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Abstract
In this article, we provide a Coq mechanised, executable,
formal semantics for a realistic fragment of SQL consisting
of select [distinct] from where group by having
queries with NULL values, functions, aggregates, quantifiers
and nested potentially correlated sub-queries. Relying on the
Coq extraction mechanism to Ocaml, we further produce a
Coq certified semantic analyser for a SQL compiler. We then
relate this fragment to a Coq formalised (extended) relational
algebra that enjoys a bag semantics hence recovering all well-
known algebraic equivalences upon which are based most
of compilation optimisations. By doing so, we provide the
first formally mechanised proof of the equivalence of SQL and
extended relational algebra.

CCSConcepts • Information systems→Relational data-
base query languages; •Theory of computation→Pro-
gram semantics;
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1 Introduction
Providing a formal semantics for a language is a tricky but
crucial task as it allows compilers to rigorously reason about
program behaviours and to verify the correctness of optimi-
sations [13, 18]. When considering real-life programming
∗Work funded by the DataCert ANR project: ANR-15-CE39-0009.
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languages the task becomes even harder as it happens that
the specifications of the language are often written in natural
language. Even when they are formal, they only account for
a limited subset of the considered language and are, most of
the time, human-checked proven correct. In all cases, there
are few strong guarantees that the whole faithfully accounts
for the exact semantics and correctness of performed optimi-
sations. As the standard for relational database management
systems (RDBMS’s), SQL is widely and intensively used and
does not escape these drawbacks.
To obtain such high level guarantees, a promising ap-

proach consists in using proof assistants such as Coq [20]
or Isabelle [21] to define mechanised, executable semantics
whose correctness is machine-checkable. A shining demon-
stration of the viability of this undertaking for real systems
is Leroy’s CompCert project [15].

Our long-term goal, based on the same methodology, aims
at providing a Coq verified compiler for SQL. In this article
we focus on semantic issues and define, using Coq, a formal
semantics for SQL.

SQL’s Specificities Over time, the search for such a formal
semantics has been pursued by the database community.
However only restricted fragments of the language were
handled. This is due, in particular, to SQL’s specificities.

SQL’s main construct consists in the select from where

group by having block. It is well known that SQL’s select
from where enjoys a bag semantics, the same element may
occur several times in the result, while purely set-theoretic
operators such as ∪ (union), ∩ (intersect) and \ (except)
have a set-theoretic one. Any formal semantics must account
for both sets and bags.
It is notorious that SQL deals with NULL values that are

intended to represent unknown information. This aspect,
considered of major difficulty in the database field, has to be
accurately handled by any mechanised semantics.

SQL queries involve functions (+,-,...) and aggregates
(sum, max, count,...) that are intensively used namelywhen
the group by having clause is present.

Last, SQL allows for nested sub-queries, i.e., queries gath-
ering different select’s, and more importantly correlated
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sub-queries, i.e., sub-queries with free variables as in select

a1 from t1 group by a1 having exists (select a2 from

t2 group by a2 having sum(1+0*a1) = 0);where a1 is free
in the innermost select.
Any accurate semantics for SQL must account for those

four features. When considered independently those four as-
pects are merely technical to handle. As will be demonstrated
in this work, when considered all together as we do, the situ-
ation gets really challenging due to SQL’s peculiar environ-
ments’ management. This explains why no formal semantics
for SQL exists to date.

Related Works As relational algebra [8] plays for SQL the
same role as (a combinator version of) λ-calculus for func-
tional programming languages, obviously, early proposals,
among those [5, 17], presented a translation from SQL to
such an algebra (see [8] for a survey). Only a subset of SQL
(with no functions, nested queries, NULL’s nor bags though)
was addressed. The first semantics for SQL accounting for
NULL’s and bags is found in [12]. However, the work does not
consider group by having clauses, aggregates, quantifiers in
formulae nor complex expressions: their expressions are re-
stricted to attributes’ names or constants. As will be shown
in Section 2 and 3, the treatment of complex expressions is
very subtle.

On the proof assistant side, the first attempt to formalise
relational algebra, using the Agda proof assistant [19], is
found in [9, 10] while the first, almost complete, Coq for-
malisation of the relational model in which the data model,
algebra, tableaux queries, the chase as well as integrity con-
straints aspects were modelled, is found in [3].
The very first attempt to verify, using Coq, a RDBMS is

presented in [16]. However the SQL fragment considered is
a reconstruction of SQL in which attributes are denoted by
positions. They did not deal with group by having clauses,
quantifiers in formulae, nested, correlated queries neither
NULL’s nor aggregates. As we shall see in Section 2 and 3
the treatment of attributes’ names and more generally en-
vironments in the presence of correlated sub-queries is a
particularly, if not the most, tough task. Recently, in [6],
a tool to decide whether two SQL queries are equivalent
is presented. To do so, the authors defined HottSQL, a K-
relation [11] based semantics for SQL which handles the
select from where fragment with aggregates but without
having. Like [16], they used a reconstruction of the language
thus not accounting for the trickier aspects of variable bind-
ing. Last, and more importantly, their semantics is not ex-
ecutable hence it is impossible to verify whether they do
implement SQL’s semantics. Finally, the closest proposal in
terms of mechanised semantics for SQL is addressed in [2].
A mere translation from SQL to a Coq modelisation of the
nested relational algebra (NRA [7]) which directly serves as
a semantics for SQL is proposed. However, as NRA’s syntax

significantly deviates from SQL’s one, convincing oneself of
the accuracy of the proposed semantics is not immediate.

Contributions In this article we give five contributions.
We provide (i) SQLCoq, a Coq internalisation of SQL’s syntax
together with its mechanised executable bag semantics. Our
formalisation accounts for select [distinct] from where

group by having queries with NULL values, functions, ag-
gregates, quantifiers and nested potentially correlated sub-
queries. By doing so, thanks to the Coq extraction mech-
anism to Ocaml, we produce (ii) a Coq certified semantic
analyser for the compiler. We then formalise, using Coq, (iii)
SQLAlg, a bag, environment-aware relational algebra similar
to, while extending it, the one presented in [8]. By formally
relating SQLCoq to SQLAlg, through a Coq mechanised transla-
tion, and by formally proving that these translations preserve
semantics, we not only are able to (iv) recover all well-known
algebraic equivalences on which are based most of compilers’
optimisations but we also (v) establish the first, to our best
knowledge,mechanised, formal proof of equivalence between
the considered SQL fragment and bag relational algebra.

Organisation In Section 2, we first present SQL and SQL’s
subtleties that need to be taken into account to provide a
correct semantics. Then we detail, in Section 3, SQLCoq’s syn-
tax and semantics. Section 4 is devoted to the mechanisation
of SQLAlg, the bag algebra. Then the translations between
SQLCoq and SQLAlg as well as the equivalence theorem are
presented. We conclude, draw lessons and give perpectives
in Section 5.

