD can be

used; for the density based k-NN queries (e.g., top-k reliability

query [35]), PCD can be used, since it is useful for extracting

the dense components (e.g., (k,η)-core in Figure 3(b)) with high

existence probabilities.

4 THE U-TREE INDEXING FRAMEWORK
Even with the sampling methods or indexes proposed in Section

3.3, it is challenging to answer k-NN queries in a large uncertain

graphs. However, with an advanced index, we can speed up the

searching process by generating an uncertain subgraph in much

smaller size, with enough information to answer the k-NN query.

Since the uncertain subgraph is smaller, query answering will be

more efficient.

For example, the subgraph with essential information (Fig-

ure 4(b)) to answer the query der (B,E) is much smaller compared

to the whole graph in Figure 4(a). Since the reduction on nodes

will lead to an exponential decrease in the sampling times based

on Definition 3.2, the tree index will speed up the probabilistic

searching in a dramatic way. In another aspect, a tree index has

a reasonable cost compared to other indexes. It can decrease the

number of distances to be computed compared to the matrix

index. For example, we only need to compute 3 der values in
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(a) (b)

Figure 4: Tree index demonstration (a) Anuncertain graph
G (b) G (q) for q = der (B,E).

Figure 4(a) rather than the 21 der values for each pair of nodes

in G.

We will answer two questions in this section: how to build an

index to efficiently answer the k-NN queries on uncertain graphs

(Step A, B in Figure 2), and how to query the index when faced

with a k-NN query (Step C in Figure 2). To answer the second

question, we propose a novel structure and a cost evaluation

model.

4.1 U-tree Index
In this section, we proposeU-tree fork-NN search on an uncertain

graph. After decomposing the uncertain graph into several bags

by Definition 5, we want to dig more on the index structure.

There are two steps to build the U-tree: the basic index con-

struction step, directly after the decomposition (Step A), and the

index customization step (Step B), which will refine the index for

efficient k-NN search.

Algorithm 1: Basic index construction
Input :Uncertain graph G

Output : (B,T )

1 B ← ∅,T ← ∅;

2 G ←undirected, unweighted graph of G;

3 for d ← 1 to 2 do
4 while deдree (v ) = d & v ∈ G do
5 create bag B;

6 V (B) ← v and all its neighbors;

7 for all unmarked e ∈ V (B) ×V (B) ∩ E (G ) do
8 E (B) ← E (B) ∪ {e};

9 mark e;

10 end
11 Delete v and link v’s neighbors in G;

12 B ← B ∪ {B};

13 end
14 end
15 Create the root bag R with all unmarked edges;

16 B ← B ∪ {R};

17 Organize the bags in B into T by their generating orders;

18 Add an edge between two bags in T if they share nodes;

19 Calculate distance distributions between nodes v ∈ G;

20 return (B,T );

Step A. First we adapt the STQ index from [22] into a k-NN
index, representing the basic index construction method (see

Algorithm 1). After the initialization (line 1 to 2), we iteratively

Figure 5: The basic tree index for the uncertain graph in
Figure 4(a).

add the node in degree 0 or 1 into a bag with its neighbors
3
, as

well as the edges among them to form a bag (line 3 to 14). Every

time we add the node into one bag, it will be deleted from the

original graph G. Then we create the root bag with the nodes

left (line 15 to 16). Next, we link the bags and form a tree (line 17

to 18). This basic index is evaluated in the indexing framework

named PTI in Section 5.

The index is a bottom-up structure, the root of the tree is where

the query will be answered, so computations will be launched

in a bottom-up way up to the root. Normally, we need several

bags to answer a single sub-query; in the following, we study

whether it is possible to use fewer bags to answer it after adding

extra information into the index.

Note that a bag in higher level of U-tree will contain more

information, because we aggregate all the information into a root

bag in a bottom-up way in Algorithm 1. Consequently, only the

root bag contains the complete distance distribution from the

uncertain graph G with respect to the nodes and edges in this

bag. Then we can use the root bag itself to reduce an uncertain

graph; this is not true for any other bag B in the graph.

