
HAL Id: hal-01955582
https://hal.science/hal-01955582

Submitted on 17 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Walks with Multiple Step Lengths
Lucas Boczkowski, Brieuc Guinard, Amos Korman, Zvi Lotker, Marc Renault

To cite this version:
Lucas Boczkowski, Brieuc Guinard, Amos Korman, Zvi Lotker, Marc Renault. Random Walks with
Multiple Step Lengths. LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Apr
2018, Buenos Aires, Argentina. pp.174-186. �hal-01955582�

https://hal.science/hal-01955582
https://hal.archives-ouvertes.fr


Random Walks with Multiple Step Lengths ?

Lucas Boczkowski1, Brieuc Guinard1, Amos Korman1, Zvi Lotker2, and Marc
Renault3

1 IRIF, CNRS and University Paris Diderot, Paris, France.
2 Ben Gurion University of the Negev, Beersheba, Israel

3 Computer Sciences Department, University of Wisconsin - Madison.

Abstract. In nature, search processes that use randomly oriented steps
of different lengths have been observed at both the microscopic and the
macroscopic scales. Physicists have analyzed in depth two such processes
on grid topologies: Intermittent Search, which uses two step lengths, and
Lévy Walk, which uses many. Taking a computational perspective, this
paper considers the number of distinct step lengths k as a complexity
measure of the considered process. Our goal is to understand what is
the optimal achievable time needed to cover the whole terrain, for any
given value of k. Attention is restricted to dimension one, since on higher
dimensions, the simple random walk already displays a quasi linear cover
time.

We say X is a k-intermittent search on the one dimensional n-node cy-
cle if there exists a probability distribution p = (pi)

k
i=1, and integers

L1, L2, . . . , Lk, such that on each step X makes a jump ±Li with prob-
ability pi, where the direction of the jump (+ or −) is chosen indepen-
dently with probability 1/2. When performing a jump of length Li, the
process consumes time Li, and is only considered to visit the last point
reached by the jump (and not any other intermediate nodes). This as-
sumption is consistent with biological evidence, in which entities do not
search while moving ballistically.

We provide upper and lower bounds for the cover time achievable by
k-intermittent searches for any integer k. In particular, we prove that in
order to reduce the cover time Θ(n2) of a simple random walk to linear
in n up to logarithmic factors, roughly logn

log logn
step lengths are both

necessary and sufficient, and we provide an example where the lengths
form an exponential sequence.

In addition, inspired by the notion of intermittent search, we introduce
the Walk or Probe problem, which can be defined with respect to arbi-
trary graphs. Here, it is assumed that querying (probing) a node takes
significantly more time than moving to a random neighbor. Hence, to
efficiently probe all nodes, the goal is to balance the time spent walking
randomly and the time spent probing. We provide preliminary results
for connected graphs and regular graphs.

? This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agree-
ment No 648032).



1 Introduction

1.1 Background and Motivation

The theory of random walks was first studied in an attempt to abstract the move-
ment of natural entities, such as particles or insects [16, 34]. The term “random
walk” itself was originally coined by Karl Pearson in 1905 aiming to model the
movement of a mosquito in a forest [34]. Random walk theory has since attracted
the attention of researchers in many different disciplines, and has developed into
one of the most impressive manifestations of a cross-disciplinary theory. In partic-
ular, motivated by the simplicity of this memoryless algorithm, mathematicians
and computer scientists have studied random walks intensively, focusing mostly
on analyzing its time complexities in finite graphs [2, 12, 17, 18, 28, 29], as well as
on identifying various applications of it in different, often seemingly unrelated,
computational contexts, see e.g. [3, 22, 35] among many others.