2 SQL: Simple and Complex
As a domain-specific declarative language SQL is often con-
sidered simple.

2.1 SQL in a Nutshell
SQL operates over collections of tuples. Tuples are labelled
records whose components range over atomic types (inte-
gers, strings, etc). In this context labels are called attributes.
Such attributes are denotable and may be used within ex-
pressions built thanks to functions and accumulators which
are called aggregates. SQL’s main construct consists in

select e from q where c1 group by e' having c2.
For instance
select a+2 as a', max(c) as mc from t where b>3

group by a having sum(c) = 0

is a typical SQL query where a,b,c are attributes, sum, max

are aggregates, + a function and b>3 a condition.
In order to evaluate a block, inner query q is evaluated,

then filtered against boolean condition c1. This intermediate
result is so-called "grouped" using expressions e'; meaning
that all elements of a group are homogeneously evaluated
over e', and groups are maximal w.r.t. inclusion. Then groups
are filtered against boolean condition c2, and expressions



A Coq Mechanised Formal Semantics for Realistic SQLQueries Conference’17, July 2017, Washington, DC, USA

e are evaluated over remaining groups, yielding the final
tuples. On the example above, assuming that the evaluation
of t yields{

(a=1;b=1;c=4), (a=1;b=5;c=2), (a=1;b=4;c=-2),
(a=3;b=5;c=1), (a=3;b=4;c=2)

}
The filtering step against b>3 gives{

(a=1;b=5;c=2), (a=1;b=4;c=-2),
(a=3;b=5;c=1), (a=3;b=4;c=2)

}
The grouping step w.r.t. a provides{

{(a=1;b=5;c=2), (a=1;b=4;c=-2)},
{(a=3;b=5;c=1), (a=3;b=4;c=2)}

}
The filtering step against sum(c)=0 discards the last group
for which sum(c) = 3 and keeps only the first group. The
evaluation of a+2, max(c) yields the result {(a'=3;mc=2)}.

2.2 Inside SQL
Yet, SQL’s semantics is more subtle than appears at first sight.
It is described by the ISO Standard [14] which is difficult to
exploit as:

• it consists of thousand pages hence it is complex to
find where features are described (most of the time a
single piece of information is spread over the whole
document)

• when described, features are depicted in a verbose
way (for instance definition of the OCaml equivalent
of map takes several pages)

• last, even abundant, it is often under-specified.
For all those reasons it cannot serve as a formal semantics.
This also explains why many vendors implement various as-
pects of it in their ownway as witnessed by [1]. Of course, we
relied on the Standard _ as much as possible _ andmeanwhile
we tested our development against systems like PostgreSQL
and Oracle™ to better grasp SQL’s semantics.
In the remainder of this article, we note [[q]] the result

of the evaluation of query q, () the tuple constructor, [ ]
the list constructor, { } the set constructor and {| |} the bag
constructor. Figure 1 gathers a bunch of queries that will
illustrate SQL’s most subtle aspects.

2.2.1 NULL Values
SQL deals with NULL values that are intended to represent
unknown information. A 3-valued logic combined with the
classical Boolean logic is used to handle them. However
NULL’s are not treated in a uniform way according to the
context as we illustrate in this section.

The first query returns {|(b = 3); (b = NULL)|} thus exem-
plifying that NULL behaves as an absorbing element for func-
tions1. The next three queries, borrowed from [12], exemplify
the fact that NULL is neither equal to nor different from any

1Except for Boolean functions in PostgreSQL.

other value (including itself): comparing NULL with any ex-
pression always yields unknown. Query Q2 returns an empty
result. This is explained by the fact that

[[select s.a from s]] = {|(s.a=NULL)|} ,

hence [[r.a not in select s.a from s]] (where in is themem-
bership predicate) yields not unknown, that is unknown, over
all tuples (r.a=x), in particular over (r.a=1) and (r.a=NULL).
This condition is eventually considered as false, therefore
neither tuple belongs to the result of query Q2.
Query Q3 returns {|(r.a=1); (r.a=NULL)|}. Let subQ3

be the sub-query (select * from s where s.a = r.a), it
yields an empty result over all tuples (r.a=x), hence
[[exists (subQ3)]], where exists stands for the non emp-
tyness predicate, is always false and [[not exists (subQ3)]]

is always true, thus (r.a=1) and (r.a=NULL) are in the result
of Q3.
Query Q4 returns {(r.a=1)}, because the set difference

does not use 3-valued logical equality, but standard syntactic
equality. Here both tuples (r.a=NULL) and (s.a=NULL) are
equal. The main concern is to precisely detect when SQL
falls from 3-valued logic into usual Boolean logic. It appears
that whereas the evaluation of formulae is performed in
the 3-valued logic, when using them as filtering conditions
(either where or having) usual Boolean logic is used (unknown
becomes false). This will be detailed in Figure 7 and Figure 8
of Section 3.
Last, query Q5 returns {|(t.a=NULL,c=2); (t.a=1,c=1)|}.

This illustrates the fact that NULL, which is neither equal
nor different from NULL in a 3-valued logic, is indeed equal
to NULL in the context of grouping. The semantics proposed
in Section 3.2 will account for such behaviours.

2.2.2 Correlated Sub-queries
Let us now address theway SQLmanages evaluation environ-
ments in presence of aggregates and nested correlated queries.
In order to evaluate simple (without aggregates) expressions,
it is enough to have a single environment, containing infor-
mation about the bound attributes and the values for them.
In this simple case (e.g., select a1, b1 from t1;) such an en-
vironment corresponds to a unique tuple (a1=x,b1=y)where
x and y range in the active domains of a1 and b1 respectively.

Evaluating expressions with aggregates is more involved,
since an aggregate operates over a list of values, each one
corresponding to a tuple. The crucial point is to understand
how such a list of tuples, that we call an evaluation context,
is produced. Section 10.9 of [14] (< aggregate functions >,
how to retrieve the rows – page 545) should provide some
guidance in answering this question. Unfortunately it was
of no help. Taking advantage of Coq’s execution mechanism
we rather decided to run queries over a small database of our
own. We thus proceeded by testing many queries over Post-
greSQL, Oracle™ and against our formal semantics. Relying
on a mechanised and executable semantics was essential as
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r
a
1

NULL

s
a

NULL

t
a
1

NULL
NULL

t1
a1 b1
1 1
1 2
1 3
1 4
1 5

a1 b1
1 6
1 7
1 8
1 9
1 10

a1 b1
2 1
2 2
2 3
2 4
2 5

a1 b1
2 6
2 7
2 8
2 9
2 10

a1 b1
3 1
3 2
3 3
3 4
3 5

a1 b1
4 6
4 7
4 8
4 9
4 10

t2
a2 b2
7 7
7 7

-- Q1
select r.a+2 as b from r;
-- Q2
select r.a from r where r.a not in (select s.a from s);
-- Q3
select r.a from r where not exists
(select * from s where s.a = r.a);

-- Q4
select r.a from r except select s.a from s;
-- Q5
select t.a,count(*) as c from t group by t.a;
-- Q6
select a1, max(b1) as m from t1 group by a1;
-- Q7(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*a2) = k);

-- Q8(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*a1) = k);

-- Q9(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1) = k);

-- Q10(k), k =12
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*a1)+sum(1+0*a2) = k);

-- Q11(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*a1+0*a2) = k);

-- Q12(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*a1+0*b2) = k);

-- Q13(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*b1+0*b2) = k);

-- Q14(k)
select a1 from t1 group by a1 having exists
(select a2 from t2 group by a2 having sum(1+0*b1+0*a2) = k);