For example, node B in bag β of Figure 5 can only see the

information from its child bag γ . Assume now we need to query

qer (B,C ). Even though we have known the distance distribution

on the edge (B,C ) in bag β , before we search the root bag α , we
do not know if there exists another path in another part of the

uncertain graph G, that is, the subgraph of nodes {C,D,E, F ,G}
in G. So if the starting bag is far from the root, then we must

search several bags before reaching the root bag, thus making

the reduced sub-graph relatively large in size.

Step B. To reduce the bags to be scanned, we propose a novel

method to customize the basic index from Step A. After generat-

ing the root bag, we make each edge contain distance information

for both sides. Here both-side information means the bag can

see the information of its child bags as well as the parent bags.

3
We use here FWD (W = 2) to decompose the uncertain graph into several bags.

Other decomposition methods can be used with minor changes.
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Then each bag will obtain a global view on G. Therefore, if the

sub-query q(s, t ) only concerns the nodes in one bag, we can use

this single bag to answer q(s, t ), and thus the size of the uncertain
subgraph will be significantly reduced.

We summarize U-tree in Algorithm 2. First we obtain the set

of bags B and the tree structure T from the basic index (line 1).

Then we initialize a queue Q and add the root bag R of T into Q
(line 2 to 3). Next, we iteratively pop out the head P of Q until it

is not a leaf node of T (line 4 to 7). For every edge that is shared

by P and its child bags, we calculate the distance distribution in

the corresponding child bags, with the help of the information

provided by P (line 8 to 14).

Different from the basic index (B,T ) from Algorithm 1, two

points are developed in the index from Algorithm 2. First, each

bag is embedded with more information. Second, we actually

change the structure of T . Since every bag now can see the

whole uncertain graph and thus can serve as the root, we can

terminate the index searching earlier. Because fewer bags are

searched and a smaller sub-graph is generated, query time is

saved when running the query on this smaller sub-graph.

Algorithm 2: U-tree construction
Input :Uncertain graph G

Output : (B,T )

1 (B,T )=Basic index construction(G);

2 Q ← ∅, P ← null ;

3 Q .add (R);

4 while Q is not empty do
5 while P is null or P is the leafnode of T do
6 P ← Q .pop ();

7 end
8 for each child S of P do
9 if edge e is shared by P and S then

10 Compute the distance distribution of e in S ;

11 Q .add (S );

12 end
13 end
14 end
15 return (B,T );

For example, when answering q3 (S ), we need to answer the

sub-query qer (A,D). So we start searching the U-tree in Figure 6

from bag γ and stop searching when reaching bag β . However, if
we answer it by the index in Figure 5, we can only terminate the

searching when reaching the root bag α . Thus, instead of gener-

ating the uncertain subgraph from {α , β,γ }, a smaller uncertain

subgraph is generated from {β ,γ }.
Compared to the basic index, U-tree may help us utilize graph

locality [27]. This is because the nodes, which may be queried

by the users, are usually localized in some area of G rather than

uniformly distributed. For example, if s and t is within the same

bag, a single bag is enough to answer the sub-query q(s, t ). From
graph locality, only few bags are searched when answering each

sub-query and thus the query time is significantly reduced.

The resulting extra cost is reasonable: the space complexity is

still linear, and the index updating cost is only increased linearly.

Using this efficient index, we can design the query algorithm for

k-NN queries now.

Figure 6: U-tree for the uncertain graph in Figure 4(a).

Algorithm 3: U-tree query algorithm

Input :U-tree (B,T ), source node s ∈ V , integer k
Output : the k-NN set C

1 C ← ∅;

2 From s to get r on G;

3 Generate E-table and update the bags information;

4 Re-order E-table;

5 Initiate a queue Q and load the tuples into Q ;

6 Perform r -pruning;

7 if Q = ∅ then
8 return NULL

9 end
10 p ← Q .pop ();

11 while Q , ∅ do
12 q ← Q .pop ();

13 if Cost (p ∪ q) > Cost (p) +Cost (q) then
14 p ←merдe (p,q);

15 else
16 Generate Gp and answer tuple p by sampling Gp ;

17 p ← q;

18 end
19 Perform r -pruning in Q ;

20 end
21 Add the nodes with top-k smallest der values into C;

22 return C;

4.2 Query processing by E-table
To analyze the search process on U-tree, and then develop an

efficient query algorithm, we propose a novel data structure

called E-table (from execution table) to keep track of the indexing

querying process.