In the last couple of decades, empirical evidence has suggested that in various
natural contexts, movement appears to be similar to random walks, yet with
heterogeneous step lengths (jumps). Examples appear both on the microscopic
scale, such as in the reaction pathway of DNA binding proteins, immune cells
movement, crawling amoeba, optics, and in low dimension Hamiltonian chaos [8,
13, 21, 25], as well as on the macroscopic scale, such as in albatrosses, bumblebees,
deer, and even humans [4, 5, 9, 26, 36, 37, 39, 40]†. Most of these examples appear
in search contexts, e.g., searching for pathogens or food. It has been further
argued in these works that in the corresponding contexts, biological entities
alternate between slow diffusing phases in which targets can be detected, and
faster phases of ballistic movements (which are typically more rare) during which
the search efficiency is weak, effectively allowing targets to be found only between
jumps. This compromise between moving and searching has also been studied
in deterministic settings [14]. From a search efficiency perspective, it has further
been argued that such processes can help to strike a proper balance between
global exploration and local exploitation.

Within this family of search strategies, two extreme cases have been exten-
sively studied, namely, Intermittent search and Lévy walks (see the survey [6]
and the references therein). The former process is essentially a random walk
with two step lengths: choose an angle uniformly at random (u.a.r), then take
a step of unit length with some probability p; otherwise, take a step of some
predetermined larger length L. In the latter process, step lengths have a prob-
ability distribution that is heavy-tailed: at each step an angle is chosen u.a.r,
and the probability to perform a step of length d is proportional to d−α, for
some fixed parameter α > 1. Based on differential equation techniques, these
two types of processes have been studied by physicists, aiming to optimize the
parameters involved in order to minimize the hitting time under various target

† Some of these statistical findings which claim that these animals perform Lévy walks
have recently been under debate, due to the difficulty of fitting empirical data to a
particular distribution of step lengths [15, 38].



distributions in continuous Euclidean spaces [6, 10, 30, 31, 33, 40]. For example,
[31, 33] showed that on the one dimensional n-cycle of length n, an intermittent
search with the right choice of parameters can reduce the cover time of a simple
random walk from roughly n2 to roughly n4/3. Lévy walks can reduce the cover
time substantially further. Indeed, with a little extra work (as appears in the
full version), it follows from [1] that a Lévy walk process with parameter α = 2
can reduce the cover time to almost linear (up to polylog factors).

This paper studies random walk processes with multiple step lengths from
a more unified computational perspective. Specifically, driven by the plausible
assumption that utilizing more step lengths (while associating to each a tailored
probability) may require more computational resources, our main subject of
interest concerns quantifying the trade-off between the number of step lengths
and the best possible search performances. Specifically, we are interested in the
best cover time achievable by a random walk that uses k step lengths for every
integer k. From a technical point of view, the challenge lies in understanding
what is the best possible balance between actions on different scales, ranging
from highly local ones (small jumps) to highly global ones (large jumps) [24, 27].

The underlying topology we concentrate on is a discrete cycle of n nodes. It is
possible to define the notion of random walks with multiple step lengths in tori or
grids of all dimensions, but in this preliminary work, we focus on one dimension
since this case enjoys the highest increase in performance as the number of step
lengths grows. Indeed, simple random walks are already highly competitive in
higher dimensions. We note that one dimension search finds relevance in several
biological contexts, including in collective navigation by ants [19] and in the
reaction pathway of DNA binding proteins [8, 13]. The latter case is a good
example of a search with two phases, one which is three-dimensional and fast,
the other one-dimensional, slow, which corresponds to sliding along the DNA to
find the target site.

Finally, inspired by the notion of intermittent random walks, and aiming to
further develop the aforementioned balancing principle, we introduce and inves-
tigate a problem, called Walk or Probe, which can be defined with respect to
arbitrary underlying graphs, and is of independent interest. Here, it is assumed
that querying (probing) a node takes significantly more time than moving to
a random neighbor. This assumption is consistent with the aforementioned hy-
pothesis that many processes in nature, including e.g., immune cells, cannot
engage in moving fast, and, at the same time, execute their search mechanism.
Hence, to probe all nodes in a relatively short time, the goal is to balance the
time spent walking randomly and the time spent probing. In some sense, a long
phase in which the process executes a random walk may be interpreted as “im-
plementing a long jump”, in the sense that, with a certain cost, it allows the
process to re-start at a different area of the graph.