Figure 1. Semantically Subtle Queries.

it compelled us to examine in details all sub-cases. It took
us significant effort to reach the semantically relevant set of
queries which are given in Figure 1. For all of them, we ob-
tained the same results on all three systems. Let us comment
on these queries. For Q6 the result is:{�� (a1=1,m=10); (a1=2,m=10); (a1=3,m=5); (a1=4,m=10) ��}
It is easy to understand what happens when evaluating max(

b1) in Q6: each group (where a1 is fixed) contains some tuples,
each of them yielding a value for b1. Then max is computed
over this list of values. For instance, the group T1 where
a1=1 contains exactly one occurence of tuples of the form
(a1=1,b1=i), where i ranges from 1 to 10, hence b1 ranges
from 1 to 10, and max(b1) is equal to 10, whereas the group
where a1=3 contains tuples (a1=3,b1=i), where i=1,...,5,
and max(b1) is equal to 5. In this simple case a group merely
yields an evaluation context – we say that the group has
been split into individual tuples.
The situation gets more complex when evaluating an ag-

gregate expression in a nested sub-query. How to build, in
that case, the suitable evaluation contexts in order to get
the needed lists of values, arguments of the aggregate? The
last queries of Figure 1: Q7,Q8,Q9,Q10,Q11,Q12,Q13,Q14 and
table t2 have been designed to answer this question. Note
that all are correlated queries except Q7 and Q9 which are
simply nested. These queries follow the same pattern:
select a1 from t1 group by a1 having

exists (select a2 from t2 group by a2 having e=k);

Assuming that an aggregate expression occurs in a sub-
query under more than two grouping levels, as e in the above
pattern, there are several groups in the environment. In our
example, homogeneous groups w.r.t. a1 are the following:

𝒢1 =


10⋃
i=1

{|(a1=1;b1=i)|}

10⋃
i=1

{|(a1=2;b1=i)|}

5⋃
i=1

{|(a1=3;b1=i)|}

10⋃
i=6

{|(a1=4;b1=i)|}


whereas there is a single homogeneous group w.r.t. a2,
T2 = {|(a2=7;b2=7); (a2=7;b2=7)|}. Thus global environment
for the innermost expression e is made of T2 and one T1 of
𝒢1 denoted by: [T2;T1].

T1T2

How to combine these groups in order to obtain the correct
evaluation context (i.e., the one actually used by SQL on
PostgreSQL and Oracle™)? Which groups must be split and
which must not?

Let us consider Q7(k) where the innermost filtering
condition is sum(1+0*a2) = k . When k , 2 [[Q7(k)]] is
empty, and for k = 2 it is equal to

⋃i=4
i=1 {|(a1=i)|}. Expression

sum(1+0*a2) actually computes the number of tuples in
the evaluation context and this number is equal to 2 for
all groups T1 of 𝒢1: combining T1 and T2 yields a context
containing two (the cardinality of T2) tuples, whatever the
cardinality of T1. We have to draw the conclusion that when
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evaluating sum(1+0*a2) = k , T2 has been split whereas T1 is
not used at all.

T1T2

Let us now examine correlated query Q8(k), which
is very similar to Q7(k), except that the filtering con-
dition is sum(1+0*a1) = k . When k < {5, 10} [[Q8(k)]]

is empty while [[Q8(5)]] = {|(a1=3); (a1=4)|} and
[[Q8(10)]] = {|(a1=1); (a1=2)|}. Hence expression sum

(1+0*a1) computes the cardinality of T1. When evaluating
sum(1+0*a1) = k , T1 has been split, whereas T2 is not used.

T1T2

Fact 1. In the same environment, [T2;T1], SQL either splits T1
orT2 in order to build an evaluation context from which evalu-
ation of aggregate expressions is performed. The expression to
be evaluated directs the way the evaluation context is built by
choosing which relevant group to split into: T1 for 1+0*a1, and
T2 for 1+0*a2. At that point it seems that this choice is guided
by attributes (a1 or a2).

Thus, the next interesting case is when there are no at-
tributes in the expression under the aggregate as in Q9(k).
What should be the relevant group to be split into? Is there
even such a relevant group for sum(1)? Actually Q9(k) yields
the same result as Q7(k), meaning that the relevant group
for a constant is the innermost group T2.
Fact 2. In the very same environment, 1+0*a2 is equal to 1 and
1+0*a1 is not since these expressions are computed in different
evaluation contexts: under aggregates, in SQL, usual arithmetic
equalities are no longer valid.

At that point, what happens if both expressions 1+0*a1

and 1+0*a2 have to be evaluated in the same environment
as it is the case for Q10(k), where 1+0*a1 and 1+0*a2 oc-
cur under distinct aggregates? There is no single obvious
relevant group anymore. When k < {7, 12} [[Q10(k)]] is
empty while [[Q10(7)]] = {|(a1=3); (a1=4)|} and [[Q10(12)]] =

{|(a1=1); (a1=2)|}, meaning that both expressions 1+0*a1 and
1+0*a2 have been evaluated independently, the first in a con-
text where T1 has been split into, and the second where the
split group is T2.
Fact 3. This makes clear that SQL allows two sub-expressions
of a given expression to be evaluated in different contexts which
is definitely contrary to what is done in other mainstream
programming languages!

What if 1+0*a1 and 1+0*a2 occur under the same aggre-
gate, as in Q11(k)? When k=2, [[Q11(2)]] is

⋃i=4
i=1 {|(a1=i)|},

otherwise [[Q11(k)]] is empty.
Fact 4. Therefore T2, the innermost relevant group, has been
split into. T1 has been collapsed to any of its elements t1 since
only its homogeneous part, a1, is used by the evaluation.

t1
T2

As the reader may have noticed, all expressions under
the aggregates were built upon grouping attributes. What
happens when such is not the case? Query Q12(k) contains
sum(1+0*a1+0*b2) and behaves exactly the same as Q11(k)
does. Query Q13(k) contains sum(1+0*b1+0*b2) and is not
well formed according to the Standard, thus, is not evaluated.
The reason is that under the aggregate there are two non
grouping attributes coming from different nesting levels.
The last query, Q14(k), which contains sum(1+0*b1+0*a2),
is also ill-formed and not evaluated. However one could
imagine that it could have been accepted and evaluated in
the following context:

T1
t2

At that point, we are able to sum up the lessons above and
precisely explain how SQL manages environments.

2.3 Summary
First, when evaluating an expression with aggregates where
the top operator is a function (for instance +, as in Q10(k)),
each argument is evaluated separately.
Second, when evaluating an expression ag(e) where the

top operator ag is an aggregate, this aggregate is evaluated
over a list of values. The subtle point is to understand how to
build the suitable evaluation context to retrieve such values.
Let us clarify the previously discussed notions.

Complete Environments A complete environment, ℰ =
[Sn ; ...; S1], is a stack of slices: one slice per nesting level i ,
the innermost level being on the top. When necessary, we
shall equally adopt the following notation for environments
ℰ = (A,G,T ) :: ℰ ′ in order to highlight the list’s head. Slices
are of the form S = (A,G,T ), where A (also noted A(S))
contains the relevant attributes for that level of nesting, i.e.,
the names introduced in the subquery at this level2; G the
grouping expressions appearing in the group by (also noted
G(S)); and T a non empty list of tuples3 (also noted T (S)).

