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Abstract—This paper presents hardware (HW) 

architecture for fast parallel computation of Gray Level Co-

occurrence Matrix (GLCM) in high throughput image 

analysis applications. GLCM has proven to be a powerful 

basis for use in texture classification. Various textural 

parameters calculated from the GLCM help understand the 

details about the overall image content. However, the 

calculation of GLCM is very computationally intensive. In this 

paper, an FPGA accelerator for fast calculation of GLCM is 

designed and implemented. We propose an FPGA-based 

architecture for parallel computation of symmetric co-

occurrence matrices. This architecture was implemented on a 

Xilinx Zedboard and Virtex 5 FPGAs using Vivado HLS. The 

performance is then compared against other implementations. 

The validation results show an optimization on the order of 

33% in latency number by contribution to the literature 

implementation.  
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I. INTRODUCTION 

The methods of statistical analysis of the texture [1] are 

divided into two groups: a first-order analysis such as 

mean, variance, etc ..., and a second-order analysis as the 

co-occurrence matrix. The purpose of texture analysis is to 

extract the characteristic properties of the object in a 

complex image and to express them in a feature vector 

form. The representation obtained will serve as a basis for 

the subsequent steps. The second-order analysis is the most 

popular method to detect the texture [2] because the results 

obtained by those of the first order are not significant. In 

fact, the second-order statistics take into account the spatial 

distribution of two pixels thus describing the relation on the 

neighborhood of the pixels.  

 

Texture analysis through GLCM matrices is an essential 

step for image analysis applications such as medical 

imaging [3], recognition of character for complex image [4] 

and agronomic or industrial applications. However, the 

computation of GLCM matrices are very time consuming. 

Therefore, methods to accelerate their computations are 

highly desired. In order to improve the performance of co-

occurrence matrices algorithm, we propose an architecture 

on FPGA platform. In the proposed architecture, the co-

occurrence matrix is computed in parallel. We have 

implemented the proposed architecture on Zedboard Zynq-

7000 FPGA device. The HW/SW implementation on FPGA 

shows an optimization on the order of 33% in latency 

number by contribution to the literature implementation. 

 

This paper is organized as follows. We discuss the 

explanation of Gray level co-occurrence matrix algorithm 

(GLCM) in Sect 2 followed by some important related 

work in Sect 3. Our proposed hardware architecture is 

described in Sect 4. Experimental results are discussed in 

Sect 5. Finally, the conclusions are drawn in Sect 6. 

II. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) 

Haralick’s texture features extraction algorithms [5] can 

be divided into two parts. First, is the calculation of the co-

occurrence matrices and second is the calculation of texture 

features using the calculated co-occurrence matrices. For 

this research project we are just interested in the GLCM 

matrix calculation. 

 

The matrices of co-occurrence [6] have become the 

most known and the most used to extract the texture 

feature. They estimate properties of images relating to 

second-order statistics. A co-occurrence matrix measures 

the probability of appearance of pairs of pixel values 

located at a distance in the image. This algorithm is known 

as GLCM. The matrix defines the probability of joining two 

pixels ��,�(�, �) that have values i and j with distance d and 	 as an orientation angular. 

 

The angular directions θ conventionally used are 0, 45, 

90 and 135 degrees. The neighborhood relations between 

pixels, necessary for calculating the matrices, are illustrated 

in Figure 1. The matrices obtained according to the four 

directions are calculated as indicated in (1), (2), (3) and (4).                                                      



With : 

• (k, l) are the coordinates of a graylevel pixel i ∈ [0, 

nmax-1]. 

• (m, n) those of the graylevel pixel j ∈ [0, nmax-1]. 

 

 

 

 

Fig. 1. Closest neighbors of pixel 'x' in four directions 

 

 

 

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of co-occurrence matrices built from a 4 × 4 image 

composed of 4 gray levels 

The Figure 2 shows an example of calculating P (i, j) 

from a small image 4 × 4 composed with four gray levels 

(0, 1, 2, 3). This example is limited to the case d = 1 and  

θ= 0. The element (2, 3) of the matrix P (1, 0) is equal to 4, 

this means that there are four configurations in the image 

where a pixel of gray level 2 is separated horizontally from 

another pixel of gray level 3 by a distance 1. These 

configurations are shown in gray lines in the image (Figure 

2). 

III. RELATED WORKS 

Many researchers have been working on accelerating 

the process of computation the GLCMs algorithms on 

FPGAs platforms. 

 

Girisha and al [7] proposed a HW implementation to 

compute the GLCM matrix for (θ=0°) and (d=1). The 

proposed architecture is implemented on a Xilinx 

XC2VP30 platform programmed in VHDL. It is 

characterized by 13696 Slices and 136 KB RAM block. 

The input image of this architecture is 8x8 pixels, each 

pixel is represented on 4 bits (Ng=8).  

 

The input image is recorded in two different memory 

blocks to determine the pixel and the neighboring pixel. In 

this architecture Girisha et al used a comparator to detect 

the end of line. This architecture consumes a lot of memory 

space because the input image is stored in two memory 

blocks. In this case the large images can’t be implemented. 