Definition 6. Given a k-NN query qk (s ), an Execution-table
(E-table) is a collection of tuples u = {id , t , r , B} that:
1. u .id is the identifier for u.
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2. u .t is the target node in the sub-query q(s, t ) mapped to u.
3. u .r is the lower bound for d (s, t ).
4. u .B is the set of minimum bags to answer q(s, t ).

Note that each tuple u in the E-table corresponds to a sub-

query q(s, t ) for the given k-NN query qk (s ). A k-NN query

qk (s ) can be divided into (n−1) sub-queries q(s, ti ) where ti ∈ V
and ti , s , which are actually STQs. For example, the der based
NN query

4
can be divided into (n − 1) STQs and then return the

node with the minimum der value. We demonstrate the use of

E-table in Example 2.

Example 2. To find the nearest neighbors for node B in Fig-
ure 4(a), we can build a E-table like Table 4, in which each row
is a sub-query and each column is an attribute of the sub-query,
including the id, the target node, the lower bound for der , and the
bags needed to answer this sub-query. Note that for der (s, t ), r can
be calculated from SPD (s, t ) since SPD (s, t ) can serve as the lower
bound of der (s, t ).

Table 4: E-table for NN(B).

id t r B Sub-query

1 A 1 {α , β,γ } d (B,A)

2 C 1 {α , β } d (B,C )

3 D 1 {α , β } d (B,D)

4 E 2 {α , β } d (B,E)

5 F 2 {α , β ,δ , ϵ } d (B, F )

6 G 2 {α , β,δ } d (B,G )

Obviously, it will be very time-consuming if we run every STQ

in the E-table. Alternatively, we find that a tuple in the E-table

can actually answer several sub-queries. For example, in Table 4,

we can find that bag α and β contain enough information to

answer three sub-queries, that is, the der (B,C ), der (B,D) and
der (B,E).

For a k-NN query to find the nodes t with top-k smallest

d (s, t ), we can filter the tuples ui whose ri is bigger than the

current maximum d (s, tk ) named as dmax . Here tk is the node

that has been searched and added in the k-NN set to be returned.

We name the k-NN set to be returned as C . It is actually the

candidate set before it is returned. Note that if C is not full, the

current maximum d (s, tk ) is set to be +∞. The filtering theory

can be formalized by Lemma 2.

Lemma 2. All the tuples ti whose ri > d (s,C ) can be safely
pruned if |C | > k is satisfied. Here d (s,C ) = max

i ∈C
d (s, i ).

The lemma can be easily proved by the fact that the k-NN
solution can only be found in the subset whose r value is not

bigger than the current dmax = der (s,C ). We call this pruning

technique r -pruning.
Thus, our goal is to find the proper C and use it to prune the

tuples in the E-table as more as possible, especially the tuple with

huge amount of bags. For example, it will be nice if tuple 5 and 6

in Table 4 are all pruned at the very first stage because these two

tuples will generate uncertain graphs of bigger size.

We follow two steps to generate the candidate set C . First,
we rank the E-table according to r . Then, we rank the tuples

according to the number of bags, that is, the tuple with fewer

4
NN query is the k -NN query when k = 1.

Table 5: Executed tuples in Table 4.

id t r B sub-query der (s, t )

1 A 1 {α , β,γ } d (B,A) 1.3 340

2 C 1 {α , β } d (B,C ) 1.1631

3 D 1 {α , β } d (B,D) 1.4708

bags will be searched first even they have the same r value. It is
from the instinct that the tupleui with fewer bags will generate a

smaller uncertain sub-graph and thus may terminate in an earlier

stage. We demonstrate the process in Example 3.