1.2 Models

k-intermittent search. Let Cn be the n-node cycle and let k be an integer. We
say X is a k-intermittent search on Cn if there exists a probability distribution
p = (pi)

k
i=1, where

∑
i pi = 1, and integers L1, L2, . . . , Lk such that, on each step,

X makes a jump {0,−Li,+Li} with probability respectively pi/2, pi/4, pi/4.
Overall, with probability 1/2, the process X stays in place‡. The numbers (pi)
and (Li) are called the parameters of the search process X.

Our goal is to show upper and lower bounds on the cover time of a k-
intermittent search; that is, the expected time to visit every node of the ambient
graph Cn, where we assume that a jump from some point to b visits only the
endpoint b, and not any of the intermediate nodes. Importantly, we are interested
in time rather than the number of moves and, hence, need to account for the
travel time of jumps. For simplicity, we assume that the speed of the walker is
constant (rather than varying between step lengths), which in particular means
that it takes one unit of time to make a move to a neighbor and L units of time
to make a jump of length L.

More formally, let us denote by V1, V2, . . . , Vs, . . . independent random vari-
ables taking value Li with probability pi for every i ∈ [k]. We also use sign
variables ξ1, ξ2, . . . which take value 0 or ±1 with probability 1

2 ,
1
4 ,

1
4 . We call

a product ξsVs a jump and ξs is the sign of the jump. We can then define the
move-process Z(m) on Z and X(m) on the cycle Cn, after m moves, as

Z(m) =

m∑
s=1

ξs · Vs, X(m) = Z(m) mod n. (1)

As we consider it takes one unit of time to travel a distance 1, the time it took
to accomplish the first m moves, denoted T (m), is defined as

T (m) :=

m∑
s=1

|ξs| · Vs. (2)

On the finite graph Cn, we denote by M the random number of moves needed
before X has visited every node of Cn. The quantity whose expectation we want
to bound is T (M), the time needed to visit all nodes, which is called the cover
time.

Walk or Probe. Consider a simple random walker that walks on a connected
graph G and aims to probe all nodes in G as fast as possible. The walker at a
node is unable to detect whether it has previously probed it. At this point it
needs to decide whether to continue the walk or probe it and then continue the
walk. Crucially, probing a node is time consuming, and can potentially be very

‡ This laziness assumption is used for technical reasons, as is common in many other
contexts of random walks. However, note with Eq. (2) that this assumption does not
affect the time of the process.



slow with respect to the time required to move between neighbors. Specifically,
let us assume that each edge traversal costs 1 unit of time, while probing a node
costs C ≥ 0 time units, where C can be a function of several parameters of G
(e.g., the number of nodes, edges, or maximal degree).

The Walk or Probe problem aims to find a strategy that balances the time
spent in walking vs. probing so as to minimize the probing cover time, that is,
the expected time until all nodes are probed.

1.3 Our Results

k-intermittent search on the cycle. We report our results in terms of cover
time, but the same bounds, divided by a log n term, apply for hitting times (the
time to find any given node), as is clear from our proofs.

Definition 1. Let B be an integer. Define the k-intermittent search with base
B, by the parameters§ Li = Bi for every 1 ≤ i ≤ k− 1, pi = 1

Li
and L0 = 1 and

p0 = 1−
∑k−1
i=1 pi.

Theorem 1 Let k,B, n be integers such that 2 ≤ B < n and Bk−1 ≤ n ≤ Bk.
The cover time of the k-intermittent search with base B on the n-cycle is at most
poly(k) · poly(B) · n log n.

Hence, from Theorem 1, taking B = dn1/ke, we derive the following corollary.

Corollary 2 For any k ≤ logn
log logn , there exists a k-intermittent search with

cover time n1+O( 1
k ) log n. In particular, if k = logn

log logn , then the expected cover

time is n · logO(1)(n).

Corollary 2 is almost tight, as shown by the following lower bound:

Theorem 3 For every ε > 0, there exist sufficiently small constants c, c′ > 0
such that for k ≤ c′ logn

log logn , any k-intermittent search cannot achieve a cover

time better than c · n1+
1/2−ε
k+1 . In particular, for k = o( logn

log logn ), the cover time is

n · logω(1)(n).

