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ABSTRACT
The Colonel Blotto game is a famous game commonly used

to model resource allocation problems in domains ranging from

security to advertising. Two players distribute a fixed budget of

resources on multiple battlefields to maximize the aggregate value

of battlefields they win, each battlefield being won by the player

who allocates more resources to it. Recently, the discrete version of

the game—where allocations can only be integers—started to gain

traction and algorithms were proposed to compute the equilibrium

in polynomial time; but these remain computationally impractical

for large (or even moderate) numbers of battlefields. In this paper,

we propose an algorithm to compute very efficiently an approxi-
mate equilibrium for the discrete Colonel Blotto game with many

battlefields. We provide a theoretical bound on the approximation

error as a function of the game’s parameters. Through numerical

experiments, we show that the proposed strategy provides a fast

and good approximation even for moderate numbers of battlefields.
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1 INTRODUCTION AND GAME MODEL
The past decade has seen a rising interest in using game-theoretic

models for security problems, see e.g., [6–10, 14, 17, 20, 21]. The

Colonel Blotto game is a simple and elegant model for strategic

resource allocation problems. It has important applications in many

domains including not only security but also politics, industrial

operations or advertisement.

In the Colonel Blotto game, two players (often referred to as

colonels) choose how to distribute a fixed budget of resources (often

called troops) on a number of battlefields. Each battlefield has a

∗
The full version of this work appeared in [19].

†
Also with Max Planck Institute for Software Systems (MPI-SWS).

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. 2018.

given value and is won by the player who allocates more resources

to it; each player maximizes the sum of values of battlefields he wins.

Its continuous version (where players can choose any fractional

allocation), has received high attention since its first introduction

in 1921 [4]. However, only partial results are known to date (see

[5, 11–13, 15, 16]); in particular, the general case of asymmetric

players with heterogeneous battlefields remains unsolved.

The discrete version of the Colonel Blotto game (where alloca-

tions can only be integers), which is meaningful in applications

where individual troops cannot be divided, started to gain traction

much more recently in the algorithmic game theory community.

Since it is a finite constant-sum game, it can in principle be solved

numerically in general cases through linear programming. How-

ever, standard solutions to compute the Nash equilibria face the

issue that the strategy space of the players grows exponentially

with the number of battlefields and the number of troops. To tackle

this problem, two algorithms were proposed in the last two years in

[1] and [2], which rely on transforming the linear program formula-

tion to significantly improves the complexity. Yet, these algorithms

still become computationally impractical when the number of bat-

tlefields and/or the number of troops is large. In these cases, the

problem of efficiently computing an equilibrium remains open.

In this work, we take a different approach and propose an algo-

rithm to compute very efficiently an approximate equilibrium for

the discrete Colonel Blotto game with many battlefields and troops.

Game model. A discrete Colonel Blotto is a one-shot game

between two players denoted A and B. Each player has a fixed

amount of troops (or budget), denoted m,p ∈ N for A and B re-

spectively.
1
Let λ :=

p
m be the ratio of players budgets. Players

simultaneously allocate their troops to n battlefields (n ≥ 3), in-

dexed by i ∈ {1, 2, . . . ,n} := [n], each has a fixed value vi > 0. We

assume that all values are bounded, that is vi ∈ [vmin,vmax] ,∀i ,
where 0 < vmin ≤ vmax. We denote byVn =

∑n
i=1

vi the total value
of all battlefields. A pure strategy of player A (resp., player B) is

a vector x̂A ∈ Nn (resp., x̂B ), with elements x̂Ai representing the

(integer) allocation to battlefield i and satisfying the constraint∑n
i=1

x̂Ai ≤ m (resp.,

∑n
i=1

x̂Bi ≤ p).
Once players have allocated their troops, the player who has the

higher allocation to battlefield i wins that battlefield and gains its

whole value vi . In case of a tie, i.e., if xAi = xBi , player A gains αvi
and player B gains (1 − α)vi for some fixed α ∈ [0, 1]. Each player

1
Without loss of generality, we assume that A is the weak player, i.e.,m ≤ p .



chooses his strategy to maximize his own payoff equal to the sum

of gains on all battlefields. We denote this game CBm,p
n .

2 MAIN RESULTS
2.1 The DIU strategy

In CBm,p
n , we propose a mixed strategy called Discrete Indepen-

dently Uniform strategy (DIU strategy), which will be proven to

be an approximate equilibrium of the game. Intuitively, under the

DIU strategy, players first draw independently numbers from some

particular uniform-type distributions

FA∗
i
(x) :=

(
1 − 1

λ

)
+

x

2
vi
Vn λ

1

λ
,∀x ∈

[
0, 2

vi
Vn

λ

]
,∀i ∈ [n], (1)

FB∗
i
(x) :=

x

2
vi
Vn λ
,∀x ∈

[
0, 2

vi
Vn

λ

]
,∀i ∈ [n]. (2)

We define ∀x , rm (x) = x̂
m , where x̂ ∈ N is uniquely determined and

satisfies
x̂
m − 1

2m ≤x < x̂
m +

1

2m and formally give the definition:

Definition 2.1 (The DIU strategy). DIUA (resp.,DIUB) is themixed
strategy where player A’s allocation x̂A (resp., player B’s alloca-

tion x̂B ) is randomly generated from Algorithm 1.