Example 3. For a NN query q1s , we load the first tuple u1 and
generate the corresponding reduced uncertain graph G1 from B1.
Then, we sample the reduced uncertain graph G1 and get the result
of der (s, t1). We add t1 intoC and update dmax = der (s, t1). Next,
we prune the tuples whose r value is even bigger than der (s, t1). So
on so forth, we load the tuple ui which is not filtered, and generate
Gi from Bi to answer der (s, ti ) and then launch tuple filtering and
if a smallerder (s, ti ) is found, updateC = ti anddmax = der (s, ti ).
After searching all the tuples that are not filtered, we can return C .

4.3 Query scheduling by cost evaluation
In the steps above, we notice that the set of bags of one sub-

query maybe the upper set of another sub-query, that is Bi ⊂ Bj
happens time to time. At this time, we can safely use the upper

set Bj to answer ui and uj . For example, the uncertain graph

generated from u1 contains all the information needed to answer

u2,u3 and u4. However, some sub-queries’ bag sets have overlap

but not belong to each other, e.g., B1 and B6. Faced with this

condition, we have two choices. The first choice is to combine

these two tuples and generate an uncertain graph of big size to

answer these two sub-queries. The second choice is to generate

two small uncertain graphs and answer the two sub-queries

respectively. Thus, we can choose the one with smaller cost. The

cost evaluation is summarized by the function below.

Definition 7. Cost Evaluation is a function f to compare the
cost of combing two tuples with the cost of answering them respec-
tively. Here each uncertain graph Gi is generated by the correspond-
ing tuple ti , and Gi∪j is generated by Bi ∪ Bj . If f (Bi ∪ Bj ) <
f (Bi ) + f (Bj ) then we will use Bi and Bj to generate a single
uncertain subgraph. Otherwise, we will generate two uncertain
subgraphs respectively.

f (Bi ∪ Bj ) = д(Gi∪j , ϵ,δ ) · |E (Gi∪j ) | (5)

f (Bi ) + f (Bj ) =
∑
p=i, j

д(Gp , ϵ,δ ) · |E (Gp ) | (6)

If we combine all the possible tuples to generate a single un-

certain graph which contains all the information to answer the

k-NN query, then this reduced uncertain graph is called Equiv-
alent Uncertain Graph (EUG) of G for the given query. Figure 7

is the EUG for q1 (B) = NN (B) on the uncertain graph in Fig-

ure 4(a). When the candidate set is big in size or the k-NN query

has a large k value, the EUG cannot be reduced much. This shows

another reason why we need a cost evaluation.

According to section 3.2,ϕ (G) can be roughly approximated by

(n−1), then the cost function can be written as f (G) = (n−1)2 ·m.

Example 4. If there comes three tuples in the E-table, and they
need the bags {α , β ,γ }, {α ,δ , ϵ } and {α , β,δ } respectively (see Fig-
ure 8). Thus we get three reduced uncertain graph G1, G2 and G3.
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Figure 7: The EUG for Figure 4(a) considering NN(B).

(a) (b) (c)

Figure 8: The uncertain graph generated from bags (a)
{α , β ,γ }, (b) {α ,δ , ϵ } and (c) {α , β,δ }.

We can merge these reduced graphs to answer multiple tuples or
answer them one by one. There are 5 ways to answer these tuples
and the costs are listed below.

f (G1,G2,G3) = f (G1) + f (G2) + f (G3) = 4
2 × (7+ 6+ 7) = 320

f (G1 ∪ G2,G3) = f (G1 ∪ G2) + f (G3) = 6
2 × 10 + 42 × 7 = 472

f (G1,G2 ∪ G3) = f (G1) + f (G2 ∪ G3) = 4
2 × 7 + 52 × 8 = 312

f (G2,G1 ∪ G3) = f (G2) + f (G1 ∪ G3) = 4
2 × 6 + 52 × 9 = 321

f (G1 ∪ G2 ∪ G3) = f (G1 ∪ G2 ∪ G3) = 6
2 × 10 = 360

Here we see the optimal solution for this E-table is not to

answer each tuple respectively or to generate an EUG, but only

to merge G2 and G3. Therefore, we form Algorithm 3 to find the

local optimal solution of the minimum cost. We find that the

local optimal solution works well; on the other hand, finding the

global optimal solution is relatively cumbersome.

