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It has been known for a long time that the kinetics of diffusion-limited reactions can be quantified by the time
needed for a diffusing molecule to reach a target: the first-passage time (FPT). So far the general determination
of the mean first-passage time to a target in confinement has left aside aging media, such as glassy materials,
cellular media, or cold atoms in optical lattices. Here we consider general non-Markovian scale-invariant diffusion
processes, which model a broad class of transport processes of molecules in aging media, and demonstrate that
all the moments of the FPT obey universal scalings with the confining volume with nontrivial exponents. Our
analysis shows that a nonlinear scaling with the volume of the mean FPT, which quantities the mean reaction time,
is the hallmark of aging and provides a general tool to quantify its impact on reaction kinetics in confinement.

DOI: 10.1103/PhysRevE.98.022125

I. INTRODUCTION

How long does it take a random walker to find a target
site? This time, usually called a first-passage time (FPT),
has been extensively studied [1–3] because of its relevance
to the many processes that are controlled by first-passage
events. At the microscopic scale, this is the case of diffusion-
limited reactions, which are controlled by the encounter of
reaction partners [4]. At the macroscopic scale, random search
processes, exemplified by the search for food by animals, have
been shown over the past decade to be efficiently quantified
by FPTs [5–9]. A first step in the analysis of FPTs consists in
determining its mean, the mean first-passage time (MFPT).

Geometrical confinement is a key parameter in the eval-
uation of MFPTs of diffusing particles, as illustrated by the
simple model of a one-dimensional (1D) or 2D symmetric
random walk with nearest-neighbor jumps on a regular lattice.
In the absence of confinement it is well known that a 1D
or 2D random walker eventually visits any site of the lattice
with certainty. However, due to the long-tail statistics of the
FPT distribution, the MFPT turns out to be infinite in this
case. In higher dimensions, the MFPT to a given site is still
infinite, since the weight of trajectories that never reach it
is finite. The analysis of FPT statistics for general random
walks in such infinite geometries has been the focus of intense
activity [10–15]. In the opposite case where the random walker
is confined in a bounded domain, the situation is radically
different. A target site is found with probability one and the
long tails of the FPT distribution are generally suppressed,
leading to a finite MFPT. The question that naturally arises is
then to determine the scaling of the MFPT with the volume of
the confining domain.

This cannot be determined solely by dimensional analysis
since a priori at least three length scales are involved [16]: the
target size a, the source to target distance r , and the typical
confining domain size R ∝ V 1/df , where V is the volume
of the confining domain and df the fractal dimension of the
system. However, in the case of scale-invariant Markovian

processes, a general scaling of the MFPT with a, r , and V

has been derived in the large-volume limit V → ∞, yielding
in particular a general linear dependence on V [8]. This result
was further extended to higher-order moments and the full
FPT distribution was determined asymptotically, leading to
the concept of geometry-controlled kinetics [17].

Recently, the case of non-Markovian Gaussian processes
with stationary increments was analyzed [9,18] and a linear
scaling with V was again found for the MFPT. However, these
analyses leave aside the class of general aging processes, which
model diffusion of particles in aging media. Note that the par-
ticular case of continuous-time random walks (CTRWs) was
shown to display aging [19] and the FPT statistics of CTRWs
in confinement were derived earlier with standard methods
[20–22]. As discussed below, this type of aging has no effect
on the FPT statistics in the limit of large confining volume
considered here. Aging media are generally characterized
by the fact that physical observables depend on the time
elapsed since the preparation of the system. Examples of aging
processes range from the slowing down observed in glassy
systems [23] to the broadening in the velocity distribution
of cold atoms in optical lattices [24] or the nonstationary
behavior of the mean-square displacement of tracers in the
plasma membrane [25]. More generally, any random walker
interacting with other degrees of freedom is expected to display
memory effects, in which case aging properties, reflecting the
decay of the memory of the initial state, naturally arise. Such
transient aging gives rise to nontrivial persistence exponents
characterizing the long-time decay of the first-passage-time
distribution in infinite space [15]. In turn, the FPT problem for
the target search in a confined aging medium, and therefore
the understanding of reaction kinetics in these media, is not
well characterized theoretically. A striking example is given
by biochemical reactions in cellular media, such as gene
regulation. These are known to involve a small copy number of
reactants, confined in the cell or its nucleus, which diffuse in a
highly dynamic medium. The resulting dynamics is therefore
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generically nonstationary (see, e.g., [25] or [26]). Another
example is given by chemical reactions in supercooled liquids
after a temperature quench, where aging in single-particle
dynamics is routinely observed [23].

In this article, we quantify reaction kinetics in aging media
by addressing the first-passage problem in confinement for a
wide class of aging stochastic processes. In our analysis, the
system can age at the same time the target search occurs. We
show that the full FPT distribution for scale-invariant processes
in confinement falls into universality classes that we define
below and thereby identify the impact of aging on reaction
kinetics. In addition, our approach is applied to emblematic
non-Markovian processes with stationary increments such as
d-dimensional fractional Brownian motion or Lévy walks,
whose FPT properties have so far remained out of reach with
standard techniques.

II. RESULTS

A. Model

We consider a general scale-invariant non-Markovian
stochastic process defined in a space of dimension d (while all
examples below are defined in Euclidean spaces, our results
can be generalized to fractal spaces of dimension df , by direct
substitution d → df ). The process is assumed to be symmetric
(there is no privileged direction) and its increments satisfy at
long times

〈[X(t + τ ) − X(t )]2〉 ∼
t→∞ tατ β, (1)

where we have introduced an aging exponent α which de-
scribes, for α �= 0, the nonstationary dynamics of increments.
Here f (t ) ∼

t→∞ g(t ) stands for f (t )/g(t ) →
t→∞ A, where A is

a nonzero constant. This assumption means that the measured
increments during a time lag τ will be subdiffusive (β < 1) or
superdiffusive (β > 1), with a generalized transport coefficient
∼tα that depends on the time t elapsed since the initial state
(see Fig. 1). Hence, α > 0 corresponds qualitatively to accel-
erating processes and α < 0 to slowing down processes, both

V

(log scale)

(log scale)

Source

Target

FIG. 1. First-passage times of a diffusing particle in an aging
medium. A diffusing particle starting from S is searching for a target T
in an aging medium confined in a domain of volume V , with reflecting
boundaries. Aging is characterized by a mean-square displacement
that depends on the observation time t . In this article, we show that
reaction kinetics in aging media obeys universal statistics.

cases belonging clearly to the class of aging processes. Note,
however, that the above scaling (1) of increments describes
only the asymptotic dynamics (t → ∞); in particular α = 0
implies that increments are asymptotically stationary, but can
correspond to processes that age transiently. As we proceed
to show quantitatively, even transient aging (with α = 0) can
have important consequences on FPT statistics.

In addition, as classically done, we assume that the process
itself is scale invariant and characterized by a walk dimension
dw defined through1

〈X2n(t )〉 ∼
t→∞ t2n/dw . (2)

For dimensional reasons, dw is found to be related to β through
β = 2/dw − α. Note that this definition of the walk dimension
depends on the dynamics of the process and not only on the
geometry of trajectories.

The scale-invariance hypotheses introduced above are con-
sistent with the observed scaling of the dynamic structure
factor discussed in the glassy literature using the examples of
jammed soft materials, including colloidal gels, concentrated
emulsions, and concentrated surfactant phases [27–29]. Be-
yond these examples, a broad range of processes, as detailed
below, satisfies these hypotheses.

As was the case in the context of geometry-controlled
kinetics [17], it is useful to distinguish between compact and
noncompact processes that we define here by the behavior
of the probability P (a, r ) = P ( a

r
) that in unbounded space a

target of size a is eventually reached by the process that started
from a distance r . (i) If P ( a

r
) = 1 for all a, the process is called

compact and even a pointlike target is found with certainty
[P (0) = 1]. One then introduces the survival probability S

that a pointlike target has not been reached up to time t ,
which decays as S(t ) ∼

t→∞ t−θ , where the persistence exponent

θ has been extensively studied in the literature [10–13,15].
Importantly, θ has been shown to depend on transient aging.
Namely, using the example of fluctuating interfaces described
by Edwards-Wilkinson dynamics, θ was demonstrated to
take different values for different initial conditions, even if
increments were asymptotically stationary (α = 0 as defined
above) independently of initial conditions [12]. (ii) Conversely,
if P (0) = 0, the process is termed noncompact and will be
characterized by the transience exponent ψ that we introduce
here and define by the small a/r scaling of P : P ( a

r
) ∼

a→0
( a

r
)ψ .

(iii) Finally, the case of marginal exploration is defined here
by S(t ) ∼ 1/ ln t for a target of radius a �= 0.

B. Universal first-passage statistics

We now consider the distribution of the FPT to a target of
size a in a confined domain of volume V ∼ Rdf (see Fig. 1),
for a particle starting at a distance r from the target. The origin
of time corresponds to the time at which the tracer is inserted
in the medium. If the observation starts at a later time t1, it
is expected that FPT statistics depend on t1 for generic aging

1When 〈X2n(t )〉 is infinite, as in the examples of Lévy walks and
Lévy flights, dw can be defined through the scaling of the exit time
from a sphere.

022125-2



UNIVERSAL FIRST-PASSAGE STATISTICS IN AGING MEDIA PHYSICAL REVIEW E 98, 022125 (2018)

processes (as was shown by the example of continuous-time
random walks [20,30]). However, in the large-volume limit that
we consider below, we find that the scaling of all moments of
the FPT with geometrical parameters is independent of t1. We
report that the distribution of the FPT obeys universal statistics
defined as follows. Denoting by T the FPT, we introduce the
rescaled random variable η ≡ T/Ttyp, where the characteristic
time Ttyp is defined by

Ttyp =

⎧⎪⎨
⎪⎩

Rdw (compact)

Rdw
(

ln R
a

)1−αdw/2
(marginally compact)

Rdw
(

R
a

)ψ (1−αdw/2)
(noncompact).