Girisha has just implemented a GLCM matrix for a single 

angle. 

 

To solve the problems of Girisha, Ali Reza and al [8] 

proposed an architecture making it possible to calculate the 

four matrices GLCM of the four angles θ (0 °, 45 °, 90 °, 

135 °) in parallel for images of size 128X128 pixels, the 

computation of GLCM is done for pixels with 8 bits in 

which (Ng=256) and (d=1). So the size of the GLCM is 

256x256 pixels. Each coefficient in this matrix is on 16 

bits. The proposed architecture is implemented on a Xilinx 

Virtex 5 using VHDL language. This architecture makes it 

possible to calculate and send the GLCMs in parallel to the 

internal RAM modules via a bus interface unit. After this 

step, the GLCM core immediately sends the ready signal to 

all texture feature modules. The texture feature modules 

start their process in parallel. The calculations are done on 

the basis of an integer format of 16 bits. The RAMs used in 

this architecture is dual port to have the ability to read and 

write data at the same time. 

 

This architecture has as disadvantage that the 

calculating texture is in an integer format, which generates 

0 0 1 2 

0 1 3 2 

0 2 3 2 

1 2 3 0 

2   2  1   1 

2   0  2   1 

1   2  0   4 

1   1  4   0 

2   1  0   0 

1   2  1   0 

0   1  0   5 

0   0  5   0 

0   1  2   2 

1   0  1   1 

2   1  0   2 

2   1  2   0 

4   2  0   1 

2   0  1   1 

0   1  6   0 

1   1  0   4 

  P(i ,j,1, 45°)= 

 P(i ,j,1,135°)= 

 P(i, j,1, 0°)= 

2 

3 

�(�, �, d, 0) = ���(�, �), (�, �)� ∈  (� ∗ �)� �ℎ��� �� − � = 0, |� − �| = d, I!," = �, l$,% = ��&�                                    (1) 

 

�(�, �, d, 45) = *+ �(�, �), (�, �)� ∈  (� ∗ �)��ℎ���
(� − � = d, l − n = −d)⌵(� − � = −d, l − n = d), I!," = �, l$,% = �.*                                              (2) 

 �(�, �, d, 90) = ���(�, �), (�, �)� ∈  (� ∗ �)�  �ℎ����|� − �| = d, � − � = 0, I!," = �, l$,% = � �&�                               (3) 

 

�(�, �, d, 135) = *+ �(�, �), (�, �)� ∈  (� ∗ �)� �ℎ���
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inaccurate results. The size of the image is fixed and the 

distance of the matrix GLCM is also fixed.  

 

The objective of our research project is to propose and 

implement a hardware architecture more efficient than the 

architecture proposed by Ali Reza. 

IV. HARDWARE ARCHITECTURE OF GLCM 

FPGA circuits have emerged as a privileged target 

platforms to implement intensive signal processing 

applications [9]. For this reason several academic and 

industrial efforts have been devoted in order to increase the 

productivity of FPGA-based designs by means of using 

High Level Synthesis (HLS) tools. HLS approach in 

Electronic Design Automation (EDA) is a step in the design 

flow aiming at moving the design effort to higher 

abstraction levels [10]. This evolution towards HLS-based 

methodologies can be easily traced along the history of 

hardware system design [11]. Although the first generations 

of HLS tools failed to produce efficient hardware designs, 

different reasons have motivated researchers to continue 

improving these tools. 

 

In this context Xilinx propose a new HLS tool allows to 

automatically translate a code written in high level 

language like c / c ++ or system c into an Register Transfer 

Language (RTL) code like the Figure 3 shows. Once the IP 

has been designed, it can be integrated into the IPs library 

of Vivado IDE and thus used for the construction of the 

hardware design. 

 

 

Fig. 3. Vivado HLS conception flow 

A. Architectural design for GLCM 

The GLCM hardware architecture is illustrated in 

Figure 4. Our architecture was developed by a c code 

compatible with the HLS tool. The proposed GLCM 

architecture is implemented for a 128x128 image. Each 

pixel of the image is represented by (n=8) bits, so 

(Ng=256) because �2 = 23 . Our IP reads each pixel, 

calculates the GLCM for the four directions (θ=0°, 45°, 

90° and 135°) and for distance (d=1), and sends them to 

the software (SW) part. Our IP has two outputs, one 

presents the GLCM results and one to detect the end of 

sending data. 

 

In fact, our architecture makes it possible to calculate 

the GLCM of the four directions in parallel in order to 

accelerate the treatment. The size of GLCM is NgxNg. The 

GLCM coefficients are presented on (m=16) bits.  

 

The SW part is processed by the ARM cortex A9 

processor at 667 MHz. It is used to send and receive data 

through the DMA "Direct Access Memory". In addition, in 

our HW design we use a DMA in order to speed the Data 

transfer. 

 

B. Optimizations of GLCM architecture  

In this section, we are going to explore the possible 

optimization steps that could be done in order to achieve an 

efficient hardware implementation. The C code was written 

in HLS-friendly syntax with neither file read/write, nor 

dynamic memory allocation nor system calls. The 

optimization steps are incrementally applied to the design 

as listed in Table 1. From our point of view, a fair 

comparison between designs is valid only for adjacent rows 

in order to observe the impact of adding this optimization to 

the overall design performance. 