Given the initial uncertain graph G0 = (V0,E0,p) and two

reduced uncertain graph G1 = (V1,E1,p), G2 = (V2,E2,p), the
function merдe (G1,G2) generates an uncertain graph G1,2 =

(V 1 ∪V2,E,p) where E = (V 1 ∪V2)
2 ∩ E0. The function pop will

pop up the queue’s head and delete it from the queue.

Discussion. We notice that the basic index has a fixed root,

that is, every time when the index is queried, we need to reach the

root. But every bag in the U-tree can serve as the root, meaning

the index retrieval can be done in any part of the tree. So when

the query node is far away from the root, the query time from

the basic index will become too high, because many bags are

required and the reduced subgraph will not decrease much in

size. U-tree overcomes this drawback but the index construction

time is increased. Therefore, we study whether there is any trade-

off and balance between the two indexes, and then we can enjoy

both the quick indexing and efficient querying. We answer this

question by graph locality. With the help of the history queries,

we can obtain the popular nodes whichmay be frequently queried

[18]. And with the help of graph locality, most k-NN queries will

be around these nodes. Then we can build multiple basic indexes

rooted on each popular node. Every time a query comes, it can

be assigned to an index with the smallest cost. In this way, the

cost of index updating is reduced and the query is accelerated.

5 EXPERIMENTAL EVALUATION
We now present the experimental results. We first describe the

datasets in Section 5.1, then introduce the competitors in Sec-

tion 5.2, and finally report the experimental results on indexing

cost, query time, time proportion, accuracy and generality in

Sections 5.3, 5.4, 5.5, 5.6, and 5.7 respectively.

5.1 Datasets
5.1.1 Real-world Graphs. We use six real-world datasets. Ta-

ble 6 reports their statistics. All datasets are transformed into

undirected uncertain graphs with meaningful probability distri-

bution on each edge. Note that PPI, DBLP and FBN have Bernoulli

distributions on each edge, whereas BJT has no limitation on the

type of the distribution on each edge, and they do not follow any

standard distributions [8].

For each uncertain graph, we calculate the diameter to better

show the size and density of the dataset. To calculate the diameter,

we ignore the probabilities and treat each uncertain graph as an

unweighted graph, and then find the largest SPD. For the dataset

with multiple connected components, we report the one with

the biggest diameter. We evaluate scalability of the indexing

framework by testing its performance when faced with datasets

with different size (see Table 6) and different density (See Table 7).

PPI5 We have two protein-protein interaction (PPI) networks

(PPIC, PPIK) [25]. We use these networks in which a node denotes

a protein and an edge denotes a possible interaction encoded with

a specific probability calculated from biology experiments, mean-

ing the existence confidence of this edge. Collins’s network PPIC

is the core dataset which is believed to have strong interactions

among the nodes [7]. Krogan’s network PPIK, however, contains

less reliable interactions and thus is bigger in size [20].

DBLP6 It is a subset of the co-authorship network. The nodes

denote the authors and if two authors have coauthored a paper,

there will be an edge between them.We follow the popular way of

generating co-authorship probability between two authors [19]. If

two authors coauthored c times, the probability is 1−e−c/µ on the
corresponding edge where smaller µ means smaller probabilities

in general. Following the trend [19], we adopt µ = 5 which makes

the most edges with an existing probability around 0.05.

FBN7
The dataset called Facebook-like Social Network is from

an online community for students at University of California,

Irvine [26]. It includes the users who sent or received at least

one message. Each node denotes a user and if there are messages

between two users, there will be an edge. The probability on an

edge means the probability of the corresponding users having

an interaction. The method to generate the probability is same

as the method in DBLP but we set µ = 2 to make the most edges

with a probability around 0.4.