Sn Sn−1 S1

Evaluation Contexts When e is a constant expression,
the list of tuples T (Sn) comes from the innermost slice of
environment ℰ = [Sn ; ...; S1]. In the simple case where all
attributes of e are introduced at the same level i , the relevant
list is simply T (Si ). Otherwise, when attributes of e belong
to at least two different levels, the innermost (i.e., of greatest
index) being Sk , there are two cases:
2If this subquery is a select from ... these are the names in the
select.
3When there is a grouping clause at this level, it is an homogeneous group,
otherwise it is a single tuple.
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• either the expression is not well-formed (cf Q13 and
Q14), because e contains an expression of T (S j ), j < k
which is not grouped.

• or the expression e is exactly built upon the attributes
corresponding to the kth level and the grouping ex-
pressions4 of outermost levels k − 1, . . . , 1. In this case,
let tj be a fixed tuple chosen in each T (S j ) for j < k ,
then the list of relevant tuples is made of the concate-
nations (t ; tk−1; . . . ; t1), where t ranges over T (Sk ).

SkSn
tk−1 t1

We are now able to present our Coq mechanised formal
semantics.

3 A Formal Coq Mechanised Semantics for
SQL

SQLCoq addresses the fragment consisting of select [

distinct] from where group by having queries with NULL
values, functions, aggregates, quantifiers and nested poten-
tially correlated (in from, where and having clauses) sub-
queries. It accounts for in, any, all and exists constructs
and assigns queries a Coq mechanised (bag) semantics that
complies with the Standard.

3.1 SQLCoq: Syntax
SQLCoq’s syntax is given on Figure 2, Figure 3 and Figure 4
where the left part of figures represents SQLCoq’s abstract
syntax and the right part the corresponding Coq syntax. We
assume that we are given attributes, functions and aggre-
gates. We shall allow strings, integers and booleans to be
values, as well as the special NULL. On the top of them, we
define usual expressions, first without aggregates e f , and
then with aggregates ea . SQL formulae are similar to first-
order formulae except they are always interpreted in a finite
domain, which is syntactically refered to as dom in Figure 3.
Such formulae will then be used in the context of SQLAlg.

SQLCoq sticks, syntactically, as much as possible, to SQL’s
syntax but the SQL-aware reader shall notice that SQLCoq

slightly differs from SQL in different ways. First, for the
sake of uniformity, we impose to have the whole select

from where group by having construct (no optional where
and group by having clauses). When the where clause is
empty, it is forced to true. Table below, summarises the way
the parser handles the different cases for translating the
absence or presence of group by into an explicit grouping
construct in SQLCoq.

4Those appearing in the group by clause of the level ; when there are no
such grouping expressions, all attributes of the level are allowed.

SQL SQLCoq

aggregate
(in select) group by having

? g ? Group_By g
✓ ✗ ? Group_By nil
? ✗ ✓ Group_By nil
✗ ✗ ✗ Group_Fine

Group_Fine corresponds to the finest partition5 and
differs from Group_By [a1, . . . ,an ] where [a1, . . . ,an] is
the list of labels of the current query. The construct
Group_By [a1, . . . ,an ] is used in SQLCoq to encode the
distinct construct of SQL. Group_By nil corresponds to
the coarse partition. We also force explicit and mandatory
renaming of attributes, when ∗ is not used. In our syntax,
select a, b from t; is expressed by
select a as a, b as b from (table t[*])

where true group by Group_Fine having true.

A further, more subtle, point worth to mention is the dis-
tinction we make between e f and ea . Both are expressions
but the former are built only with functions (fn) and are
evaluated on tuples while the latter also allow unnested6
aggregates (ag) and are, in that case, evaluated on collections
of tuples. In the same line, we used the same language for
formulae either occurring in the where (dealing with a single
tuple) or in the having clause (dealing with collections of
tuples) simply by identifying each tuple with its correspond-
ing singleton. Also, no aliases for queries are allowed. This
last case is handled by renaming all query’s attributes as
expressed on last line of Figure 4.

3.2 SQLCoq: Semantics
Given a tuple t we note ℓ(t ) the attributes occuring in t .
We assume that we are given a database instance [[_]]db
defined as a function from relation names to bags of tuples7 as
well as predefined, fixed interpretations, [[_]]p , for predicates
pr8, i.e., a function from vectors of values to Booleans, [[_]]a
and [[_]]f for aggregates ag and functions fn respectively9.
As established in Section 2, (complex) expressions occuring
in (possibly correlated sub-) queries, are evaluated under a
sliced environment, ℰ = [Sn ; ...; S1] (or ℰ = (A,G,T ) :: ℰ ′),
the innermost level, n, corresponding to the first slice. The
evaluation of a syntactic entity e of type x in environment
ℰ will be denoted by [[e]]xℰ (where x is f for expressions
built only with functions, a for expressions built also with
aggregates, b for formulae and q for queries).

5The partition consisting of the collection of singletons, one singleton for
each tuple.
6ea is of the form: avg(a); sum(a+b); sum(a+b)+3; sum(a+b)+avg(
c+3) but not of avg(sum(c)+a)
7These multisets enjoy some list-like operators such as empty, map,
filter, etc.
8pr is <, in etc.
9a may be sum, count etc. and f : +,*,- etc.
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function ::= + | - | * | / | ... | user defined fun
aggregate ::= sum | avg | min | ... | user defined ag
value ::= string val | integer val | bool val

| NULL

ef ::= value | attribute | function(ef )
ea ::= ef | aggregate(ef ) | function(ea )

Inductive value : Set :=
| String : string → value
| Integer : Z → value
| Bool : bool → value
| NULL : value.

Inductive funterm : Type :=
| F_Constant : value → funterm
| F_Dot : attribute → funterm
| F_Expr : symb → list funterm → funterm.

Inductive aggterm : Type :=
| A_Expr : funterm → aggterm
| A_agg : aggregate → funterm → aggterm
| A_fun : symb → list aggterm → aggterm.

Figure 2. Expressions.

formula ::=
| formula (and | or) formula
| not formula
| true
| p(ea ) p ∈ predicate
| p(ea , (all | any) dom) p ∈ predicate
| ea as attribute in dom
| exists dom

Inductive conjunct : Type := And | Or.
Inductive quantifier : Type := All | Any.

Inductive select : Type := Select_As : aggterm → attribute → select.

Inductive formula (dom : Type): Type :=
| Conj : conjunct → formula dom → formula dom → formula dom
| Not : formula dom → formula dom
| True : formula dom
| Pred : predicate → list aggterm → formula dom
| Quant : list aggterm → predicate → quantifier → dom → formula dom
| In : list select → dom → formula dom
| Exists : dom → formula dom.

Figure 3. Formulae, Parameterized by a Finite Domain of Interpretation dom.

select_item ::= ∗ | ea as attribute
query ::=

| table
| query (union | intersect | except) query
| select select_item
from from_item
(where formula)

(group by ef ( having formula))
from_item ::= query(attribute as attribute)

Inductive select_item : Type :=
Select_Star | Select_List : list select → select_item.