 

We have developed different optimizations for the 

implementation of the GLCM matrices for the four angles 

in order to select the optimal optimization. First, in the first 

optimization "Optimization 1", we ran our code without 

adding any options just with default HLS optimization. In 

the second optimization "Optimization 2", we added in 

addition to the "Optimization 1" the UNROLL directive at 

the level of the loops of the GLCM matrices. Finally in the 

third optimization "Optimization 3", we added to the 

"Optimization 1" the PEPELINE directive at the level of 

the loops of the GLCM matrices. Table 1 shows the 

implement results of all optimizations in terms of area and 

latency number using Zynq-7000 FPGA Device. 

 
TABLE I.       EXPERIMENT RESULTS USING DIFFERENT OPTIMIZATIONS 

 

 

      In fact, the synthesis of the three optimizations which 

were developed with the Vivado_HLS tool shows that the 

"Optimization 3" presents the best performances. Indeed, 

thanks to the use of pipeline in the "Optimization 3", we 

managed to reduce the latency number up to 76% compared 

to "Optimization 1". We admit the "Optimization 3" since it 

ensures a compromise of latency number but with increase 

in the area. 

 

      In the next section we present our experiments, discuss 

the obtained results and prove the performance of our 

proposition. 

 

 

 

 

Architecture 
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% 

 

Latency 

number 

#Optimization 1 Zynq-7000 0 0 ~ 0 97 82180 

#Optimization 2 Zynq-7000 0 11 40 97 33156 

#Optimization 3 Zynq-7000 0 14 41 97 32774 
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Fig. 4. GLCM HW architecture 
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V. EXPERIMENTAL RESULTS 

In this part, our goal is to valid the performance of our 

GLCM architecture in HW/SW context.  

 

The GLCM architecture was implemented using HLS 

tool (for θ (0 °, 45 °, 90 °, 135 °)). This architecture were 

then implemented on Zedboard Zynq-7000 FPGA device. 

The Zedboard card shown in Figure 5 is part of the 

FPGA family of Series 7 that benefits both performance 

of the two Artix and Kintex families. It is characterized 

by 53200 Slices, 560 KB BRAM, with 220 DSP Slices. 
                                                                                     

 

Fig. 5. Architecture of Zedboard FPGA 

The Figure 6 shows that the architecture of our system 

concerns the conception of the hardware design, the 

software application and the design of the customized IPs. 

In fact, we start by creating the design from the IPs then 

validate and synthesize our design, and finally generate the 

bitstream to configure the hardware part. This is done from 

the Xilinx Vivado IDE tool. Then we move to the software 

application designed to program the hardware part of the 

design. So, in order to accelerate the applications, we will 

design hardware accelerator to integrate them on the 

FPGAs part of the circuit via Vivado_HLS[12]. 

 

 
 

Fig. 6. System design flow 

The Xilinx Zedboard-based FPGA platform is an 

example of such a circuit integrating a dual Cortex A9 

processor and a PL of the FPGA Series 7 as shown in  

Figure 7. It uses a series of protocols to connect the 

processor with the PL. Inside the Zedboard architecture, the 

SW is programmed into the processing system (PS) in which 

we find an ARM cortex-A9 processor operating at a 

frequency of 667 MHz. In fact, the HLS GLCM architecture 

has connected to the PS with DMA. The DMA is able to 

manipulate data for reading or writing via memory. 

 

 

 

Fig. 7. Heterogeneous SoC system 

The Table 2 shows a comparison of the proposed 

method with the literature.  

 

The Figure 8 shows that our HW / SW architecture has 

allowed an optimization on the order of 33% in latency 

number compared to Reza architecture [8]. In fact the 

treatment is done in 32774 latency number by our method 

instead of 48769 latency number by Reza method [8]. 

 

 

Fig. 8. Comparison of latency number of the two architectures 

VI. CONCLUSION 

In conclusion, we proposed a HW / SW implementation 

of the four GLCM matrices for the four angles θ (0°, 45°, 

90°, 135°). This architecture is developed on a Zedboard 

platform that integrates an ARM Cortex A9 processor. The 

GLCM design was completely implemented on hardware. 

The validation results show an optimization on the order of 

33% in latency number by contribution to the literature 

implementation. 

 

Finally as a perspective we are considering to integrate 

the GLCM architecture in an Optical Character Recognition 

(OCR). 
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Proposed 

architectures 

FPGA Bits 

number 

GLCM 

size 

Image 

size 

HW 

calculation 

Freq 

(Mhz) 

Latency 

number 

Execution 

time 

Ali Reza [8] virtex 5 8 256x256 128x128 GLCM 250 48769 0.19 ms 

Our 

architecture 

virtex 5 8 256x256 128x128 GLCM 250 32774 0.12 ms 

Our 

architecture 

Zynq-

7000 

8 256x256 128x128 GLCM 100 32774 0.39 ms 

TABLE II.      PERFORFORMACE OF DIFFERENT PROPOSED ARCHITECTURES 