Walk or Probe. Consider the Walk or Probe model on a connected graph
G = (V,E) with n nodes, with cost of probing C. Denote by tcov (resp. tmix)
the cover time (resp. mixing time) of a random walk on G (see Section 4 for the

§ Note that
∑k−1

i=1 pi =
∑k−1

i=1 B
−i = 1

B−1
(1− 1

Bk−1 ) is a decreasing function of B ≥ 2,

and for B ≥ 3 is less than 1
2

so that p0 ≥ 1
2
. For B = 2, we would have p0 = Θ( 1

n
).

In this case, we can change the definition of pi by dividing by a factor 2, which will
allow to have p0 ≥ 1

2
. This does not change anything beyond the constants we use

in the proofs and in the results.



definition of the mixing time). The most naive strategy is to probe after each
step, in which case we get a probing cover time of:

(C + 1) · tcov. (3)

We show that there exists another simple strategy whose running time depends
on tmix, which can be much more efficient in some cases. Let us call t-strategy
the tactic that consists in probing only once every t steps. Let G = (V,E) be an
n-node connected graph.

Theorem 4 The probing cover time of the
√
tmix-strategy is

O
(
(C +

√
tmix) · |E| log n

)
. (4)

And if G is regular, the probing cover time of the
√
tmix-strategy is

O
(
(C +

√
tmix) · n log n

)
. (5)

In particular, we can derive from Theorem 4 (taking C = 0) the following upper
bound.

Corollary 5 For any n-node connected graph G = (V,E),

tcov =

{
O(
√
tmixn log n) if G is regular

O(
√
tmix|E| log n) otherwise.

(6)

For the case of regular graphs, the upper bound on tcov mentioned in Corollary 5
was already known ([23, Theorem 1.4]). To the best of our knowledge, the latter
bound, for general graphs, is new.

Since the search should cover every node and probe every node of G, we have
the following trivial lower bound for the probing cover time:

tcov + C · n. (7)

Let us compare this lower bound to the upper bounds on the probing cover time
of the 1- and

√
tmix-strategies, given by Eq. (3) and (5), in the case of regular

graphs.

One family of instances consists of regular graphs for which Eq. (6) is tight
(up to poly-logarithmic factors). In this case Eq. (5) becomes, up to poly-
logarithmic factors, Cn+ tcov, and so the

√
tmix-strategy is near optimal. This

happens, for example, if the mixing time is poly-logarithmic (e.g. cliques and
all expander graphs, such as random r-regular graphs [20]) and in such cases,
by Eq. (3), the 1-strategy is also near optimal since the cover time is almost
linear as Eq. (6) shows. On the other hand, Eq. (6) is also tight for the path and
the cycle, on which the mixing time and cover time are O(n2). Hence, in this
case the

√
tmix-strategy significantly outperforms the trivial 1-strategy when C

is large.



If Eq. (6) is not tight then the
√
tmix-strategy may not be optimal. An

example where this happens is the torus of dimension d ≥ 2: Indeed, the mixing
time of such a torus is Θ(n2/d), while the cover time is almost linear [29, Sections
5.3.2 and 10.4]. In this case the 1-strategy has probing cover time near optimal
by Eq. (3), but the

√
tmix-strategy, which needs at least

√
tmixn steps (because

it must probe at least n times), is not optimal.

Finally, regarding the general bound in Eq. 4 (for not-necessarily regular
graphs), let us look at Erdos-Renyi random graphs G(n, p) with p = c/n for
a constant c > 1. In this case the mixing time is a.a.s. Θ(log2 n) [7, Theorem
1.1] and the cover time is a.a.s. Θ(n log2 n) [11, Theorem 2.(a)], and the number
of vertices is a.a.s. linear in n. Therefore, by Eq. (4), the

√
tmix-strategy has

probing cover time O(Cn log n+n log2 n), while the 1-strategy, by Eq. (3), takes
time (C + 1)n log2 n, and hence the former strategy gains a logarithmic factor
in the number of probes.