Inductive att_renaming : Type :=
Att_As : attribute → attribute → att_renaming.

Inductive att_renaming_item : Type :=
Att_Ren_Star | Att_Ren_List : list att_renaming → att_renaming_item.

Inductive group_by : Type :=
Group_Fine | Group_By : list funterm → group_by.

Inductive set_op : Type := Union | Intersect | Except.

Inductive query : Type :=
| Table : relname → query
| Set : set_op → query → query → query
| Select : (** select *) select_item →

(** from *) list from_item →

(** where *) formula query →

(** group by *) group_by →

(** having *) formula query → query

with from_item : Type :=
From_Item : query → att_renaming_item → sql_from_item.

Figure 4. SQLCoq Syntax

The semantics of simple expressions, which poses no dif-
ficulties, is given in Figure 5. The semantics of complex ex-
pressions detailed in Figure 6, deserves comments. When the
complex expression is headed by a function, fn(e), it simply
amounts to a recursive call. When the complex expression is
of the form ag(e), according to Section 2, one has first to find
the suitable level of nesting for getting the group to be split

into. Then, produce the list of values by evaluating e , and
then compute the evaluation of ag against this list of values.
In environment ℰ =[Sn ; . . . S1], level i is a suitable candidate
expressed by Se (A(Si ), [Si−1; . . . ; S1], e) on Figure 6 when-
ever e is built upon G = A(Si ) ∪

⋃
j<i G(S j ) which is in turn

expressed by Bu (G, e) on Figure 6. When e is a constant, the
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[[c]]f
ℰ

= c if c is a value
[[a]]f

[]
= default if a is an attribute

[[a]]f
(A,G,[])::ℰ = [[a]]f

ℰ

[[a]]f
(A,G,t ::T )::ℰ = t .a if a ∈ ℓ(t)

[[a]]f
(A,G,t ::T )::ℰ = [[a]]f

ℰ
if a < ℓ(t)

[[fn(e)]]f
ℰ

= [[fn]]f ([[e]]
f
ℰ
)

if fn is a function,
and e is a list of simple expressions

(* The type of evaluation environnements *)
Definition env_type := list (list attribute * group_by * list tuple).

Fixpoint interp_dot env (a : attribute) :=
match env with
| nil ⇒ default_value a
| (sa, gb, nil) :: env' ⇒ interp_dot env' a
| (sa, gb, t :: l) :: env' ⇒

if a inS? labels t then (dot t a) else interp_dot env' a
end.

Fixpoint interp_funterm env t :=
match t with
| F_Constant c ⇒ c
| F_Dot a ⇒ interp_dot env a
| F_Expr f l ⇒

interp_symb f (List.map (fun x ⇒ interp_funterm env x) l)
end.

Figure 5. Simple Expressions’ Semantics.

c ∈ 𝒱
Bu (G, c)

e ∈ G
Bu (G, e)

∧
e Bu (G, e)

Bu (G, fn(e))

Bu ((A ∪
⋃

(A′,G,T )∈ℰ G), e)

Se (A,ℰ , e)

c ∈ 𝒱
Fe (ℰ , c) = ℰ

e < 𝒱

Fe ([], e) = undefined

e < 𝒱 Fe (ℰ , e) = ℰ ′

Fe (((A,G,T ) :: ℰ ), e) = ℰ ′

Fe (ℰ , e) = undefined Se (A,ℰ , e)

Fe (((A,G,T ) :: ℰ ), e) = (A,G,T ) :: ℰ

[[fn(e)]]a
ℰ
= [[fn]]f ([[e]]

a
ℰ
)

[[ag(e)]]a
ℰ
= [[ag]]a

(
[[e]]f

((A,G,[t ])::ℰ ′)

)
t ∈T

iff Fe (ℰ , e) = (A,G,T ) :: ℰ ′

Fixpoint (* (Bu (G, f )) *) is_built_upon G f :=
match f with
| F_Constant _ ⇒ true
| F_Dot _ ⇒ f inS? G
| F_Expr s l ⇒ (f ins? G) || forallb (is_built_upon G) l

end.

Definition (* (Se (la, env, f )) *) is_a_suitable_env la env f :=
is_built_upon

(map (fun a ⇒ F_Dot a) la ++
flat_map (fun slc ⇒ match slc with (_, G, _) ⇒ G end) env)
f.

Fixpoint (* (Fe (env, f )) *) find_eval_env env f :=
match env with
| nil ⇒ if is_built_upon nil f then Some nil else None
| (la1, g1, l1) :: env' ⇒

match find_eval_env env' f with
| Some _ as e ⇒ e
| None ⇒ if is_a_suitable_env la1 env' f then Some env else None

end
end.

Fixpoint interp_aggterm env (ag : aggterm) :=
match ag with
| A_Expr ft ⇒

(* simple expression without aggregate *) interp_funterm env ft
| A_fun f lag ⇒

(* simple recursive call in order to evaluate independently
the sub-expressions when the top symbol is a function *)

interp_symb f (List.map (fun x ⇒ interp_aggterm env x) lag)
| A_agg ag ft ⇒

let env' :=
if is_empty (att_of_funterm ft)
then (* the expression under the aggregate is a constant *) Some env
else (* find the outermost suitable level *) find_eval_env env ft in

let lenv :=
match env' with
| None | Some nil ⇒ nil
| Some ((la1, g1, l1) :: env'') ⇒

(* the outermost group is split into *)
map (fun t1 ⇒ (la1, g1, t1 :: nil) :: env'') l1

end in
interp_aggregate ag (List.map (fun e ⇒ interp_funterm e ft) lenv)

end.

Figure 6. Complex (with Aggregates) Expressions’ Semantics.

innermost level is chosen (here n), otherwise, the outermost
suitable candidate level is chosen as expressed by Fe (ℰ , e).

Formulae’s semantics, given in Figure 7, relies on expres-
sions’ semantics. As the syntax is parametrised by a domain

dom, similarly formulae’s semantics is parametrised by the
domain’s evaluation. This is expressed, in the Coq develop-
ment, by Hypothesis I : env_type → dom → bagT., and is
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[[f1 and f2]]bℰ = [[f1]]bℰ ∧ [[f2]]bℰ
[[f1 or f2]]bℰ = [[f1]]bℰ ∨ [[f2]]bℰ
[[not f ]]b

ℰ
= ¬[[f ]]b

ℰ
[[true]]b

ℰ
= ⊤

[[pr(ei )]]
b
ℰ

= [[pr]]p ([[ei ]]
a
ℰ
)

[[pr(ei , all q)]]bℰ = ⊤

iff [[pr(ei , t)]]
b
ℰ
= ⊤† for all t ∈ [[q]]

q
ℰ

[[pr(ei , any q)]]bℰ = ⊤

iff [[pr(ei , t)]]
b
ℰ
= ⊤† for at least one t ∈ [[q]]

q
ℰ

[[ei as ai in q]]b
ℰ

= ⊤

if (ai = [[ei ]]
a
ℰ
) belongs to† [[q]]q

ℰ
[[exists q]]b

ℰ
= ⊤ iff [[q]]

q
ℰ
is not empty

†See paragraph for NULL’s in Section 3.2.