(3)

Assuming that the mean FPT to the target is finite (processes
leading to infinite MFPTs, such as CTRWs with infinite mean
waiting times, are analyzed in Appendix A 3), we find that η is
asymptotically distributed in the large-volume limit according
to

G(η; a, r, R) =

⎧⎪⎪⎨
⎪⎪⎩

h(η)
(

r
R

)dwθ
(compact)

h(η)
ln r

a

ln R
a

(marginally compact)

h(η)
[
1 − C

(
a
r

)ψ]
(noncompact),

(4)

where it is assumed thata 
 r ,h(η) is an undetermined scaling
function a priori process dependent, and C is a numerical
constant. We stress that both C and h do not depend on
geometric parameters a, r , and R. Here the large-volume limit
is defined by taking all points of the boundary to infinity with
fixed starting position and target. In this limit FPT statistics
therefore depend on the volume of the confining domain, but
not its shape. In addition, it is argued in Appendix A 6 that

ψ = df − dw

1 − αdw/2
. (5)

This explicitly determines the dependence on the geometrical
parameters of the problem of the FPT distribution and therefore
of all its moments (when they exist). In particular, the scaling
of the mean is given by

〈T 〉 ∼

⎧⎪⎨
⎪⎩

Rdw (1−θ )rdwθ (compact)
Rdw

(ln R/a)αdw/2 ln r
a

(marginally compact)
Rdw+ψ (1−αdw/2)

aψ (1−αdw/2)

[
1 − C

(
a
r

)ψ]
(noncompact).

(6)

Remarkably, the scaling of the MFPT can therefore be non-
linear with the volume V ∼ Rdf for nontrivial values of the
persistence exponent θ (in the compact case) or of the aging
exponent α (for noncompact processes). This will be the case of
generic processes with nonstationary increments, as discussed
below.

C. Sketch of the proof

We now sketch the demonstration of this result (see Ap-
pendix A for details) and first consider the compact case,
for which a can be taken equal to zero as stated above. We
write the FPT distribution F (t ) as a partition over trajectories
reaching either the reflecting boundary before the target [with

probability π (r, R) and conditional FPT distribution Fb] or
the target first [with probability 1 − π (r, R) and conditional
FPT distribution Ft ]: F = πFb + (1 − π )Ft . We now evaluate
each of the terms of this equation. We remark that 1 − π

can be written as the time integral of the FPT density to
the target restricted to trajectories reaching the target before
the boundary. Most of these events occur within the typical
timescale Rdw needed to reach the boundary, so we claim that
the equation

1 − π (r, R) ∼
R�r

∫ ARdw

0
F∞(t, r )dt (7)

holds, where F∞(t, r ) is the FPT density in unconfined space
and A is a constant.

Using the above-mentioned hypothesis of scale invariance
of the process (2), which leads in the large-t limit to F∞(t, r ) ≡
f (t/rdw )/t (where f is an unknown process-dependent func-
tion), together with the definition of θ , we obtain

π (r, R) ∼
R�r

(
r

R

)dwθ

. (8)

Note that here aging properties are encompassed by the
persistence exponent θ [12]. While the argument leading to
Eqs. (7) and (8) is not mathematically rigorous, we claim
that Eq. (8) is exact. This is verified numerically in all tested
examples (see Fig. 3); in addition, this equation extends the
one-dimensional result for splitting probabilities of Majumdar
et al. [31]. The above argument also implies that

Ft (t, r, R) ∼ Y (ARdw − t )F∞(t, r ) ∼ Y

(
A − t

Rdw

)
rdwθ

tθ+1
,

(9)

where Y stands for the Heaviside step function. Making use
again of scale invariance and writing for R � r the exact
scaling relation

Fb(t, R) ≡ g(t/Rdw )/t, (10)

where g is an unknown function, we finally obtain Eq. (4)
above.

We now turn to the noncompact case. We define by ex-
cursion a portion of trajectory starting from the sphere S of
radius R/2 centered on the target, reaching the boundary and
returning to S. We write the FPT distribution as a partition
over the number n of excursions before the first passage to the
target and denote by �n(t ) the corresponding conditional FPT
distribution

F (t, a, r, R) = p0�0(t ) +
∞∑

n=1

�n(t )(1 − p0)(1 − p)n−1p,

(11)

where p ∼ (a/R)ψ is the probability to reach the target
before the boundary starting from S and p0 ∼ (a/r )ψ is the
probability to reach the target before the boundary starting
from r . Note that here we implicitly assume that excursions are
independent in the large-R limit. Physically, it originates from
the divergence with R of the typical time τn needed to perform
the nth excursion, which hence can be taken larger than all
correlation times of the process, as was checked numerically
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Scaled 2D FBM   H = 0.7
2D FBM   H = 0.7
2D Levy Flight     = 1.5
2D Levy Walk      = 1.5
2D RAP
3D RAP
2D RJP

Noncompact processesCompact processes(a) (b)
1D Scaled FBM  H = 0.4
1D Quenched FBM  H = 0.65
1D FBM H = 0.4
1D Levy Walk      = 0.3
1D Levy Walk      = 1.5
1D RAP partial absorption  q = 0.7
1D RAP
1D Quenched FBM  H = 3/8
1D RJP
1D Levy Flight      = 0.5

FIG. 2. Mean FPT as a function of the volume for (a) compact and (b) noncompact processes. Lines represent our predictions [Eq. (6)] and
symbols are the results of numerical simulations. For each process, 〈T 〉 and V are rescaled by arbitrary factors (V0, T0 ); V0 is chosen big enough
to have reached the large-volume limit. The solid line corresponds to the linear behavior with the volume. Details on simulation algorithms and
geometrical parameters for each process are given in Appendix B.

(see Appendix A 2). Finally, a scaling argument confirmed by
numerical simulations (see Appendix A 2) shows that

�n(t ) = 1

t
φ(t/tn), (12)

where tn is the typical time elapsed after n excursions, which
satisfies

〈[X(tn + τn) − X(tn)]2〉 ∼
tn→∞ tαn τ 2/dw−α

n = R2. (13)

Using that tn = τ1 + · · · + τn, this equation leads to

tn ∼
R→∞

Rdwn1−αdw/2. (14)

Making use of the definition of ψ , the large-R behavior of (11)
is found to lead to Eq. (4) above. Note that, as soon as α �= 0,
the typical time tn explicitly depends on n, which is a direct
manifestation of aging.

D. Remark: The case of CTRWs

For completeness, we describe in this section how the
FPT statistics of CTRWs (which have been derived earlier
with standard tools [20–22]) can be obtained in the general
framework introduced above (for details, see Appendix A 3).
Continuous-time random walks are jump processes charac-
terized by random waiting times between successive steps.
For power-law distributions of waiting times q(t ) ∼ 1/tβ+1

with β < 1, the mean waiting time is infinite. The process is
in this case subdiffusive (dw = 2/β) and increments satisfy
〈[X(t + τ ) − X(t )]2〉 ∼

t→∞ tβ−1τ [19]; in that sense aging

therefore occurs.
In the compact case, the formalism introduced above applies

directly. For example, for d = 1, using θ = β/2 [15] in Eqs. (3)
and (4), one recovers the results of [20–22]. In the noncom-
pact case, there is a subtlety in the definition of the aging
exponent α. The quantity needed to derive FPT properties
is the exponent that characterizes aging in the duration of
excursions (discussed in the preceding section), which begin

just after a jump. The variables t and t + τ in the definition of
increments are therefore conditioned by the fact that a jump
just occurred at time t . With this prescription, we find that the
conditioned increments satisfy 〈[X(t + τ ) − X(t )]2〉c ∼ τβ ,
so one must set α = 0 for a CTRW. Note that this contrasts
with the unconditioned increments given above. Making use
of this definition of α = 0, together with Eqs. (3) and (4), the
results of [20–22] are recovered. Finally, this shows that FPT
statistics of CTRWs can be recovered by our approach.

III. DISCUSSION

A. Dependence of reaction kinetics on the geometrical
parameters

We now comment on the main results of this paper,
Eqs. (3)–(6). First, the dependence on a, r , and R of the FPT
distribution of Markovian processes [17] and the mean FPT of
non-Markovian Gaussian processes with stationary increments
[9] are recovered. This results from the specific values of α and
θ for processes with stationary increments: α = 0 by definition
of stationary increments, which leads to ψ = df − dw for
noncompact processes; for compact processes, we argue in
Appendix A 5 that θ = 1 − df /dw.

Second, a remarkable feature emerging with aging is a
possible nonlinear scaling of the MFPT, and thus of the mean
reaction time, with the volume either sublinear or superlinear
(see Fig. 2). A linear scaling is shown to hold in the compact
case only if increments are stationary at all times (leading to
θ = 1 − df /dw), while in the noncompact case asymptotically
stationary increments (leading to α = 0) are sufficient. For
example, a non-Markovian compact process, which is initially
quenched and relaxes to its stationary state in free space,
therefore displaying aging only transiently (θ �= 1 − df /dw

and α = 0), is shown below to be characterized by a nonlinear
scaling of the MFPT with the volume (see Fig. 2). By contrast,
in noncompact cases, a nonlinear scaling can be obtained only
if aging occurs at all times.
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FIG. 3. Universal scalings of the FPT density with geometrical parameters for compact processes. Here S ≡ ∫ +∞
t/Ttyp

G(η)dη is the survival
probability of the random walker, whose scaling with geometrical parameters is deduced from Eqs. (3) and (4). The collapse of numerical data
after rescaling for different geometrical parameters shows that our theory unambiguously captures the dependence of the FPT distribution on
geometrical parameters. Simulations are performed in 1D or 2D boxes of size R with periodic boundary conditions: (a) 1D fractional Brownian
motion with H = 0.4, (b) 2D fractional Brownian motion with H = 0.35, (c) 1D initially quenched fractional Brownian motion with H = 0.65,
(d) 1D random acceleration process, (e) 1D random acceleration process with a probability q = 0.7 of absorption at each crossing of the target,
(f) 1D random jerk process, (g) 1D Lévy walk (XY convention) whose jumps are Lévy stable distributed with a parameter β = 1.5, (h) 1D
Lévy walk (XY convention) whose jumps are Lévy stable distributed with a parameter β = 0.3, and (i) 1D Lévy flight (XY convention) whose
jumps are Lévy stable distributed with a parameter β = 0.3 and the target is found when crossed. Details on the definition of the processes, the
simulation algorithms, and the geometrical parameters for each process are given in Appendix B.