1.4 Preliminaries

Notation. When writing logarithms, unless mentioned otherwise, we assume
that the base is 2. We denote the cycle of length n by Cn and label its nodes
with the serials {0, 1, . . . , n− 1}. We use the symbols c, c′, c′′ for constants that
we do not compute explicitly. In order to avoid the use of too many symbols, we
sometimes employ the same symbol for different constants.

From counting time to counting steps. Recall that T (m) =
∑m
s=1 |ξs| · Vs.

Let us recall also the well-known

Lemma 6 (Wald’s identity). If (Xt)t≥0 is an i.i.d. sequence with |E(X0)| <
∞, and T is a stopping time for this sequence (i.e. at each time t, the occurrence
of the event T = t depends only on X0, X1, . . . , Xt), with |E(T )| <∞, then:

E(

T∑
t=0

Xt) = E(T )E(X0).

As a direct application, we obtain the following.

Lemma 7. E(T (M)) = E(M) · E(V1)
2 .

From hitting times to cover time. The following relates the probability to
hit a node to the cover time, and can be thought of as a loose but easy Matthew
(upper) bound.

Lemma 8. Let (Xt)t be a finite Markov chain with n states and, for a state x,
M(x) be the random number of steps before the chain hits x. If there are m and
p > 0 such that for every state x, Pr(M(x) ≤ m) ≥ p, then the cover time of

the chain is O(m log(n)
p ).



Proof. Split the moves into phases, each composed of m consecutive moves.
Using the Markov property of the process, during each phase, x is visited with
probability at least p, independently of the trajectory on previous phases. Then
the probability to not have visited x after ` phases yet, is less than (1 − p)`.
Using a union bound, the probability that there exists a node which has not
been visited after ` phases is thus less than n(1− p)`. For

`j =
− log(2jn)

log (1− p)
= O

(
j log n

p

)
,

this probability is less than 2−j . Hence, the expected number of phases before
covering all nodes is less than∑

j

`j+1 · 2−j = O

(
log n

p

)
.

Multiplying this number by m gives the expected number of moves before cov-
ering all states. ut

From the infinite line to the n-nodes cycle.

Remark 9. With the notations of Eq. (1), if for x ∈ [0, n−1] ⊂ Z, MZ(x) (resp.
MCn

(x)) is the random number of moves for Z (resp X = Z mod n) to hit x,
we have MCn

(x mod n) ≤MZ(x).

Combining this remark with the two previous lemmas, we obtain:

Claim 10. If we have m and p such that for all x ∈ [0, n − 1], Pr(MZ(x) ≤
m) ≥ p, then the cover time of X is O

(
E(V1)m logn

p

)
. Note that E(V1) = k in

the particular base B process with k lengths.

A useful identity. All of our upper bounds rely on the following identity, the
usefulness of which was highlighted in [23]. If N is a nonnegative random variable
then:

Pr(N ≥ 1) =
E(N)

E(N | N ≥ 1)
. (8)

2 Upper Bound on the Cycle

This section is dedicated to proving Theorem 1. We begin with an overview
of the proof. Using Claim 10, the bound of Theorem 1 can be established by
studying the process on the infinite line.

The core of the computations for Theorem 1 are encapsulated in Lemmas
11 and 12. These bounds on the distribution of the move process Z are used



to lower bound the expected number of visits to any point on the infinite line,
and upper bound the expected number of returns to the starting point. A lower
bound on the probability of any node being visited follows from Equation (8).

The following two lemmas consider the move process on the infinite line and
present the main technical aspects of the proof. The corresponding proofs are
all deferred to the full version. Recall, from Theorem 1, that we assume that k
is such that k ≥ 2 and Bk−1 ≤ n ≤ Bk.

Lemma 11. There exist sufficiently large constants c and c′ (independent of all
other parameters), such that for any j ∈ [0, k − 1] and m ≥ cBj+1 log kB, we
have Pr(Z(m) = 0) ≤ c′B−j .

Lemma 12. Let c (resp. c′) be a big (resp. small) enough constant. Let m0 :=
cBk+1 log kB. For any x ∈ [0, n − 1] ⊆ [0, Bk − 1], and m ∈ [m0,m0 + n], we

have Pr(Z(m) = x) ≥ c′

Bk
√
log kB

.