Hypothesis I : env_type → dom → bagT.
Fixpoint eval_formula env (f : formula) : Bool.b B :=
match f with
| Sql_Conj a f1 f2 ⇒

(interp_conj B a) (eval_formula env f1) (eval_formula env f2)
| Sql_Not f ⇒ Bool.negb B (eval_formula env f)
| Sql_True ⇒ Bool.true B
| Sql_Pred p l ⇒ interp_predicate p (map (interp_aggterm env) l)
| Sql_Quant qtf p l sq ⇒

let lt := map (interp_aggterm env) l in
interp_quant B qtf

(fun x ⇒ let la := Fset.elements _ (labels x) in
interp_predicate p (lt ++ map (dot x) la))

(Febag.elements _ (I env sq))
| Sql_In s sq ⇒

let p := (projection env (Select_List s)) in
interp_quant B Exists_F
(fun x ⇒ match Oeset.compare OTuple p x with

| Eq ⇒ if contains_null p
then unknown else Bool.true B

| _ ⇒ if (contains_null p || contains_null x)
then unknown else Bool.false B

end)
(Febag.elements _ (I env sq))

| Sql_Exists sq ⇒

if Febag.is_empty _ (I env sq) then Bool.false B else Bool.true B
end.

Figure 7. Formulae’s Semantics.

[[tbl]]
q
ℰ

= [[tbl]]db if tbl is a table
[[q1 union q2]]

q
ℰ

= [[q1]]
q
ℰ
∪ [[q2]]

q
ℰ

[[q1 intersect q2]]qℰ = [[q1]]
q
ℰ
∩ [[q2]]

q
ℰ

[[q1 except q2]]qℰ = [[q1]]
q
ℰ
\ [[q2]]

q
ℰ

[[select ei as ai from fi wherew
group by G having h]]q

ℰ
={���� (ai = [[ei ]]

a
(ℓ(T ),G,T )::ℰ

)����T ∈ F3

����}
if F = ▷◁i [[fi ]]fromℰ

and F1 =
{���t ∈ F

���[[w]]b
(ℓ(t ),[],[t ])::ℰ = ⊤

���}
and F2 is a partition† of F1 according to G
and F3 =

{���T ∈ F2
���[[h]]b

(ℓ(T ),G,T )::ℰ = ⊤

���}
[[q(ai as bi )]]fromℰ

= {|(bi = ci ) | (ai = ci ) ∈ [[q]]
q
ℰ
|}

†See paragraph for NULL’s in Section 3.2.

Fixpoint eval_sql_query env (sq : sql_query) {struct sq} :=
match sq with
| Sql_Table tbl ⇒ instance tbl
| Sql_Set o sq1 sq2 ⇒

if sql_sort sq1 =S?= sql_sort sq2
then Febag.interp_set_op _ o

(eval_sql_query env sq1) (eval_sql_query env sq2)
else Febag.empty _

| Sql_Select s lsq f1 gby f2 ⇒

let elsq :=
(** evaluation of the from part *)

List.map (eval_sql_from_item env) lsq in
let cc :=
(** selection of the from part by formula f1, with old names *)

Febag.filter _
(fun t ⇒

Bool.is_true _
(eval_sql_formula eval_sql_query (env_t env t) f1))
(N_product_bag elsq) in

(** computation of the groups grouped according to gby *)
let lg1 := make_groups env cc gby in
(** discarding groups according the having clause f2 *)
let lg2 :=
List.filter
(fun g ⇒

Bool.is_true _
(eval_sql_formula eval_sql_query (env_g env gby g) f2))

lg1 in
(** applying outermost projection and renaming, the select part s *)
Febag.mk_bag BTupleT
(List.map (fun g ⇒ projection (env_g env gby g) s) lg2)

end

(** evaluation of the from part *)
with eval_sql_from_item env x :=
match x with
| From_Item sqj sj ⇒

Febag.map BTupleT BTupleT
(fun t ⇒

projection (env_t env t) (att_renaming_item_to_from_item sj))
(eval_sql_query env sqj)
end.

Figure 8. SQL Queries’ Semantics.
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expanded as query interpretation, [[_]]q_, in the formal defini-
tion.

Let’s finally comment on query semantics, [[_]]q_, given in
Figure 8. For the set theoretic operators, we chose to assign
them a bag semantics even if our notations do not explicitely
mention all. If one wants to recover the usual set seman-
tics for sq = q1 op q2, one has to apply duplicate elimina-
tion thanks to δ(sq) = select * from sq(ai as ai )ai ∈ℓ(sq)
group by ℓ(sq). The most complex case is the select from

where group by having one. Informally, a first step consists
in evaluating the from and then filtering it thanks to the
where formula.

More precisely how to check that a tuple t fullfils where
conditionw in context ℰ ? According to the definition in Fig-
ure 7,w is evaluted w.r.t a single environment. This means
that t and ℰ have to be combined into this single environ-
ment, ℰ ′ such that [[w]]fℰ ′ is equal to the evaluation of w ,
where the attributes a in ℓ(t) are bound to t .a, and the at-
tributes a in

⋃
S ∈ℰ A(S) are bounded thanks to

⋃
S ∈ℰ A(T ).

This is exactly what is done when ℰ ′ = (ℓ(t), [], [t]) :: ℰ .
Then the (intermediate) collection of tuples obtained is

partitioned according to the grouping expressions in the
group byG , yielding a collection of collections of tuples: the
groups.When there is no grouping clause, the finest partition
denoted Group_Fine in the Coq development is used.

The way groups are further filtered w.r.t the having condi-
tion h follows the same pattern as where, except that some
complex expressions may occur in h. When evaluting an
expression of the form ag(e) for a group T , all tuples of the
group are needed; when evaluting a simple expression, any
tuple of T yields the same result, T being homogeneous w.r.t
the grouping criterion G. Hence the proper evaluation envi-
ronment for filtering the group T w.r.t h in environment ℰ
is (ℓ(T ),G,T ) :: ℰ .
Last, the select clause is applied yielding again a collec-

tion of tuples as a result.

About NULL’s At the expression level, NULL’s are simply
handled by the fact that they behave as an absorbing ele-
ment w.r.t functions and are simply discarded for aggregates
except for count(*) where they contribute as 1. In our for-
malisation this is expressed as constraints over [[_]]a and
[[_]]f . For formulae, we used a 3-valued logic. The evaluation
of pr(e) in environment ℰ is equal to unknown iff there exists
ei in e such that [[ei ]]aℰ = NULL. As usual, unknown distributes
according to well-known 3-valued logic rules. Quantifiers
all and any are respectively seen as a finite conjunct and
a finite disjunct in 3-valued logic. Last, e as a in q is eval-
uated as a finite conjunct of

∧
e = t .a where t ranges in

[[q]]q, meaning that as soon as e or t .a is evaluated to null,∧
e = t .a is unknown. Eventually, when used into queries’

evaluation, the evaluation of formulae yielding unknown re-
sults are cast into false. It should be noticed that even if NULL
is not equal to nor different from NULL or any other value in

the context of formulae, NULL is equal to NULL for grouping.
This is taken into account in Figure 8 by a careful definition
of partition and of make_groups in the Coq development.

4 SQLAlg: A Coq Mechanised Algebra for
SQL

In this section we relate SQLCoq to relational algebra in order
to recover the well-known algebraic equivalences which are
exploited by SQL compilers for optimisation purposes.