Third, the FPT statistics displays a strong dependence on
the initial distance in the case of compact exploration and a
much weaker one in the noncompact case. Qualitatively, this
feature is the same as that previously found for Markovian pro-
cesses [8,17], but aging quantitatively modifies the exponents
characterizing this dependence.

Next, note that the timescale Ttyp of the FPT distribution
is independent of θ and α that characterize transient and
asymptotic aging for compact processes, while it depends
explicitly on α for noncompact processes.

Finally, the dependence of the FPT distribution on r , a,
and R falls into universality classes defined by dw and θ (for
compact processes) or by α, dw, and df (for noncompact
processes), exponents being an input of the model. Note that,

in the compact case, the dependence on aging is entirely
contained in the exponent θ , with no explicit dependence
on α.

B. Examples and numerical simulations

We finally confirm the validity of our analytical results by
comparing them to numerical simulations of a broad range of
representative examples of stochastic processes (see Appendix
B for details), for which only sparse results on the FPT statistics
in confinement were available so far [9,20,30,32–34]. These
processes all satisfy the scale-invariance hypothesis introduced
above, with the exception of Lévy walks for which multifractal
scalings can occur, as discussed in Appendix B 6. Specifically,
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FIG. 4. Universal scalings of the FPT density with geometrical parameters for noncompact processes. Here S ≡ ∫ +∞
t/Ttyp

G(η)dη is the survival
probability of the random walker, whose scaling on geometrical parameters is deduced from Eqs. (3) and (4). The collapse of numerical data
after rescaling for different geometrical parameters shows that our theory unambiguously captures the dependence of the FPT distribution on
geometrical parameters. Simulations are performed in 1D or 2D boxes of size R with periodic boundary conditions, except for the stubborn
RAP (see Appendix B for this particular case): (a) 2D random acceleration process, (b) 3D random acceleration process, (c) 2D random jerk
process, (d) 2D fractional Brownian motion with H = 0.7, (e) 2D Lévy walk (XY convention) whose jumps are Lévy stable distributed with
a parameter β = 1.5, (f) 2D Lévy walk (angular convention) whose jumps are Lévy stable distributed with a parameter β = 0.6, (g) 2D Lévy
walk (XY convention) whose jumps are Lévy stable distributed with a parameter β = 0.6, and (h) so-called 2D heavy-tailed RAP, with a CTRW
parameter γ = 0.7. Graphs (g) and (h) cover the case of infinite mean FPT, for which Eqs. (1) and (3) have to be corrected, as explained in
Appendix A 3. Details on the processes, the simulation algorithms, and the geometrical parameters for each process are found in Appendix B.

we consider (i) the d-dimensional fractional Brownian motion
(FBM), a non-Markovian Gaussian process of constant mean,
with stationary increments satisfying 〈[X(t ) − X(0)]2〉 = t2H ,
where H is the Hurst exponent; this process has been repeat-
edly invoked in the literature to model anomalous diffusion
arising from the interaction with many variables [12,14];
(ii) its extension to quenched initial conditions, for which
increments are time dependent and relax asymptotically to
the stationary behavior; for this process, the aging exponent
vanishes, but the progressive decay of the memory of the
initial state makes the increments nonstationary at intermediate
timescales and the persistence exponent nontrivial [12] (in the
compact case); (iii) the d-dimensional random acceleration
process (RAP), defined by Ẍ = η(t ) with η(t ) a Gaussian
white noise, often considered as the simplest, yet nontrivial,
non-Markovian process [15,34,35]; (iv) the generalizations of
the RAP to the case of partial absorption, various conditions
at the confining boundary, higher-order derivatives such as the
random jerk process (RJP) [satisfying

...
X = η(t )], and potential

long waiting times; (v) d-dimensional Lévy flights, where at
each time step the random walker performs a jump whose
size l is drawn from a long-tailed distribution p(l) ∼ 1/l1+β ,
with both prescriptions of first arrival and first crossing of
the target [36]; (vi) d-dimensional Lévy walks, which can be
described as Lévy flights with a finite velocity; scale-invariance
properties of this process are discussed in Appendix B 6;
and (vii) scaled processes defined from a reference process
X(0)(t ) by X(t ) ≡ X(0)(tb ). These cases cover a broad class
of stochastic processes in one and higher dimensions, which
can be aging [processes (ii)–(iv) and (vii)] or not [processes

(i), (v), and (vi)], Markovian or non-Markovian, subdiffusive
or superdiffusive. Note that even for nonaging processes, most
of the available results concerning non-Markovian processes
were so far limited to d = 1.

Figures 2–4 reveal excellent quantitative agreement be-
tween numerical simulations and our analytical results. The
data collapse of the properly rescaled FPT distribution shows
that our approach unambiguously captures the dependence on
a and r and on R for both compact (Fig. 3) and noncompact
(Fig. 4) processes. In particular, sublinear, linear, and super-
linear scalings of the mean FPT with the volume are observed,
in agreement with our predictions (Fig. 2). This demonstrates
that the nonlinear scaling of the mean FPT with the volume
is the hallmark of the aging properties of the dynamics. A
summary of our predictions for all these processes can be found
in Tables I and II.

IV. CONCLUSION

Our results provide a framework to quantify the kinetics
of reactions in aging environments. Using the example of
biochemical reactions in cellular media or chemical reactions
in supercooled liquids, a typical protocol would consist in
measuring the exponents dw, α, and θ defined in the text
(for example, from single-particle trajectories). The evaluation
of the mean, typical, and more generally all moments of the
FPT is then explicitly obtained from our expressions (3)–(6).
In particular, the volume dependence, and thus the order
of magnitude of the FPT, is shown to be controlled by the
aging properties. Finally, we have shown how aging properties
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TABLE I. Compact processes. In all these examples, compactness of the walk requires d = 1 except for the FBM where d satisfies d < 1/H

and the CTRW where d < d0
w . The comment “cross.” for Lévy flights denotes that the first crossing of the target is investigated. Cases for which

α = 0 and aging is irrelevant correspond to processes (CTRW and Lévy walks) where aging does exist but the determination of FPT statistics
involves the increments conditioned by the fact that a step has just been made at time t , for which one finds α = 0. See Appendixes A and B
for more details.

Process dw α Aging θ Ttyp 〈T〉
FBM H 1/H 0 no 1 − H R1/H Rdr1/H−d

quenched FBM H 1/H 0 transient θ (H ) R1/H R(1−θ )/H rθ/H

RAP 2/3 1 yes 1/4 R2/3 R1/2r1/6

RAP with partial absorption q 2/3 1 yes 1
4 [1 − 6

π
sin−1( 1−q

2 )] R2/3 R2(1−θ )/3r2θ/3

stubborn RAP 2/3 1 yes 1/4 R2/3 ∞
RJP 2/5 3 yes 0.2202 R2/5 R2(1−θ )/5r2θ/5

Lévy flight β (cross.) β 0 no 1/2 Rβ R1−β/2rβ/2

Lévy walk β < 1 1 0 irrelevant β/2 R Rβ/2r1−β/2

Lévy walk β > 1 β 0 no 1/2 Rβ R1−β/2rβ/2

CTRW d (0)
w for γ < 1 d (0)

w /β 0 irrelevant β(1 − d/d (0)
w ) Rd

(0)
w /β ∞

modify reaction kinetics and provided an explicit method
to determine quantitatively FPT statistics in confined aging
media. In turn, we suggest that measuring the scaling of the
mean FPT with the confining volume (linear or not) could help
in identifying aging properties of a medium.

APPENDIX A: DETAILED DERIVATION OF THE SCALING
FORM OF THE FPT DISTRIBUTION (1)–(4)

1. Detailed derivation of the scaling form of the FPT
distribution in the compact case

We derive here in detail the scaling form taken by the FPT
distribution in the compact case. As explained in the main text,
in the compact case, the radius a of the target can be taken equal
to zero when we focus on the limit a 
 r . In this section, we
thus have a = 0.

Our starting point consists in writing the FPT distribution
F as a partition over trajectories reaching either the reflecting
boundary before the target [with probability π (r, R) and con-

ditional FPT distribution Fb] or the target first [with probability
1 − π (r, R) and conditional FPT distribution Ft ]:

F (t, r, R) = πFb(t, r, R) + (1 − π )Ft (t, r, R). (A1)

We now evaluate each of the terms of this equation.
We remark that 1 − π can be written as the time integral of

the FPT density to the target restricted to trajectories reaching
the target before the boundary. Most of these events occur
within the typical timescale Rdw needed to reach the boundary,
so one can write

1 − π (r, R) ∼
R�r

∫ ARdw

0
F∞(t, r )dt, (A2)

where A is a constant and F∞(t, r ) is the FPT density in
unconfined space. Using the scale invariance of the process,
we can write F∞ under the form

F∞(t, r ) ≡ 1

t
f

(
t

rdw

)
, (A3)

TABLE II. Noncompact processes. The dimension of space d always satisfies d > 1 except for FBM where d > 1/H and a CTRW where
d > d0

w . Cases for which α = 0 and aging is irrelevant correspond to processes (CTRW and Lévy walks) where aging does exist but the
determination of FPT statistics involves the increments conditioned by the fact that a step has just been made at time t , for which one finds
α = 0. In the case of Lévy flights “arr.” indicates that the convention of first arrival is used, whereas “cross.” indicates the first crossing. Finally,
both XY and angular Lévy walks are analyzed. See Appendixes A and B for more details.