With Claim 10, Lemma 11, and Lemma 12, we are now ready to prove Theorem 1.

Proof (Proof of Theorem 1). Fix a point x ∈ Z. Define Nx(m) as the number of
visits to x after the first m moves have been made. We want to apply Eq. (8) to
Nx(m). This will imply a lower bound on the probability that the node x has
been visited before m moves (i.e., the event Nx(m) ≥ 1). Set

m0 = cBk+1 log kB, and m1 = m0 + n,

for some constant c > 0 big enough so that both the conclusion of Lemma 11
and Lemma 12 hold. Note that since Bk−1 ≤ n, m1 = O(nB2 log kB).

Our first goal is to show that E(Nx(m1) | Nx(m1) ≥ 1) = O(kB2 log kB).
Since the number of returns to x before time m1 is maximized when we begin
at x, we have:

E(Nx(m1) | Nx(m1) ≥ 1) ≤ E(N0(m1)) ≤ 1 +

m1∑
m=1

Pr(Z(m) = 0) . (9)

Next, using Lemma 11, for any j ∈ [1, k − 1] and any m, such that

cBj+1 log kB ≤ m < cBj+2 log kB,

we upper bound Pr(Z(m) = 0) by c′B−j with c′ some other constant. When
m ≤ cB2 log kB, we use Pr(Z(m) = 0) ≤ 1. Using Inequality (9), we obtain:

E(Nx(m1) | Nx(m1) ≥ 1) = O

B2 log kB +

k−2∑
j=1

Bj+2 log kB

Bj


= O(kB2 log kB) , (10)



as desired. We next lower bound E (Nx(m1)) for any x ∈ [0, n− 1], by summing
the Inequality of Lemma 12 between m0 and m1:

E(Nx(m1)) ≥ c′ · n
Bk
√

log kB
= Ω

(
1

B
√

log kB

)
. (11)

Dividing (11) by (10), it follows from Eq. (8) that for any x ∈ [0, n − 1], we

have Pr(Nx(m1) > 1) = Ω
(

1
kB3 log3/2 kB

)
. Using Claim 10 with m = m1 =

O(nB2 log kB) and p = Ω
(

1
kB3 log3/2 kB

)
, we obtain an upper bound on the

expected cover time on the n cycle of O(k2B5 log5/2 kB · n log n). The result

follows by bounding O(k2B5 log5/2 kB) by poly(k) · poly(B). ut

3 Lower Bound on the Cycle

This section is dedicated to proving Theorem 3. Consider a k-intermittent search
X on the cycle Cn and denote by (pi)

k
i=1 and (Li)

k
i=1 its parameters with Li <

Li+1 for all i ∈ [k−1]. We also set Lk+1 = n. Theorem 3 is a direct consequence
of the following lemma, as appears in the full version (in short, the biggest

multiplicative gap between consecutive Li is minimized when setting Li = n
i
k

and this yields the lower bound).

Lemma 13. There exists a constant c > 0 such that, in expectation, for any
i ≤ k, the time needed for X to visit n distinct points is at least

c
n

k
·
√
Li+1

Li
,

Proof. Let i ∈ [k] be fixed throughout the proof. Recall that we need to count
time and not the number of moves. We divide time into phases, each of length
precisely Li+1. We call any jump of length Lj for j ≥ i + 1 a long jump. By
definition, during a phase, at most one endpoint of a long jump is visited. Let us
denote by N` the number of nodes visited during phase ` (some of these nodes
may have been previously visited on a phase `′ < `). The proof of the following
claim appears in the full version.

Claim 14. For every ` ∈ N, it holds that E(N`) = O
(
k
√
Li · Li+1

)
.