4.1 Relational Algebra in a Nutshell
The (extended) relational algebra, as presented in text-
books [8], consists of the well-known operators σ (selection),
π (projection) and ▷◁ (join) completed with the γ (grouping)
together with the set theoretic operators, intersection, union
and difference. We focus on the former four operators.

q := r | σf (q) | πS (q) | q ▷◁ q | γд,aд(q)

In this setting, base relations, r are expressions. The se-
lection operator, allows for filtering collections of tuples
according whether they satisfy condition f . The semantics
of the operator is

[[σf (q)]] = {t | t ∈ [[q]] ∧ [[f ]]{x → t}}

where [[f ]]{x → t} stands for “t satisfies formula [[f ]]”, x
being the only free variable of [[f]].

The projection operator has the form πW , and operates on
all expressions,q, whose sort contains the subset of attributes
W . The semantics of projection is

[[πW (q)]] = {t |W | t ∈ [[q]]}

where the notation t |W represents the tuple obtained from t
by keeping only the attributes inW .

The join operator, denoted ▷◁, takes arbitrary expressions
q1 and q2 whose respective sorts areV andW , and allows to
combine tuples from both operands. Its semantics is,

[[q1 ▷◁ q2]] = {t | ∃v ∈ [[q1]],∃w ∈ [[q2]], t |V = v ∧ t |W = w}.

Quoting [8], “operator γд,aд partitions the tuples of q into
groups. Each group consists of all tuples having one particular
assignment of values to the grouping attributes in д. If there
are no grouping attributes, the entire relation q is one group.
For each group, one tuple consisting of the grouping attributes’
values for that group and the aggregations, over all tuples of
that group, for the aggregated attributes in aд is produced”.
No further formal definition is given in [8]. The formal defi-
nition corresponding to it is given in Figure 11 where f is
instanciated to true for this specific case.

4.2 SQLAlg Syntax and Semantics
As presented in [8], the algebra does not account for having
conditions neither for complex expressions (grouping is only
possible over attributes and aggregates are computed over
single attributes) nor for environments. So as to deal with
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SQL, ours is much expressive as it allows for grouping over
simple expressions and allows complex expressions ea in pro-
jections. In order to handle having conditions, that directly
operate on groups, SQLAlg extends what is presented in [8]
by adding an extra parameter to γ : the having condition.
Expressions (simple and complex ones) as well as formu-

lae10 are shared with SQLCoq. In order to define the semantics
of SQLAlg’s expressions, environments are needed, for the
same reasons as for SQLCoq: accounting for nesting. Hence
SQLAlg environments are the same as for SQLCoq. What should
be noticed is that ▷◁ is the true natural join, and that γ can
be seen as a degenerated case of select from where group

by having, where the where condition is absent (or set to
true).

Based on our fornmalisation it is possible to define other,
derived, operators such as the delta operator (intended to im-
plement the distinct), the semi-join, anti-join and, provided
that a null value be defined, the left and full outer-joins as
illustrated on Figure 10. Let us at that point formally relate
SQLCoq and SQLAlg.

4.3 SQLCoq and SQLAlg Are Equivalent
On Figure 12, we give Tq(_) a translation from SQLCoq to
SQLAlg, and its back translation TQ(_). Both use auxilliary
translations (Tf(_), resp. TF(_)) which simply traverse formu-
lae in order to translate the queries they contain. Since simple
and complex expressions are shared, they are left unchanged
by these translations. Notice that in order to translate the
Q_empty_tuple construct from the algebra to a SQL query,
one has to assume that the database schema contains at least
a relation (default_table).
These translations are sound, provided that they are ap-

plied on "reasonable" database instances and queries.

Definition 4.1. A database instance [[_]]db is well-sorted if
and only if all tuples in the same table have the same labels:
∀r , t1, t2, t1 ∈ [[r ]]db ∧ t2 ∈ [[r ]]db =⇒ ℓ(t1) = ℓ(t2).

Definition 4.2. A SQLCoq query sq iswell-formed if and only
if all labels in its from clauses are pairwise disjoint and its
sub-queries are well-formed:

Wq(tbl)
if tbl is a table

Wq(q1) Wq(q2)

Wq(q1 union q2)

Wq(q1) Wq(q2)

Wq(q1 intersect q2)
Wq(q1) Wq(q2)

Wq(q1 except q2)

disjoint{bi }i
∧
i W

q(qi ) W
f(w) Wf(h)

Wq(selects fromqi (ai asbi )wherew group byGhavingh)

10For algebraic formulae, the domain parameter dom is actually algebraic
queries.

Wf(f1) Wf(f2)

Wf(f1 and f2)

Wf(f1) Wf(f2)

Wf(f1 or f2)

Wf(f )

Wf(not f )

Wf(true) Wf(pr(ei ))

Wq(q)

Wf(exists q)

Wq(q)

Wf(pr(ei , all q))
Wq(q)

Wf(pr(ei , any q))

Wq(q)

ei as ai in q

Provided that those conditions be fullfilled we can state
the following equivalence Theorem.

Theorem 4.3 (SQLCoq ≡ SQLAlg). Let [[_]]db be a well-sorted
database instance and sq be a SQLCoq query, aq a SQLAlg query
then:

∀ℰ , sq,Wq(sq) =⇒ [[Tq(sq)]]Q
ℰ
= [[sq]]q

ℰ

∀ℰ ,aq, [[TQ(aq)]]q
ℰ
= [[aq]]Q

ℰ

The proof proceeds by (mutual) structural induction over
queries and formulae. Actually the proof is made by induc-
tion over the sizes of queries and formulae. It consists of 500
lines of Coq code and heavily relies on a tactic which allows
to automate the proofs that size for sub-objects is decreasing.
For the correctness of Tq(_), the well-formedness hypothesis
of the theorem essentially ensures that Cartesian product
and natural join coincide. What was interesting is that the
well-formedness hypothesis was mandatory and this sheds
light on the fact that, indeed, SQL from behaves as a cross
product. For both translations, well-sortedness ensures that
reasoning over tuples’ labels in the evaluation of a query can
be made globally, by "statically" computing the labels over a
query.

5 Conclusions
Seeking a formal semantics for SQL has been a longstanding
quest for the database community. In this article, we pre-
sented a formal, Coq mechanised, executable semantics for a
large realistic fragment of SQL.

In an early version of the development, we defined a pure
set-theoretic semantics and only addressed the SQL’s frag-
ment with no duplicates. Then we addressed the bag aspects
of SQL and were pleasantly surprised to discover that adding
them was not so problematic. Therefore, the widespread be-
lief that the problem for SQL is to assign it a bag semantics
is not as crucial as it seemed to be. Also, grasping NULL’s se-
mantics is often considered one of the most difficult aspects
to address, this is due to the fact that SQL does not treat
them uniformly according to the context. We handled NULL’s
thanks to a 3-valued logic. What was really challenging was
to accurately and faithfully handle correlated sub-queries.
Particularly tricky was to grasp SQL’s management of ex-
pressions and environments in the presence of such queries.
The ISO/IEC document was of little help along this path.
On the contrary, Coq was an enlightening, very demanding
master of invaluable help in defining semantically relevant
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Q ::= Q_empty_tuple
| table
| Q (union | intersect | except) Q
| Q ▷◁ Q
| π

(ea as attribute)(Q)
| σformula(Q)
| γ

(ea as attribute,e f , formula)
(Q)

Inductive query : Type :=
| Q_Empty_Tuple : query
| Q_Table : relname → query
| Q_Set : set_op → query → query → query
| Q_NaturalJoin : query → query → query
| Q_Pi : list select → query → query
| Q_Sigma : sql_formula query → query → query
| Q_Gamma : list select → list funterm → sql_formula query →

query → query.