Process dw α Aging ψ Ttyp 〈T〉
FBM H 1/H 0 no d − 1/H Rd Rda1/H−d

quenched FBM H 1/H 0 transient d − 1/H Rda1/H−d Rda1/H−d

RAP 2/3 1 yes d − 1 R2d/3a−2(d−1)/3 R2d/3a−2(d−1)/3

RAP partial absorption q 2/3 1 yes d − 1 R2/3a−2(d−1)/3 R2d/3a−2(d−1)/3

heavy-tailed RAP γ < 1 2/3γ γ yes d − 1 R2/(3γ )a−2(d−1)/(3γ ) ∞
RJP 2/5 3 yes d − 1 R2/5a−2(d−1)/5 R2d/5a−2(d−1)/5

Lévy flight β (arr.) β 0 no d − β Rdaβ−d Rdaβ−d

Lévy flight β > 1 (cross.) β 0 no d − β Rdaβ−d Rdaβ−d

Lévy flight β < 1 (cross.) β 0 no d − 1 Rd+β−1a1−d Rd+β−1a1−d

Lévy walk (XY ) β < 1 1 0 irrelevant d − 1 R1+(d−1)/βa(1−d )/β ∞
Lévy walk (XY ) β > 1 β 0 no d − β Rdaβ−d Rdaβ−d

Lévy walk (angular) β < 1 1 0 irrelevant d − 1 Rda1−d Rdad−1

CTRW d (0)
w for γ < 1 d (0)

w /β 0 irrelevant d − d (0)
w Rd/βad/β−d

(0)
w /β ∞
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where f is a dimensionless function. Using Eq. (A3) and the
fact that F∞ is normalized to unity, we obtain, from Eq. (A2),

π (r, R) ∼
R�r

∫ ∞

ARdw

1

t
f

(
t

rdw

)
dt. (A4)

Next, using the definition of the persistence exponent, we find
that the long-time behavior of the function f satisfies

f

(
t

rdw

)
∼

t→∞

(
rdw

t

)θ

. (A5)

Inserting this relation into the integral (A4), we finally obtain
the following scaling for the probability π of touching the
boundaries of the confining domain before the target:

π (r, R) ∼
R�r

(
r

R

)dwθ

. (A6)

Note that the above relation extends the one-dimensional result
of [31]. Similarly, we can write the FPT distribution to the
target Ft , conditional on the fact that the target is hit before the
domain boundaries, as

Ft (t, r, R) ∼ Y (ARdw − t )F∞(t, r )

∼ Y

(
A − t

Rdw

)
f (t/rdw )

t
, (A7)

where Y stands for the Heaviside step function.
Next, Fb is the conditional FPT distribution for trajectories

that hit the domain boundaries first, we can thus argue that it
does not depend on r . Making use again of scale invariance,
we obtain

Fb(t, r, R) ≡ 1

t
g

(
t

Rdw

)
. (A8)

Collecting all terms, we obtain

F (t, r, R) ∼
R�r

(
r

R

)dwθ 1

t
g

(
t

Rdw

)

+Y

(
A − t

Rdw

)
1

t
f

(
t

rdw

)
. (A9)

We consider timescales larger than rdw and obtain

F (t, r, R) ∼
R�r

(
r

R

)dwθ 1

t
g

(
t

Rdw

)

+Y

(
A − t

Rdw

)
1

t

(
rdw

t

)θ

. (A10)

Using that the distribution G of the rescaled variable η ≡
T/Rdw is given by

G(η, r, R) = F (t, r, R)Rdw, (A11)

we finally obtain that G given by Eq. (A10) can be written as

G(η, r, R) =
(

r

R

)dwθ

h(η), (A12)

where h(η) = [g(η) + Y (A − η)/ηθ ]/η is an undetermined
scaling function that is a priori process dependent.

2. Detailed derivation of the scaling form of the FPT
distribution in the noncompact case

We derive here in detail the scaling form taken by the FPT
distribution in the noncompact case. Note that we assume here
that the mean FPT to the target is finite (in Appendix A 3 we
describe how the results are modified in the case of infinite
MFPTs).

We define by excursion a portion of trajectory starting from
the sphere S of radius R/2 centered on the target, reaching
the boundary and returning to S. Let us denote by �n(t ) the
probability density to reach the target at time t given that n

excursions have been performed. We write the FPT distribution
as a partition over the number n of excursions

F (t, a, r, R) = p0�0(t ) +
∞∑

n=1

�n(t )(1 − p0)(1 − p)n−1p,

(A13)

where p is the probability to reach the target before the
boundary starting from S and p0 is the probability to reach
the target before the boundary starting from r . Note that
here we implicitly assume that the probability of reaching
the target after n excursions is independent of the previous
excursions in the large-R limit. Physically, it originates from
the divergence with R of the typical time τn needed to perform
the nth excursion, which hence can be taken larger than all
correlation times of the process. This geometrical law of the
number of excursions before reaching the target was checked
numerically for two highly correlated and aging processes: the
random acceleration and the random jerk processes defined in
Appendix B (Fig. 5).

The probability to find the target during the nth excursion
is equal to the probability to find the target of radius a before
the domain boundary, starting from a distance R/2 from the
target. By definition of the transience exponent ψ introduced
in the main text, this probability scales as

p ∼
R�a

C

(
a

r

)ψ

. (A14)

Similarly,

p0 ∼
r�a

C

(
a

r

)ψ

. (A15)

We now determine the scalings of the typical time tn at
which the nth excursion takes place, and the typical time τn

between the nth and the (n + 1)th excursion. These times can
be found by noting that, during τn the typical traveled distance
is R, which means that

〈[X(tn + τn) − X(tn)]2〉 ∼
tn→∞ tαn τ 2/dw−α

n = R2. (A16)

The n dependence of tn can be then found self-consistently.
We assume the scaling

τn ∼
n→∞

Rν

nδ
, (A17)

where the exponents δ and ν will be determined below. Since
tn = ∑n−1

k=1 τk , where the variables τk have finite mean, we
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FIG. 5. For both processes, the walker begins at position r = 10
in a 2D domain of linear size R, with periodic boundary conditions:
test of decoupling of the excursions for (a) the RAP and (b) the RJP.
Following our prediction, p is taken as p ∝ (a/R) for both processes.
To compare to (A13), we make use of (1 − p)n � e−np for large R.

obtain

tn ∼
n→∞ Rνn1−δ. (A18)

The values of δ and ν are found by inserting the expressions
(A17) and (A18) into Eq. (A16), leading to

ν = dw, (A19)

δ = αdw

2
. (A20)

Finally,

tn ∼
R→∞

Rdwn1−αdw/2, (A21)

τn ∼
R→∞

Rdw

nαdw/2
. (A22)

Next we note that �n(t ) can be written as

�n(t ) = 1

t
g

(
t

tn
,
Rdw

tn
,

a

R

)
. (A23)

Taking the limits a/R → 0 and n → ∞ [which implies that
tn � Rdw from Eq. (A21)] thus leads to the scaling form

�n(t ) ∼ 1

t
φ

(
t

tn

)
. (A24)

We check the validity of this scaling in Fig. 6.
The large-R asymptotics of F (t, a, r, R) can be obtained

by transforming the discrete sum of Eq. (A13) into an integral

F (t, a, r, R)

∼
R→∞

p
1 − p0

1 − p

∫ ∞

0

1

t
φ

(
t

Rdwn1−αdw/2

)
en ln(1−p)dn, (A25)

which, by using the change of variables u = np (with p 
 1)
and Eqs. (A14) and (A15), leads to

F (t, a, r, R) ∼
R→∞

[
1 − C

(
a

r

)ψ
]

1

t

×
∫ ∞

0
φ

(
t

Rdw [u(R/a)ψ/C]1−αdw/2

)

× e−udu, (A26)

where C is a model-dependent numerical constant. A charac-
teristic time appears in Eq. (A26),

Ttyp = Rdw (R/a)ψ (1−αdw/2), (A27)

in terms of which the FPT distribution becomes

F (t, a, r, R)

∼
R→∞

[
1 − C

(
a

r

)ψ
]

1

t

∫ ∞

0
φ

(
t

Ttypu1−αdw/2

)
e−udu.

(A28)

We now consider the rescaled time

η ≡ t

Rdw (R/a)ψ (1−αdw/2)
= t

Ttyp
. (A29)

The distribution G of this rescaled variable is given by

G(η, r, R) = F (t, a, r, R)Ttyp (A30)

and we finally obtain that G can be written as

G(η, r, R) =
[

1 − C

(
a

r

)ψ
]
h(η), (A31)

where h is an undetermined scaling function a
priori process dependent, which reads here h(η) =
η−1

∫ ∞
0 φ(ηu(αdw/2−1)/C)e−udu.

Finally, in the marginal case, where ψ = 0, all the steps pre-
sented for the noncompact case hold, with the only difference
that now

p ∼
R�a

1

ln
(

R
a

) (A32)

and

p0 ∼
r�a

1

ln
(

r
a

) . (A33)

This leads to the marginal case of Eqs. (1) and (2).
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FIG. 6. Validity of the scaling (A24) of the conditional FPT
distribution. We tested the scaling of the conditional FPT distribution
with the number of excursions n and the size R of the volume.
(a) Result for the cumulative distribution function (CDF) of the
duration of n excursions for regular Brownian motion. By direct
application of the central limit theorem, we know that at large n the
distribution φn(t ) is a Gaussian around its mean (which is proportional
to tn ∼ nR2) and variance ∼√

n. Hence, after rescaling by tn, the
Heaviside step function is observed. The (b) random acceleration
process and (c) random jerk process are also considered. In these
accelerating processes, the duration of excursions are shorter and
shorter and tn is sublinear with n. Our predictions for the scaling with
tn = (nR)2/3 for the RAP and tn = (nR)2/5 for the RJP are verified.

3. Modification of the formalism in the case of infinite MFPT

We describe here how the formalism is modified in the case
of processes leading to infinite mean FPTs. This is typically
the case of jump processes with broad waiting times, such as
CTRWs. For these jumps process, attention must be paid in the
computation of α. As this exponent defines the potential aging
of the duration of excursions (which begin just after a jump),
t and t + τ in the definition of α are taken just after a jump.
With this prescription, we find that α = 0 for a CTRW (note
that this contrasts with other definitions of the increments [19],
which result in nonzero values of α).