BJT8
The dataset is generated frommapping 15million Beijing

Taxi trajectories [39, 40] on a Beijing map with about 3 million

road segments (BJT) and 1 million road segments (BJTA, only

the arterial roads) respectively [33]. The probability distribution

on an edge means the speed distribution of the vehicles on the

corresponding road segment. It can be generated by analyzing

the trajectories [8]. Note that the diameters of BJT and BJTA is

obviously bigger than the other datasets, since long roads (tens

5
http://www.nature.com.eproxy1.lib.hku.hk/nmeth/journal/v9/n5/full/nmeth.

1938.html

6
http://www.informatik.uni-trier.de/~ley/db/

7
https://toreopsahl.com/datasets/

8
https://www.microsoft.com/en-us/research/publication/

t-drive-trajectory-data-sample/
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Table 6: Statistics of Real-world Datasets.

Graph #Nodes #Edges Diameter Degree

PPIC 1,622 9,074 15 11.2

PPIK 3,672 14,317 10 7.8

FBN 22,016 58,595 10 5.3

DBLP 317,080 1,033,668 23 6.6

BJTA 426,196 946,434 3,851 4.4

BJT 1,285,215 2,690,296 10,529 4.2

Table 7: Statistics of Synthetic Datasets.

Graph #Nodes #Edges Diameter

S1 1,000,000 1,115,373 15

S2 1,000,000 1,672,561 15

S3 1,000,000 2,433,185 15

S4 1,000,000 3,128,529 15

S5 1,000,000 3,728,130 15

S6 1,000,000 4,213,833 15

of kilometers) will be separated into many road segments (ten

meters).

5.1.2 Synthetic Graphs. Given an unweighted graph, algo-

rithms from [4] can generate a graph with disturbances on the

edges and calculate a probability of existence for each edge. The

algorithm from [23] can encrypt a given weighted graph into an

uncertain graph encoded with a probability on each edge.

Herewe encrypt a synthetic graph generated from the Barabási-
Albert model [3], which is a widely used model to simulate real

graphs. To vary the density of the graph, we set the diameter as

15 but vary the number of the edges for each synthetic graph.

Then the unweighted graphs with different size are encrypted

by (20, 10−3)-obfuscation [4]. We use these graphs to test the

scalability of the indexes.

5.2 Competitors
In our experiments, we try to find the k-nearest neighbors for
100 randomly generated query nodes. We use three competitors:

Incremental k-NN (IKNN) from [30], RQ-tree reliability search

(RQRS) from [19], and the basic index (see Algorithm 1) adapted

from ProbTree indexing framework (PTI) [22].

We adapt PTI into a single-source version to deal with k-NN
queries. They have been discussed in the related works. IKNN is

popular in finding k-NN in the uncertain graphs, and RQRS is

the state-of-the-art probabilistic k-NN index based on reliability

search. PTI is the current indexing framework which can adopt

different decomposition methods and distance functions.

We implement the whole U-tree indexing framework in Java,

and run experiments on a machine having a 4-core Intel i5-3570

3.40GHz processor and 16GB of memory, with Ubuntu installed.

5.3 Evaluation on Indexing Cost
Here we evaluate the space cost and the index construction time

of U-tree, PTI and RQRS.

The space cost is composed by the tree structure and the dis-

tance distribution stored in the bags. From Figure 9, we see that

the U-tree index needs more memory since it stores more dis-

tance distributions into each bag, and RQRS needs more memory

because it stores the whole node set at each level of the tree index.

Compared with the query efficiency improvement in Figure 13,

Figure 9: Scalability Evaluation on index size and index
construction Time on real-world datasets (top) and syn-
thetic datasets (bottom).

we find that the extra memory cost in U-tree index is reasonable,

because the space cost rises 23% but the query time is 75% faster

on average.

We compare the time cost to construct each index in Figure 9.

To avoid affecting the comparison, here we only evaluate the

time to construct the tree index and the uncertain graphs are

assumed to be decomposed beforehand. Note that RQRS needs

to recursively perform balanced bi-partition clustering, which

can also be seen as a decomposition method.