Figure 9. SQLAlg Syntax

Definition Q_Delta q :=
let s := sort q in
Q_Gamma

(map (fun a ⇒ Select_As (A_Expr (F_Dot a)) a)
(Fset.elements _ s))

(map (fun a ⇒ F_Dot a) (Fset.elements _ s))
(Sql_True _) q.

Definition Q_SemiJoin f q1 q2 :=
let sort_q1 :=

map (fun a ⇒ Select_As (A_Expr (F_Dot a)) a)
(Fset.elements _ (sort q1)) in

Q_NaturalJoin q1
(Q_Delta

(Q_Pi sort_q1
(Q_Sigma f (Q_NaturalJoin q1 q2)))).

Definition Q_AntiJoin f q1 q2 :=
Q_Set Diff q1 (Q_SemiJoin f q1 q2).

Hypothesis null : value.

Definition Q_LeftOuterJoin f q1 q2 :=
let s := Fset.diff _ (sort q2) (sort q1) in
let s' :=

map (fun a ⇒ Select_As (A_Expr (F_Constant null)) a)
(Fset.elements _ s) in

Q_Set Union
(Q_Sigma f (Q_NaturalJoin q1 q2))
(Q_NaturalJoin (Q_AntiJoin f q1 q2)

(Q_Pi s' Q_Empty_Tuple)).

Definition Q_OuterJoin f q1 q2 :=
let s := Fset.diff _ (sort q1) (sort q2) in
let s' :=

map (fun a ⇒ Select_As (A_Expr (F_Constant null)) a)
(Fset.elements _ s) in

Q_Set Union
(Q_LeftOuterJoin f q1 q2)
(Q_NaturalJoin (Q_AntiJoin f q2 q1)

(Q_Pi s' Q_Empty_Tuple)).

Figure 10. SQLAlg Derived Operators

[[Q_empty_tuple]]Q
ℰ
= {|()|}

[[tbl]]Q
ℰ
= [[tbl]]db if tbl is a table

[[q1 union q2]]
Q
ℰ
= [[q1]]

Q
ℰ
∪ [[q2]]

Q
ℰ

[[q1 intersect q2]]Qℰ = [[q1]]
Q
ℰ
∩ [[q2]]

Q
ℰ

[[q1 except q2]]Qℰ = [[q1]]
Q
ℰ
\ [[q2]]

Q
ℰ

[[q1 ▷◁ q2]]
Q
ℰ
=

������(ai = ci ,bj = dj )
������
(ai = ci ) ∈ [[q1]]

Q
ℰ
∧

(bj = dj ) ∈ [[q2]]
Q
ℰ
∧

(∀ i, j, ai = bj =⇒ ci = dj )

������


[[π(ei as ai )(q)]]
Q
ℰ
= {|(ai = [[ei ]]

a
(ℓ(t ),[],[t ])::ℰ

) | t ∈ [[q]]
q
ℰ
|}

[[σf (q)]]
Q
ℰ
= {|t ∈ [[q]]

q
ℰ

| [[f ]]b
(ℓ(t ),[],[t ])::ℰ

= ⊤|}

[[γ(ej as aj ,ei ,f )(q)]]
q
ℰ
={���� (aj = [[ej ]]

a
(ℓ(T ),ei ,T )::ℰ

)����T ∈ F3

����}
and F2 is a partition of [[q]]Q

ℰ
according to ei

and F3 =
{���T ∈ F2

���[[f ]]b
(ℓ(T ),ei ,T )::ℰ

= ⊤

���}
Figure 11. SQLAlg Semantics

queries. Such a set of queries, augmented with others not
listed in this article, could serve as a benchmark for testing
SQL’s other implementations.

Thanks to our formal semantics we have been able to relate
SQLCoq and SQLAlg establishing, the first, to our best knowl-
edge, equivalence result for that SQL fragment. Moreover,
by doing so, we recover the well-known algebraic equiva-
lences presented in textbooks upon which are based most
of optimisations used in practice. Such equivalences were
proven, using Coq, in [3]. Even if we knew it, it confirmed us
that, SQL having initially been designed as a domain specific
language intended not to be Turing-complete, the fact of

adding more features along the time in the standardisation
process, seriously, and sadly, departed it from its original ele-
gant foundations. By formally relating SQL and an extended
relational algebra, we, humbly, also wanted to pay tribute
to the pionneers that designed the foundational aspects of
RDBMS’s.
Our long term goal is to provide a Coq verified compiler

for SQL. The work presented in this article allows to obtain
a certified semantic analyser that we plan to extend to fea-
tures like order by. In [4] we provided a certification of the
physical layer of a SQL engine where mainstream physical
operators such as sequential scans, nested loop joins,



A Coq Mechanised Formal Semantics for Realistic SQLQueries Conference’17, July 2017, Washington, DC, USA

Tq(tbl) = tbl
Tq(q1 union q2) = Tq(q1) union Tq(q2)
Tq(q1 intersect q2) = Tq(q1) intersect Tq(q2)
Tq(q1 except q2) = Tq(q1) except Tq(q2)
Tq(select ei as ai from fi wherew) =

π(ei as ai )(σTf(w )(▷◁iT
from(fi )))

Tq(select ei as ai from fi wherew
group by G having h) =

γ(ei as ai ,G,Tf(h))(σTf(w )(▷◁iT
from(fi )))

Tfrom(q(ai as bi )) = π
(ai as bi )(T

q(q))

TQ(Q_empty_tuple) = select [] from [default_table(a as a)]
TQ(tbl) = tbl
TQ(q1 union q2) = TQ(q1) union TQ(q2)
TQ(q1 intersect q2) = TQ(q1) intersect TQ(q2)
TQ(q1 except q2) = TQ(q1) except TQ(q2)
TQ(q1 ▷◁ q2) =

select (a′1 as a1a1∈ℓ(q1),a
′
2 as a2a2∈ℓ(q2)\ℓ(q1))

from [TQ(q1)(a1 as a′1);T
Q(q2)(a2 as a′2)]

where (a′1 = a′2)a1∈ℓ(q1),a2∈ℓ(q2),a1=a2
where a′1 and a

′
2 are fresh names

TQ(π(e as a)(q)) = select (e as a) from [TQ(q)(a as a)]
TQ(σf (q)) = select ∗ from [TQ(q)(a as a)]where TF(f )
TQ(γ(e as a,G,f )(q)) =
select (e as a) from [TQ(q)(a as a)] group by G having TF(f )

Figure 12. Translations between SQLCoq and SQLAlg.

index joins or bitmap index joins are formally specified
and implemented. What remains to be done is to address the
logical optimisation part of the compiler.
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