In the compact case, all steps involved in the proof of
Eqs. (1) and (2) hold and therefore these equations are still
valid in the case of infinite MFPTs.

The case of noncompact processes requires a separate
treatment. We consider the case where the time of the nth
excursion has a broad distribution, leading to an infinite mean
FPT to the target. Specifically, we consider the case where the
distribution of τn has a power-law tail

P (τn) ∼ τ̃ γ

τ
1+γ
n

1

nδ
, (A34)

with γ ∈]0, 1[ and τ̃ ∝ Rdw . The exponent δ, defined by
Eq. (A34), describes the aging of the durations of successive
excursions. It is important to note that tn = ∑n−1

k=1 τk is a sum
of now broadly distributed random variables, so the scalings
(A21) and (A22) are not valid anymore. Here the scaling of
tn with n is conveniently found by starting from the Laplace
transform

〈e−stn〉 =
n∏

i=1

〈e−sτi 〉

= exp

(
n∑

i=1

ln〈e−sτi 〉
)

= exp

[
n∑

i=1

ln

(
1 − (sτ̃ )γ

iδ
+ · · ·

)]

= exp[−(sτ̃n(1−δ/)γ )γ + · · · ], (A35)

which leads to

tn ∼
R→∞

Rdwn(1−δ/)γ . (A36)

Using Eq. (A16), it is found that here also

δ = αdw

2
. (A37)

Finally, inserting the scaling (A36) into Eq. (A13), we find that
the FPT distribution is given by Eq. (3) with η = t/Ttyp, but
that the typical time is now

Ttyp = Rdw

(
R

a

)(ψ/γ )(1−αdw/2)

. (A38)

Note that, in the case of CTRWs with infinite mean waiting
times, the formula (A48) does not directly apply, because of
divergences of both the numerator and denominator of (A45).
Since ψ is a purely geometrical exponent, dw in Eq. (A48) has
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to be replaced by the fractal dimension of the trajectory (i.e.,
the walk dimension of the process without waiting times).

4. Explicit scalings of the moments of the FPT with
geometrical parameters

The expressions of the distribution G presented in the
previous sections allow us to determine the dependence on the
geometrical parameters of all the FPT moments (when they
exist)

〈T m〉 ∼

⎧⎪⎨
⎪⎩

Rdw (m−θ )rdwθ (compact)
Rdw

(ln R/a)αdw/2 ln r
a

(marginally compact)
Rm(dw+ψ (1−αdw/2))

am(ψ (1−αdw/2))

[
1 − C

(
a
r

)ψ]
(noncompact).

(A39)

5. Derivation of the formula θ = 1 − d f /dw for the persistence
exponent of processes with stationary increments (compact case)

We argue here that the relation

θ = 1 − df

dw

(A40)

holds for general processes with stationary increments. First,
this relation holds for Markov processes, as can be shown from
a classical renewal equation [37]. Second, it can be recovered
by comparing the result

〈T 〉 ∼ Rdw (1−θ ) (A41)

obtained in the main text for compact processes (and r fixed)
and

〈T 〉 ∼ Rdf (A42)

obtained in [9] for non-Markovian Gaussian processes with
stationary increments. Note that the results of [9] are exact
perturbatively at order ε2 around Markovian processes and
quantitatively accurate even for strongly non-Markovian pro-
cesses. Finally, for FBM in one dimension, it was obtained by
scaling arguments in [12] and shown mathematically in [14].

6. Transience exponent ψ (noncompact case):
Derivation of Eq. (4)

a. Processes with stationary increments at long times

i. Markovian processes (stationary increments). For Marko-
vian processes, the transience exponent ψ can be obtained from
the renewal equation. It relates the propagator P (r, t |r′) (the
probability density that the walker is at r at t starting from r′
at t = 0) and the first-passage time density F (t |r′) to reach the
spherical target of radius a centered at 0 at time t ,

P (0, t |r) =
∫ t

0
dt ′F (t ′|r)P (0, t |a, t ′), (A43)

where P (0, t |a, t ′) is the propagator averaged over the starting
points on the sphere of radius a centered at 0. For a process
that has stationary increments, one can write P (0, t |a, t ′) as a
function of the time lag t − t ′ only,

P (0, t |r) =
∫ t

0
dt ′F (t ′|r)P (0, t − t ′|a). (A44)

Integrating this equation over time t from 0 to ∞, we obtain the
following expression of the probability p to eventually reach
the target:

p =
∫ ∞

0 dtP (0, t |r)∫ ∞
0 dtP (0, t |a)

. (A45)

Using scale invariance, the propagator can be written as [38]

P (0, t |r) ∼ 1

tdf /dw
�

( r

t1/dw

)
(A46)

and we finally obtain

p ∼
(

a

r

)df −dw

, (A47)

i.e.,

ψ = df − dw. (A48)

ii. Non-Markovian Gaussian processes with stationary in-
crements. For general non-Markovian processes, the exponent
ψ has not been studied and no exact results are available.
However, by comparing the result

〈T 〉 ∼ Rdw+ψ (A49)

obtained in the main text for noncompact processes (and r

fixed) and

〈T 〉 ∼ Rdf (A50)

obtained in [9] for non-Markovian Gaussian processes with
stationary increments, we obtain again

ψ = df − dw (A51)

for non-Markovian Gaussian processes with stationary incre-
ments. Note that, from the very definition of ψ (which involves
the small-target-size limit), this argument can be extended to
processes whose increments are only asymptotically station-
ary. In addition, we expect that the validity of this result is
broader than the case of Gaussian processes.

b. Processes with nonzero aging exponent α

We now consider a process with nonzero aging exponent α

such that

〈[X(t + τ ) − X(t )]2〉 ∼
t→∞ tατ 2/dw−α. (A52)

Let us define the time-changed process

X∗(t ) ≡ X(tb ). (A53)

Its increments satisfy, on the one hand,

〈[X∗(t + τ ) − X∗(t )]2〉 = 〈[X((t + τ )b ) − X(tb )]2〉
∼ tαb((t + τ )b − tb )2/dw−α

∼ tbα+(b−1)(2/dw−α)τ 2/dw−α, (A54)

and on the other hand, by definition,

〈[X∗(t + τ ) − X∗(t )]2〉 ∼
t→∞ tα

∗
τ 2/d∗

w−α∗
. (A55)

By identification, this leads to

α∗ = α + (b − 1)
2

dw

(A56)
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and

d∗
w = dw

b
. (A57)

This shows that the process X∗ has asymptotically stationary
increments if we choose b with the value

b = 1 − αdw

2
. (A58)

The analysis of the preceding section then applies to X∗(t ) and
yields

ψX∗ = df − d∗
w = df − dw

1 − αdw

2

. (A59)

From the definition of ψ , it is clear that this exponent is
invariant under a generic clock change of the process. As a
result,

ψX = ψX∗ = df − dw

1 − αdw

2

, (A60)

where we have used the result of Appendix A 6 a on processes
with stationary increments at long times.

APPENDIX B: EXPLICIT RESULTS FOR SPECIFIC
STOCHASTIC PROCESSES AND DETAILS

OF NUMERICAL SIMULATIONS

In this Appendix we consider several examples of stochastic
processes, for which we determine the aging exponent α and
the persistence exponent θ , and deduce the FPT distribution in
confinement. We also describe the algorithms used to perform
the simulations of these stochastic processes, as shown in
Figs. 2–4.

1. Processes with stationary increments (compact case)

In the case of compact processes with stationary increments,
according to Eq. (2), the distribution of the rescaled variable
η = T/Rdw , in the large-R limit, is

G(η; a, r, R) = h(η)

(
r

R

)df −dw

, (B1)

where we have used the relation θ = 1 − df

dw
valid for processes

with stationary increments (see Appendix A 5). When the
moments of the FPT exist, they are thus given by

〈T m〉 ∼ Rdw (m−1)+df rdw−df . (B2)

As a particular case of this general expression, we recover the
scalings with r and R of the case of scale-invariant Markovian
processes (stationary increments) (see Ref. [8] for the first
moment and Ref. [17] for the full distribution) of the mean
FPT 〈T 〉 in the case of a one-dimensional fractional Brownian
motion (which is a scale-invariant Gaussian non-Markovian
process with stationary increments).

2. Processes with stationary increments at long times
(noncompact case)

As stated in the main text, in the noncompact case, the
FPT distribution depends only on df , dw, and α. In turn, the

dynamical exponents dw and α depend only on the long-time
asymptotics of the process.

In the case of processes with stationary increments at long
times (i.e., α = 0), we have, from Appendix A 6 a,

ψ = df − dw. (B3)

The rescaled variable is thus

η ≡ T adf −dw

Rdf
(B4)

and its distribution in the large-R limit is given by

G(η; a, r, R) = h(η)

[
1 − C

(
a

r

)df −dw

]
. (B5)

When the moments of the FPT exist, they are thus given by

〈T m〉 ∼
(

Rdf

adf −dw

)m
[

1 − C

(
a

r

)df −dw

]
. (B6)

As particular cases of this general expression, we recover the
scalings with r and R of scale-invariant Markovian processes
(see [8] for the first moment and [17] for the full distribution).

Note that these scalings hold in the important case of a d-
dimensional fractional Brownian motion (for both equilibrated
and nonequilibrated initial conditions) such that H < 1/d,
with df = d (in order to have a noncompact process) (also
discussed below).

3. Fractional Brownian motion with equilibrated
or nonequilibrated initial conditions

a. Theoretical results

The 1D FBM is the Gaussian process with constant mean
(here we set this mean to X0) and correlations 〈[X(t ) −
X0][X(t ′) − X0]〉 = K[t2H + t ′2H − |t − t ′|2H ]. Here H is
the Hurst exponent (0 < H < 1) and we take K = 1. We
define the d-dimensional FBM as X(t ) = (X1(t ), . . . , Xd (t )),
where the Xi (t ) are independent one-dimensional FBMs. The
FBM is a non-Markovian process with stationary increments;
the results of the former sections therefore apply with a
walk dimension dw = 1/H : The FPT statistics in a large
confining volume follow Eqs. (B1) and (B2) in the compact
case (d < 1/H ) and Eqs. (B5) and (B6) in the noncompact
case (d > 1/H ). We tested both cases in our simulations (see
below for details).