To test the scalability of U-tree, we use the synthetic graph

with the graph anonymization technique. We vary the size of the

synthetic graph (see Table 7) and compare the index construction

time and index storage in Figure 9. Semilog is used on the y-axis
because of the big difference of the index size and construction

time when the number of nodes sharply changes. From the fig-

ure, we find the index construction cost of U-tree is linear to

the number of nodes in the uncertain graph. This shows good

scalability over uncertain graphs of different size.

5.4 Evaluation on Query Time
Here we evaluate the query time on six real-world networks and

six synthetic datasets. We use the popular probabilistic k-NN
algorithm IKNN [30] to show the efficiency of the query time

without index acceleration, and the ability of U-tree, PTI and

RQRS to speed up the searching. This comparison makes sense

because they all need to find the probability distribution among

nodes, which is the most expensive part in the algorithms.

In Figure 13, we vary the k value to see the changes of each

curve. For eachk value, we randomly pick 100 nodes as the source

nodes to initiate 100 probabilistic k-NN queries, and calculate

the average query time as the value on y-axis. We use semiloд
on the query time because of the wide range between different

methods.

From Figure 13, U-tree is superior to the other methods, and

the index based methods have a much smaller query time than

IKNN (about two magnitudes). However, the curve of RQRS and

that of PTI index twist together. This might be because both RQRS
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Figure 10: Proportion of (a) probability computation time
out of index construction time (b) index retrieval time out
of query time.

Figure 11: Comparison of (a) k-NN query in dr e and (b) k-
NN query in der on the U-tree from JSD, PCD and FWD.

and PTI construct a tree whose height h ∈ [10, 20] and they all

have to search on the tree from the leaves until reaching the

big root. These similarities make their retrieval time in the same

level. Also, the figures show good scalability of U-tree despite of

the dataset size and density.

5.5 Evaluation on Time Proportion
From Figure 10 we see that the Probability Computation Time

(PCT) takes the most part of the index construction time and

the Sampling Time (ST) takes the most part of the query time.

Note that the query time minus ST is the Index Query Time (IQT)

and the index construction time minus PCT is the Tree Structure

Construction Time (TSCT).

It makes sense because in the index construction period, to

calculate the distance distributions is required in both phase

one and phase two which asks for sampling the corresponding

subgraphs. Also, when we run the queries on the index, the bags

containing essential information are collected and then sample

the reduced uncertain subgraph.

Since bigger proportion of TSCT means more complex index

structure, e.g., a bigger tree height, and thus requires more time

to answer a k-NN query. Also, IQT is the time to be spent on

searching the index. The bigger proportion of an IQT, the bigger

probability that more bags are required to generate the uncer-

tain subgraph, thus making the query time unbearable. From

Figure 10, U-tree performs good when searching the index and

answering the k-NN queries.

Figure 12: Indexing framework accuracy evaluation.

5.6 Evaluation on Accuracy
In U-tree indexing framework, there are two parts that may cause

precision loss. The first part is the choice of decomposition meth-

ods. If a decomposition method which may lose information is

used, e.g., FWD withW > 2, the uncertain subgraph to be gen-

erated from searching the index will become not accurate, thus

making error in k-NN results. The second part is the sampling

method. Since sampling is a technique for approximate query

processing, it will lose information while accelerating the query-

ing process. In general, less sampling times will lead to bigger

error in the k-NN results.

Here we vary the FWD tree widthW and construct the corre-

sponding U-tree respectively. Then, we run k-NN query on these

U-trees with different pair of parameters (ϵ,δ ) in the sampling.

We set (ϵ,δ ) = (x ,x ) and vary x from 0.1 to 0.9.

The k-NN results are collected and compared with the k-NN
result from a baseline which simply runs big number of samplings

times to find the k-nearest neighbors on uncertain graphs. We

run the experiment on PPIC and PPIK and der is used. Here k is

set to 100 and the Mean Squared Error is reported.

From Figure 12, we see that the Mean Squared Error is general-

ly small even when the sampling parameters are setting in a bad

way, e.g., ϵ and δ are very near to 1. Especially, with parameters

below 0.25, we can achieve high accurate k-NN results even with

decomposition methods that may lose information.