Algorithm 1: DIU strategy generation algorithm.

Input: n,m,p ∈ N, and v ∈ [vmin,vmax]n
Output: x̂A, x̂B ∈ Nn

1 for i = 1, 2, . . . ,n do
2 ai ∼ FA∗

i
and bi ∼ FB∗

i

3 if
∑n
j=1

aj = 0 then repeat generating ai ,∀i
4 sA

0
= sB

0
= 0

5 for i = 1, 2, . . . ,n do
6 sAi =

∑i
k=1

ak∑n
j=1

aj
; sBi =

∑i
k=1

bk∑n
j=1

bj
p
m

7 x̂Ai :=m
[
rm

(
sAi

)
− rm

(
sAi−1

)]
8 x̂Bi :=m

[
rm

(
sBi

)
− rm

(
sBi−1

)]
Algorithm 1 guarantees that the allocations are integers and

satisfy the budget constraints. More importantly, the DIUA (resp.,

DIUB) strategy is only implicitly defined via Algorithm 1, that is

to say it is the joint distribution of all allocations {xAi }i (resp.,
{xBi }i ). Each pure strategy output from Algorithm 1 is only one

realization of the DIU strategy. Algorithm 1 is easy to implement

and runs very fast in expected
2
time O(n).

2.2 Approximate equilibrium of CBm,p
n

Theorem 2.2. The DIU strategy is an ε̄Vn -equilibrium of the game
CBm,p

n , where ε̄ ≤ max{ ˜O(n−1/2),O(n/m)}.3

2
The for loop in lines 1-3 is not guaranteed to end in a finite time. However, the

probability that the loop runs over k times is (1 − 1/λ)kn and converges to zero

exponentially fast in k and n.
3
The

˜O notation is a variant of the big-O notation that “ignores” logarithmic factors.

The upper bound on ε̄ given by this theorem is important be-

cause it allows us to evaluate the approximation error in terms of

the number of battlefields and amount of troops. Moreover, in a

different perspective, Theorem 2.2 tells us how large the parameters

n andm (and p) should be to reach a given level ε̄ of approxima-

tion; formally stated as: Fix λ ≥ 1, ∀ε̄ > 0, ∃N ∗ = O
(
ε̄−2

ln

(
ε̄−1

) )
:

∀n ≥ N ∗, ∃M∗ = O(n/ε̄): ∀m ≥ M∗, p =mλ ∈ N, the DIU strategy
is an ε̄Vn -equilibrium of the game CBm,p

n . This result also involves

an interesting double limit of two growing parameters (n andm)

and identifies a precise scaling regime under which the convergence
holds. Here, it shows that the convergence of DIU strategy towards

an equilibrium requires thatm grows at least as fast as n3/2
. This

implies that, if the number of troops is low compared to the number

of battlefields, then the average number of troops per battlefield at

equilibrium becomes low and the DIU strategy based on a discretiza-

tion of a uniform-type distribution is no longer close to optimal.

Although the idea is natural, the proof of Theorem 2.2 is non-trivial;

its main steps are the following: (i) We prove that the distribution

FA∗
i
is close to optimal against FB∗

i
and vice versa in each battle-

field. (ii) We prove the uniform convergence (and determine the

convergence rate) of the marginal distributions of the DIU strategy

towards FA∗
i
and FB∗

i
. (iii) We approximate the players’ DIU payoffs

by FA∗
i
and FB∗

i
with special analysis on the tie-case. We then prove

the convergences of DIU payoffs towards equilibrium payoffs.

2.3 Numerical Experiments
We constructed numerical experiments to evaluate the quality

of the approximation that DIU strategy gives depending on the

game’s parameters, that is to evaluate ε̄ . First, computing the value

of ε̄ requires finding a player’s optimal allocation given that the

opponent’s allocation to battlefield i ∈ [n] follows a given marginal

distribution {Gi }i ∈[n]. This itself is a non-trivial problem since

there is in principle an exponential number of possible allocations

to investigate. We propose an efficient algorithm (with complex-

ity O
(
p2 · n

)
) based on dynamic programming (DP) [3] to solve

this problem. Second, since the marginal allocations at battlefield i
under the DIU strategy are not known in closed-form, we approxi-

mate them by the corresponding empirical CDFs (controlled by the

Glivenko-Cantelli theorem [18]).

The experimental results support well the results given in Theo-

rem 2.2, especially on the effect of the double limits as n andm (and

p) grow. For instance, for n = 25,m = 75,p = 90, we find ε̄ ≈ 0.04;

and forn = 150,m = 4925,p = 5910, ε̄ ≈ 0.019. We also compare the

computation time of our algorithm (including generating empirical

CDFs and running the DP algorithm) and the of exact equilibrium

computation from [2]. For example, our algorithm determines a

0.02Vn-equilibrium for games with n = 150,m = 8000,p = 9600 in

under 2 hours, while [2]’s algorithm takes over one day to find the

exact equilibrium of games with n = 45,m = 75,p = 90.
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