Since X(t ) is a non-Markovian process, its statistics depend
on the one of trajectories in the past (t < 0). To specify
the initial state, it is useful to consider a microscopic model
which is equivalent to a FBM in specific limits. We introduce
the stochastic process X(t ) defined as the local height of a
fluctuating interfaceh(x, t ) at a given positionX(t ) = h(x0, t ).
Following Ref. [12], we assume the dynamics

∂h

∂t
= −(−∇2)1/(2−4H ) h + ξ (x, t ), (B7)

where ξ (x, t ) is a Gaussian white noise, satisfying
〈ξ (x, t )ξ (x ′, t ′)〉 = δ(t − t ′)δ(x − x ′). Then X(t ) is a
Gaussian process. It has been shown that the persistence
exponent of X(t ) is then strongly dependent on the initial
interface height distribution [12].
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If the interface is initially equilibrated, then 〈X(t )X(t ′)〉 =
t2H + t ′2H − |t − t ′|2H and X(t ) is a fractional Brownian
motion with Hurst exponent H and has stationary increments.
If the interface is initially flat, h(x, t = 0) = 0 for all x, then
the process X(t ) becomes non-Markovian with nonstationary
increments and the correlator reads

〈X(t )X(t ′)〉 = (t + t ′)2H − |t − t ′|2H . (B8)

In this case, we call the process X(t ) an initially quenched
fractional Brownian motion. Its exponent θ is not known
analytically, but can be determined numerically. In Fig. 2(a),
Eq. (4) for the mean FPT is checked in the particular case
H = 3/8, in which case one can approximate θ (H = 3/8) =
0.84 . . . [12]. In this case, 〈T 〉 is sublinear in V . In order to
obtain an example of process with 〈T 〉 superlinear in V , we
consider the process defined by Eq. (B8) with H = 0.65. In
this case, θ � 0.3 (see Ref. [12]). Note that this process cannot
be easily matched on the evolution of a point of an interface,
contrarily to the case H = 3/8.

b. Description of simulations

i. One-dimensional FBM. The algorithm used to sample
the 1D FBM trajectories is the circulant matrix algorithm
(also called the Davies-Harte method) [39–41]. This method
generates trajectories X(ti ) with a constant time step �t =
ti+1 − ti , until a fixed maximal time tmax, with a number of
operations of the order ofN ln N , withN = tmax/�t . The value
of tmax is chosen so that the number of trajectories that do not
reach the target is negligible. The time step �t is then reduced
until convergence is obtained, with a FPT density that does
not depend on �t . In Figs. 2(a) and 3(a), for H = 0.4, we
use tmax = 524 888 and �t = 0.1, except for R = 320, where
tmax is doubled, with the same time step. The initial position
is set to X0 = 1. It was checked in Ref. [9] that defining
reflecting boundaries with the Hosking algorithm does not
change the mean FPT in the large-volume limit. In Fig. 2(a), the
mean FPT and the volume V = R are rescaled by the factors
(V0; T0) = (20; 27.2).

ii. Two-dimensional FBM. The two-dimensional FBM is
defined as X = (X1(t ), X2(t )), where the X1(t ) and X2(t ) are
one-dimensional independent FBMs. Further, X1(t ) and X2(t )
are simulated with the circulant matrix algorithm described
above. The target radius is set to a = 1 and the domain defined
as the square of size

√
πR with periodic boundary conditions.

In Fig. 3(b), for H = 0.35, we use tmax = 2 × 106 and a time
step �t = 0.1. In Figs. 3(d) and 2(b), for H = 0.7, we use
tmax = 106 and �t = 0.1 and the initial distance to the target
is r = 10. In Fig. 2(b), the results are rescaled by the factors
(V0; T0) = (50; 155.4).

iii. One-dimensional FBM with nonequilibrated initial con-
ditions and H = 3/8. We consider here the process defined as
X(t ) = h(0, t ), where h(x, t ) is the height of an interface. As
discussed in Appendix B 3, X(t ) is a FBM only when the
initial distribution of h(x, t ) is the equilibrium distribution.
Here we consider that the interface is initially flat, h(x, t =
0) = X0. In Fig. 2(a), X0 = 10. The simulations are performed
by the stochastic integration of the Langevin equation (B7)
following the algorithm of Ref. [12], with H = 3/8. The
interface is described by its height at a finite number N

10 3

          = 500
          = 1000
          = 2000

10 210 1
10 1

10 2

10 3

FIG. 7. Control of the validity of the estimator (B9) for the MFPT
in simulations of the 1D initially quenched FBM, with H = 0.65 (see
the text).

of positions, hi (t ) = h(i�x, t ). Here we take �x = 1 and
N = 200 discrete positions and we use periodic boundary
conditions (h0 = hN ). The time step is set to �t = 0.1 and
the convergence of the results with the time step is checked.
The maximal time is tmax = 4 × 107. It is checked that the
relaxation time of the system (which grows as N4 for H = 3/8)
is much larger than tmax. In Fig. 2(a), the results are rescaled
by the factors (V0; T0) = (160; 91.3).

iv. One-dimensional initially quenched FBM H = 0.65. We
consider here the simulations of a process X(t ) starting at X0 =
r = 1 with covariance given by Eq. (B8). The targets are at the
positions 0 and R. We simulate the trajectories at N discrete
times tn = n�t by using a Cholesky decomposition of the
covariance matrix �ij ≡ 〈X(ti )X(tj )〉, which can be written as
� = LLt , with L a lower triangular matrix. Then a trajectory
is generated by computing X(ti ) = ∑N

j=1 Lijuj , where the uj

are independent Gaussian variables of zero mean and variance
unity. The time step is set to �t = 0.03 to ensure convergence.
Because of the large memory requirement of this algorithm
(it increases as N2), we could not choose tmax = N�t large
enough to obtain a negligible proportion q of trajectories
which do not find the target. In order to avoid errors in the
measurement of the MFPT, we proceed as follows. Observing
that the tail of the FPT distribution is exponential, we fit the tail
of the survival probability with S(t ) ∼ B(R/r )θ/H e−at/R1/H

.
Then, calling Temp the MFPT restricted to successful runs (that
is, with a FPT smaller than tmax), the MFPT is estimated with
the formula

〈T 〉 = (1 − q )Temp + aBR(θ−1/H e−atmax/R
1/H

×(1 + atmax/R
1/H ). (B9)

We check the validity of this procedure by ensuring that
different tmax lead to the same result for the MFPT (see
Fig. 7). In Fig. 2(a), the results are rescaled by the factors
(V0; T0) = (50; 28.8). In Fig. 3(c), we use tmax = 500 for
R = 50, tmax = 1000 for R = 100, 200, and tmax = 2000 for
R = 400.
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4. Random acceleration process and its generalizations

a. Theoretical results

We consider here the d-dimensional process X(t ) =
(X1(t ), . . . , Xd (t )) of order n (n � 2), defined by

dn

dtn
Xi (t ) = ξi (t ), (B10)

where ξi (t ) is a Gaussian white noise with zero mean satisfying
〈ξi (t )ξj (t ′)〉 = Kδ(t − t ′)δij , with K a coefficient that can be
set to unity by appropriate rescaling, K = 1. Then X(t ) is a
non-Markovian process, with nonstationary increments. For
n = 2, Xi (t ) is a random acceleration process; for n > 2 one
obtains higher-order processes. We will consider in particular
the case n = 3 (random jerk process).

We first investigate the aging features of this class of
processes. Denoting by x a generic coordinate Xi and using
the representation x(t ) = ∫ t

0 |t − t ′|n−1ξ (t ′)dt ′, we compute
easily the autocorrelation function

〈x(t + τ )x(t )〉

=
∫ t+τ

0
dt1

∫ t

0
dt2|t + τ − t1|n−1|t − t2|n−1δ(t1 − t2)

= t2n−1
∫ 1

0
xn−1[x + (τ/t )]n−1dx. (B11)

Hence the increments are given by

〈[x(t + τ ) − x(t )]2〉

= (t + τ )2n−1
∫ 1

0
x2n−2 dx − 2t2n−1

×
∫ 1

0
xn−1[x + (τ/t )]n−1 dx + t2n−1

∫ 1

0
x2n−2 dx.

(B12)

It is straightforward to see that both terms proportional to t2n−1

and t2n−2 do cancel. Finally, we get

〈[x(t + τ ) − x(t )]2〉 ∝ t2n−3τ 2. (B13)

The walk dimension dw and the aging exponent α are then
given by (for n � 2)

dw(n) = 2

2n − 1
, α(n) = 2n − 3, (B14)

where we have used the definition (see the main text)

〈[X(t + τ ) − X(t )]2〉 ∼t→∞ tατ 2/dw−α. (B15)

As a consequence, the transience exponent is

ψ = d − 1. (B16)

For d > 1, ψ > 0 and the process is therefore noncompact,
whereas it is compact if d = 1.

Our theoretical results then predict that

Ttyp =
{

R2/(2n−1) (d = 1)

R2/(2n−1)
(

R
a

)2(d−1)/(2n−1)
(d > 1)

(B17)
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10 -4

10 -2

10 0

R=40
R=80
R=160
R=320
R=600
R=1000
R=2000
R=4000
R=8000
R=16000

1D stubborn RAP

FIG. 8. Validity of the scalings of the FPT distribution with
geometrical parameters for the stubborn RAP.

and η = T/Ttyp is asymptotically distributed in the limit of
large volume according to

G(η; a, r, R) =
{

h(η)( r
R

)2θ/(2n−1) (d = 1)

h(η)
[
1 − C

(
a
r

)d−1]
(d > 1).