Using Claim 14, we can bound the total number of nodes visited during the first
s phases E (

∑s
`=1N`) ≤ s ·O

(
k
√
Li · Li+1

)
. Let s1 := n · c

k·
√
Li·Li+1

for a small

constant c. With this choice for s, the previous bound is less than n/2. Using a
Markov inequality, we get Pr (

∑s1
`=1N` ≥ n) < 1

2 . Consequently, with probability
at least 1/2, more than s1 phases are needed in order to visit n distinct nodes.
Since each phase lasts (exactly) Li+1 time, the total expected time required in

order to visit n distinct nodes is at least s1 · Li+1 = Ω
(
n
k ·
√

Li+1

Li

)
. ut



4 Efficient Strategy for Walk or Probe

Our strategy for the Walk or Probe problem is simple: instead of probing at every
step, we probe every

√
tmix steps (we omit ceilings for readability). We prove

here that this tactic gives the bounds of Theorem 4. In fact, here we essentially
prove a bound on the cover time of the Markov chain (Xk

√
tmix

)k≥0, where (Xt)t
is the lazy random walk on the connected graph G.

Proof. We first recall some basic results about mixing time. The notion of mixing
time we refer to is the total variation mixing time ([29, Section 4.5]). It is defined
as:

tmix = min

{
t ≥ 1 : max

x

∑
y

|P t(x, y)− π(y)| ≤ 1

2

}
,

where P t(x, ·) denotes the law of the random walk started at x after t steps
and π is the stationary distribution. Lemmas 4.5 and 4.7 in [2] imply that, for

t ≥ 4tmix, P t(x, y) ≥ π(y)
2 . Since π(x) = ∆(x)/2|E|, where ∆(x) is the degree of

node x, for t ≥ 4tmix, we have:

Pr(Xt = x) ≥ ∆(x)

4|E|
. (12)

Let N be the number of times we probe x between times 4tmix and (4 + c)tmix.
Then, by Eq. (8), the probability that x was probed in this time interval equals

E(N )

E(N|N ≥ 1)
. (13)

By Eq. (12) we have:

E(N ) =

c
√
tmix∑
k=0

Pr(X4tmix+k
√
tmix

= x) ≥ c
√
tmix

∆(x)

4|E|
.

For the denominator in (13), since the process is markovian, we can shift the
times and so this is equal to E (Nx(c tmix)|Nx(c tmix) ≥ 1)) where Nx(c tmix) is
the number of times we probe x before time c tmix. As the number of returns is
maximized whenever we begin at x, this is less than E (Nx(c tmix)|X0 = x). We
next use the following bounds on the probability of returns. For any x ∈ G,

Pr(Xt = x) ≤ 5/
√
t if t ≤ 5n2 and G is regular, (14)

≤ ∆(x)/
√
t if t ≤ |E|2 − 1. (15)

The bound for regular graphs is taken from Proposition 6.18 in [2], while the
general bound follows from the more elaborate bound in Lemma 3.4 in [32]. Let
us write these bounds as

Pr(Xt = x) ≤ βx√
t



with βx = 5 if G is regular and βx = ∆(x) otherwise. Note that we can use
these bounds for t ≤ c tmix, for c small enough, since tmix ≤ 3tcov ([29, Eq.
(10.24)]) and, in connected graphs tcov ≤ 2|E|(n − 1) ≤ 2|E|2 ([3, Theorem]),
while in regular graphs we have tcov ≤ 2n2 ([17, Corollary 6]). Thus, using that∑t
k=1

1√
k
≤ 2
√
t, we have:

E(Nx(c tmix)|X0 = x) =

c
√
tmix∑
k=0

Pr(Xk
√
tmix

= x|X0 = x)

≤ 1 +
βx

t
1
4
mix

c
√
tmix∑
k=1

1√
k
≤ 1 + 2βx

√
c.

Hence, the probability that x is probed before time (4 + c)tmix is greater than

∆(x)

4|E|
c
√
tmix

1 + 2βx
√
c

= Ω

(√
tmix
γ

)
,

where γ = n if G is regular and γ = |E| otherwise. By Lemma 8 applied to the
Markov chain (Xk

√
tmix

)k≥0, the expected number of moves to probe all nodes

is O(γ
√
tmix log(n)). Since we probe every

√
tmix steps with cost C, and a step

has a unit cost, the probing cover time is O(Cγ log(n) + γ
√
tmix log(n)). This

completes the proof of Theorem 4. ut
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