5.7 Evaluation on Framework Generality
To show the generality of the indexing framework, we will use

another distance function and another decomposition method

to construct U-tree. We run two different k-NN queries on each

U-tree, i.e., the k-NN query which asks for the set of nodes with

top-k biggest reliabilities dr e from the query node, and the k-NN
query which asks for the k-nearest neighbors in Expected-reliable

distance der .
We use three different decomposition methods to construct

U-tree, i.e., JSD which can find the nodes and edges to divide

the graph into several partitions [33], PCD (see Figure 3(b)), and

FWD where we set the tree widthW = 2 [22].

We run this evaluation on DBLP. The results are collected

in Figure 11. We can see that the U-tree with PCD and the U-

tree with FWD are similar in performance,and PCD has a little

advantage over FWD for k-NN in dr e while FWD is better for

k-NN in der . The above two U-trees have significant advantage

over the U-tree with JSD, since JSD performs poor in capturing

hierarchical structure of an uncertain graph.
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Figure 13: Query efficiency comparison.

6 CONCLUSION
In this paper, we examine the k-NN query on uncertain graphs.

We first propose a generic index which can be built with several

uncertain graph decomposition methods. Then, based on this

index, we develop an efficient k-NN query algorithm, which

supports various probabilistic distance functions. Finally, we

evaluate the proposed indexing frameworks on both real and

synthetic large uncertain graphs. The experimental results show

that our index is effective and scalable to large graphs, and our

query algorithm is very efficient.

In the future, we will study how to efficiently maintain the

index for dynamic graphs, in which the nodes and edges are

inserted and deleted frequently. Another interesting direction is

to study how to extend the indexing framework for answering

k-NN queries on a distributed platform. The research on the

insight of the uncertain graph decomposition will be valuable,

since a better decomposition method will largely benefit the

index performance. We will also perform more experimental

evaluations on other real uncertain graphs.

A APPENDIX
In this appendix, we present the algorithm listing of the competi-

tors from the research literature.

Algorithm 4: Incremental k-NN (IKNN)

Input :uncertain graph G = (V ,E, P ,W ), query node

s ∈ V , sampling times r , distance increment γ , k
Output :k-NN result Tk

1 Tk ← ∅,D ← 0;

2 Initiate r executions of Dijkstra from s;

3 while |Tk | < k do
4 D ← D + γ ;

5 for i ← 1 to r do
6 Continue visiting nodes until reaching D by

Dijkstra;

7 for each node t ∈ V visited do
8 Update the distance distribution and get der ;

9 end
10 end
11 for node t < Tk do
12 if der (s, t ) < D then
13 Tk ← Tk ∪ {t }

14 end
15 end
16 end
17 return Tk ;
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Algorithm 5: RQ-tree reliability search (RQRS)

Input :uncertain graph G = (V ,E, P ), query node s ∈ V ,

sampling times r , k
Output :k-NN result Tk

1 Tk ← ∅;

2 Initiate RQ-tree based on binary clustering;

3 Compute the upper boundUout for each cluster C;

4 Generate the candidate set C∗;

5 Travel the clusters in RQ-tree in bottom-up until

C∗ ({s},η) = arg max

{S }⊆C,Uout ( {s },C )<η
Uout ({s},C );

6 Get the reduced graph G ′ by C∗;

7 Initiate r executions of DFS on G ′ from s;

8 Calculate the reliability and select the biggest top-k as Tk ;

9 return Tk ;

Algorithm 6: ProbTree indexing (PTI) (G)

Input :uncertain graph G = (V ,E, P ), query node s ∈ V ,

sampling times r , k
Output :k-NN result Tk

1 # Index construction:
2 Run Algorithm 1 to build the FWD tree withW = 2;

3 # Information Retrieval:
4 Tk ← ∅;

5 for v ∈ V do
6 Calculate der (s,v ) with the help of the FWD tree;

7 end
8 Put the k nodes with the top-k smallest der (s,v ) in Tk ;

9 return Tk ;
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