(B18)

In the compact case d = 1, the persistence exponent is known
either exactly (for n = 2) or approximately (for n � 3). It is
also known in the case of a partially absorbing target, where
the random walker has a finite probability q to actually find
the target at each visit

θ =

⎧⎪⎨
⎪⎩

1/4 (n = 2)

0.2202 . . . (n = 3)
1
4

[
1 − 6

π
sin−1

( 1−q

2

)]
(n = 2, finite q ).

(B19)

Hence, the mean FPT obeys the scaling (when it exists)

〈T 〉 ∼
{

R2(1−θ )/(2n−1)r2(θ )/(2n−1) (d = 1)
R2d/(2n−1)

a2(d−1)/(2n−1)

[
1 − C

(
a
r

)d−1]
(d > 1)

(B20)

and the higher moments can be obtained by using Eq. (A39).
Note that, in particular, in the case of n = 2 and d = 1, one
has 〈T 〉 ∼ r1/6R1/2, which is in agreement with Ref. [42] in the
case of reflecting boundary conditions (where the sign of the
velocity is immediately reversed when the confining boundary
is reached v → −v). We also considered another type of
boundary condition, with a confining boundary that stops the
particle while its target velocity keeps evolving according to
Eq. (B10) until it changes sign and the particle escapes from
the boundary. We call the RAP with this kind of boundary
conditions the stubborn random acceleration process. In this
case the moments of the FPT distributions are infinite, but the
distribution of FPT still satisfies the scaling (B18) (Fig. 8).

b. Simulation details

We now describe the simulations of the random acceleration
process and its generalizations that were used in Figs. 2–4.

i. Simulations of the random acceleration process (n =
2). The stochastic trajectories are generated by integrating
numerically the Langevin equation (B10) with the algorithm
introduced in [43]. This algorithm does not generate any error
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due to the time discretization, as it creates the exact probability
density function for the joint density position and velocity. We
need to choose however a time step �t that is small enough
to ensure that the target is not missed during one step. Since
the velocity typically grows as

√
t , we have to reduce the time

step at each iteration, in order to keep �x ∼ v�t small. A
simple way to do that is to take the time step of the nth step to
be (�t )n = D/n1/3, with a small enough D. With this choice,
the spreading of the velocity does not increase with n. The
value of D is decreased up to reach convergence of the results.
We choose D = 0.7 in all cases. The initial velocity is v0 = 0.
The following are additional details.

(a) In the case of reflecting conditions in one dimension, the
reflecting boundary, located at x = R/2, can be replaced by a
second target at x = R. The initial position is set to X0 = 1.
The probability q of being absorbed at each target crossing
event is set to q = 1 or q = 0.7. In Fig. 2(a), the mean FPT
and the volume V = R are rescaled by the factors (V0; T0) =
(40; 8.05) in the case q = 1 and (V0; T0) = (20; 8.79) when
q = 0.7.

(b) In one dimension, we also considered the stubborn
acceleration process; when reaching the confining boundary,
the velocity at step i evolves according to vi+1 = vi + √

(�t )i ,
while the position remains constant at xi = R/2 until reaching
a negative velocity that drives the walker away from the
boundary. The results for this process are presented in Fig. 8.

(c) In two (three) dimensions, we consider a square (cubic)
confining volume V = Rd which, for reflecting boundary
conditions, can be replaced by an infinite periodic array of
targets. The initial distance to the target is taken to be r = 10
and the target radius isa = 1. In Fig. 2(b), the mean FPT and the
volume V are rescaled by the factors (V0; T0) = (100; 556.4)
(in two dimensions) and (V0; T0) = (100; 14870) (in three
dimensions).

ii. Simulations of the random jerk process (n = 3). The
random jerk process is defined by Eq. (B10), with n = 3.
The trajectories are sampled by using X(tn+1) = X(tn) +
Y (tn)(tn+1 − tn), where Yn is a random acceleration process
(discussed above). In order to keep the velocity small, we
choose (�t )n = D/n3/5 and we reach convergence for D =
0.1. In one dimension, the initial distance to the target is X0 = 1
and the domain sizeR/2. In two dimensions, the initial distance
to the target is r = 10, the target radius isa = 1, and the domain
is a square of size LR × R with period boundary conditions.
In Fig. 2, the mean FPT and the volume V are rescaled by the
factors (V0; T0) = (160; 7.6) [in one dimension, Fig. 2(a)] and
(V0; T0) = (40; 24.7) [in two dimensions, Fig. 2(b)].

5. Case of Lévy flights

We now consider the case of Lévy flights, where at each
step a d-dimensional walker performs in a random direction
a jump whose length l is drawn from a distribution with the
power-law tail

p(l) ∼ 1

l1+β
. (B21)

These processes have been repeatedly invoked in the literature
on random search processes [44]. Two definitions of the first-
passage time to the target have been used in previous works.

In the first definition, the target can be detected only when
the walker changes direction. This first-passage time will be
termed here a first-arrival time [36,45]. In the second definition,
the target can be detected as soon as it is crossed by the
trajectory of the walker. This first-passage time will be termed
here a first-crossing time.

We consider only the case 0 < β < 2 (note that for β > 2,
the process converges to Brownian motion). The dimension of
the walk is given by

dw = β. (B22)

a. First arrival case

In this case, the renewal type argument of Appendix A 5
holds. For integer dimensions, the process is compact for d = 1
and noncompact for d � 2. In the compact case, we have

θ = 1 − df

dw

= 1 − 1

β
(B23)

and the aging exponent is 0. Thus, we predict that the typical
time is, for any β ∈]0, 2[,

Ttyp =
{

Rβ (d = 1)
Rd

ad−β (d = 2, 3)
(B24)

and that the distribution of the rescaled FPT η = T/Ttyp is
asymptotically distributed according to

G(η; a, r, R) =
{

h(η)(r/R)β−1 (d = 1)

h(η)
[
1 − C

(
a
r

)df −β]
(d = 2, 3 . . .).

(B25)

The results of Appendix B 1 apply with df = 1 and dw = β.
They are consistent with the Markovian prediction of Ref. [17].

b. First crossing

In this case, the renewal-type argument of Appendix A 5
does not apply directly. In one dimension, the process is
compact and the persistence exponent can be obtained from
the spare Anderson theorem [15,46]

θ = 1/2. (B26)

The rescaled variable η = T/Rβ is thus asymptotically dis-
tributed in the large-R limit according to the distribution

G(η; a, r, R) = h(η)

(
r

R

)β/2

. (B27)

The moments are then given by

〈T m〉 = Rβ(m−1/2)rβ/2. (B28)

Note that the scalings with r and R of the first moment
obtained in [47] are recovered from this general expression
of the moments.

In the noncompact case, when β ∈]1, 2[, dw = β and ψ =
df − β. Thus, in this case, the scaling results are the same for
both arrival and crossing prescriptions (B25).

The situation is different for β ∈]0, 1[. In this case, the
trajectories are the same as for a Lévy walk, for which it
is argued below that ψ = df − 1. Note that Eq. (3) applies
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for first-passage problems and not directly to first-crossing
problems. Finally,

Ttyp ∼ Rdf +β−1

adf −1 (B29)

and

G(η; a, r, R) = h(η)

[
1 − C

(
a

r

)df −1
]
. (B30)

Notably, in this case, the scaling results are therefore different
for arrival and crossing prescriptions.

6. Case of Lévy walks

Lévy walks provide a natural physical generalization of
Lévy flights in which the instantaneous velocity of the walker
is bounded, as opposed to Lévy flights. We set here this
instantaneous velocity to unity. A d-dimensional Lévy walker
performs a series of independent and randomly oriented ballis-
tic excursions at constant speed, whose length l is drawn from
a distribution with a power-law tail

p(l) ∼ 1

l1+β
. (B31)

For β ∈]0, 1[, the process is known to be scale invariant [48],
so our results for the FPT apply directly. For β ∈]1, 2[, even if
the process is not scale invariant [48], it is known that the bulk
of the propagator is scale invariant. Knowing that the weight
of the ballistic fronts that compose the tail of the distribution
is negligible, these tails are irrelevant for the determination of
the FPT statistics and we therefore make use of the scalings of
the bulk.

Let us first consider the compact situation, obtained for a
one-dimensional case. For β ∈]0, 1[, dw = 1 and θ = β/2 (see
Refs. [15,49]), while for β ∈]1, 2[, dw = β (see Ref. [48]) and
θ = 1/2. The typical time is therefore

Ttyp =
{
R (0 < β < 1, d = 1)

Rβ (1 � β < 2, d = 1)
(B32)

and for β ∈]0, 2[ the rescaled variable η = T/R is asymp-
totically distributed in the large-R limit according to the
distribution

G(η; a, r, R) = h(η)

(
r

R

)β/2

. (B33)

In the noncompact case, for β ∈]1, 2[, dw = β (see
Ref. [48]) and ψ = df − β. In this case,

Ttyp ∼ Rdf

adf −β
(B34)

and

G(η; a, r, R) = h(η)

[
1 − C

(
a

r

)df −β
]
. (B35)

Next, for β ∈]0, 1[, dw = 1 (see Ref. [48]) and ψ = df − 1.
In this case, the scaling of Ttyp actually depends on the nature
of the possible directions of the velocity of Lévy walks. We
consider here two natural choices, as defined in Ref. [50]: (i) In
the XY model, the particle is allowed to move only on one axis

at a time (implying in particular that the walker in confinement
can be trapped in long-lasting periodic trajectories), and (ii)
in the uniform model, at each reorientation point the particle
chooses a random direction of motion specified by an angle
uniformly distributed in [0, 2π ] (in this case, a long enough
trajectory typically finds the target).

(i) In the XY model, durations of excursions (as defined in
the main text) are broadly distributed. From (A38) it is found
that

Ttyp ∼ R1+(df −1)/β

a(df −1)/β (B36)

and

G(η; a, r, R) = h(η)

[
1 − C

(
a

r

)df −1
]
. (B37)

(ii) In the uniform model, durations of excursions (as
defined in the main text) have a finite first moment. Thus,

Ttyp ∼ Rdf

adf −1 (B38)

and

G(η; a, r, R) = h(η)

[
1 − C

(
a

r

)df −1
]
. (B39)

Concerning the simulation details, at each step we generate
the size l of the next jump from the distribution p(l). It is
defined by its Fourier transform p̃(k) = exp(−kβ ). The time
is incremented by one at each jump for flights and by l for
walks.

In two dimensions, in the XY convention, we first choose
randomly a direction (x or y with a probability 1/2) and then
perform a jump. In the angular convention, we first randomly
choose a direction, that is, an angle in [0, π ], and then perform
a jump along this direction. In the 1D simulation, we take r = 1
and the domain size V = R. In the 2D case, the radius of the
target is set to a = 1, the initial position r = 10, and targets are
distributed on a periodic lattice of mesh size R so that V = Rdf .
In Fig. 2(b), we use (V0; T0) = (100; 14 180) in the case of XY

two-dimensional Lévy walks and (V0; T0) = (200; 19 540) in
the case of XY two-dimensional Lévy flights.

7. Scaled processes

In this section, we start with a scale-invariant stochastic
process X(0)(t ) on a finite domain of fractal dimension df ,
with vanishing aging exponent α = 0 and with stationary
increments, so

〈[X(0)(t + τ ) − X(0)(t )]2〉 ∝ τ 2/d (0)
w , (B40)

and we introduce the so-called scaled process X(t ), defined by

X(t ) ≡ X(0)(tβ ), (B41)

with β > 0. For example, the scaled Brownian motion, which
corresponds to the particular case where X(t ) is the Brownian
motion (and thus with d (0)

w = 2), has been used to model
anomalous diffusion of passive tracers in complex and biolog-
ical systems [51]. In what follows, we determine explicitly the
typical time Ttyp and the distribution G of this scaled process in
terms of df and d (0)

w in two ways: (i) by applying directly our
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results on the FPT distribution to the scaled process X(t ) and
(ii) by deducing them from our results on the FPT distribution
of the starting process X(0).

Let us first apply our results on the FPT distribution to the
scaled process X(t ). The increments of the scaled process can
be written as

〈[X(t + τ ) − X(t )]2〉 = 〈[X(0)((t + τ )β ) − X(0)(tβ )]2〉
∼

t→∞ [(t + τ )β − tβ]2/d (0)
w

∼
t→∞ t2(β−1)/d (0)

w τ 2/d (0)
w . (B42)

Thus, for the scaled process, the aging exponent α and the walk
dimension dw are given by

α = 2(β − 1)

d
(0)
w

, dw = d (0)
w

β
, (B43)

where we have used the definition

〈[X(t + τ ) − X(t )]2〉 ∝ tατ 2/dw−α (B44)

given in the main text. The transience exponent takes the value

ψ = df − d (0)
w = ψ (0) (B45)

and we thus see that the scaled process is noncompact if and
only if the original process is also noncompact.

In addition, knowing that the survival probability in infinite
space (defined as the probability that the target has not been
reached at time t) can be written as S∞(t ) = S

(0)
∞ (tβ ), we have

θ = βθ (0) = 1 − df

d
(0)
w

, (B46)

where the last equality follows from Appendix A 5. Finally,
for the scaled process

Ttyp =
⎧⎨
⎩

Rd (0)
w /β for d (0)

w > df (compact case)(
R

df

a
df −d

(0)
w

)1/β

for d (0)
w < df (noncompact case)

(B47)

and the distribution of the rescaled FPT variable η = T/Ttyp

reads [see Eq. (2)]

G(η; a, r, R) =
{

h(η)
(

r
R

)d (0)
w −df for d (0)

w > df

h(η)
[
1 − C

(
a
r

)df −d (0)
w

]
for d (0)

w < df ,

(B48)

where we have used the values of the exponents given by
Eqs. (B43), (B45), and (B46).

It is instructive to recover this result by starting from the
results on the FPT distribution of the original (nonscaled)
process X(0). According to Eq. (1), if we define

T
(0)

typ =
⎧⎨
⎩

Rd (0)
w for d (0)

w > df(
R

df

a
df −d

(0)
w

)
for d (0)

w < df ,
(B49)

the distribution of the rescaled FPT η(0) = T/T
(0)

typ is asymp-
totically given by

G(0)(η(0); a, r, R)

=
{

h(0)(η(0) )
(

r
R

)d (0)
w −df for d (0)

w > df

h(0)(η(0) )
[
1 − C

(
a
r

)df −d (0)
w

]
for d (0)

w < df .
(B50)

The FPT distribution F (t ) of the scaled process can be deduced
from F (0) as follows:

F (t ) = − d

dt
S(t )

= − d

dt
S (0)(tβ )

= βtβ−1F (0)(tβ ). (B51)

Therefore, the FPT distribution G(η) of the rescaled variable
η ≡ t/Rdw corresponding to the scaled process is given by

G(η) = TtypF (t )

= Ttypβtβ−1F (0)(tβ )

∼ Ttyp

T
(0)

typ

tβ−1h(0)

(
tβ

(T (0)
typ )β

)

×
{(

r
R

)d (0)
w −df for d (0)

w > df[
1 − C

(
a
r

)df −d (0)
w

]
for d (0)

w < df .
(B52)

Noting that T
β

typ = T
(0)

typ , the result (B48) is recovered.

8. Case of CTRWs

In this section, we consider a CTRW on a finite domain of
fractal dimension df : The random walker moves on a network
of fractal dimension df , at each time step a neighboring site is
chosen at random, and the waiting time t at a given site is drawn
from a given distribution ρ(t ). For the sake of simplicity, we
limit ourselves to the important case of a broad distribution of
waiting times

ρ(t ) ∼
t→∞

1

tβ+1
, (B53)

with β ∈]0, 1[. Note that in this case, the mean waiting time
at each site is infinite, which also implies that the moments of
the FPT to a target are infinite. With the prescription given in
Appendix A 3, the aging exponent of such a walk is α = 0.

We introduce the corresponding discrete-time process Xn,
representing the walker position after the nth step. Here Xn

can be seen as a random walk where the walker jumps at all
units of time (instead of jumping after a random waiting time).
We denote by d (0)

w its walk dimension〈
X2

n

〉 ∼ n2/d (0)
w . (B54)

Knowing that the number N (t ) of jumps of the walker after an
observation time t scales as [52]

N (t ) ∼ tβ, (B55)

022125-17



LEVERNIER, BÉNICHOU, GUÉRIN, AND VOITURIEZ PHYSICAL REVIEW E 98, 022125 (2018)

the walk dimension dw of X(t ) can be written as

dw = d (0)
w

β
. (B56)

The process Xn has by definition stationary increments and we
thus have, from Appendix A 5,

θ (0) = 1 − df

d
(0)
w

. (B57)

Finally, the persistence exponent θ is known [15] to be
related to θ (0) by

θ = βθ (0), (B58)

as is found by using the definitions of the persistence exponents
θ and θ (0) and again the scaling of N (t ) given by Eq. (B55).
With these results, we finally obtain in the compact case that

Ttyp = Rd (0)
w /β (B59)

and

G(η; a, r, R) = h(η)

(
r

R

)d (0)
w θ (0)

= h(η)

(
r

R

)d (0)
w −df

. (B60)

Note that the scalings on the geometrical parameters r and R

of [21,53] are recovered as specific cases of our general results.
In the noncompact case, the distribution of τn has a power-

law tail

P (τn) ∼ τ̃ β

τ
1+β
n

. (B61)

We can directly apply Eq. (A38) with γ = β and α = 0:

Ttyp ∼ Rdw

(
R

a

)ψ/β

. (B62)

Here, because ψ is a geometrical quantity, its value is the same
as that of the discrete walk Xn:

ψ = df − d (0)
w = df − dwβ. (B63)

Note that the formula (A48) does not directly apply, because of
divergences of both the numerator and denominator of (A45).
Finally,

Ttyp ∼ Rdf /β

adf /β−dw
(B64)

and the distribution of the rescaled FPT η = T/Ttyp reads

G(η; a, r, R) = h(η)

[
1 − C

(
a

r

)df −βdw

]
; (B65)

we thus recover the results given in Refs. [21,53] as specific
cases of our general results.

9. Heavy-tailed random acceleration process

The preceding section explained why usual CTRWs do not
exhibit aging for the quantities we focus on; we now turn to an
example that combines heavy-tailed effects and aging features.
We consider a df -dimensional random acceleration process in
discrete time x(ti ), naturally defined by

x(ti+1) = x(ti ) + v(ti ), (B66)

v(ti+1) = v(ti ) + ξ (ti ), (B67)

where ξ is a df -dimensional vector whose coordinates are
independent random variables of zero mean and unit variance.
Here we assume that the duration of each step τi ≡ ti+1 − ti
is drawn from a Lévy law of the heavy-tailed parameter γ ,
i.e., ρ(τi ) ∼τi→∞ 1/τ

1+γ

i . This obtained process is called the
heavy-tailed random acceleration process and combines aging
effects and heavy tails by construction.

Since the walk dimension of the standard RAP is 2/3, the
walk dimension of the heavy-tailed RAP is dw = 2/3γ . Using
the fact that the aging exponent is equal to one for the standard
RAP, we obtain an aging exponent for the heavy-tailed RAP
α = γ . Moreover, the transience exponent ψ is not affected by
the waiting times, so we still have ψ = df − 1. By applying
the results of Eq. (A38), we obtain, for df > 1,

Ttyp = R2/3γ

(
R

a

)2(df −1)/3γ

. (B68)

Simulations [Fig. 4(h)]. The relation (B68) is checked by
means of 2D numerical simulations with γ = 0.7 that are
carried out by using directly the discretized Langevin equation
(B67). At each time step, we add a normal variable to the
velocity, we draw a waiting time τ from a γ -stable distribution,
and the position of the walker is actualized. Simulations are
done in two dimensions, in a confining volume V = R2 with
periodic boundary conditions. The initial distance between the
walker and the target is r = 10 and the radius of the target is
a = 1.
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