
HAL Id: hal-01955368
https://hal.science/hal-01955368

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient implementation of GLCM algorithm in
FPGA

M a Ben Atitallah, Rostom Kachouri, H. Mnif, M Kammoun

To cite this version:
M a Ben Atitallah, Rostom Kachouri, H. Mnif, M Kammoun. An efficient implementation of GLCM
algorithm in FPGA. IEEE International Conference on Internet of Things, Embedded Systems and
Communications (IINTEC), Dec 2018, Hammamet, Tunisia. �10.1109/IINTEC.2018.8695275�. �hal-
01955368�

https://hal.science/hal-01955368
https://hal.archives-ouvertes.fr

An efficient implementation of GLCM algorithm

in FPGA

M.A. Ben Atitallah

LETI (E.N.I.S.), University of Sfax,

TUNISIA

National Engineering School of Gabes

(ENIG)

mohamed.amine@esiee.fr

R. Kachouri

Gaspard Monge Computer Science

Laboratory

ESIEE-Paris

University Paris-Est Marne-la-Vallée,

FRANCE

rostom.kachouri@esiee.fr

H.Mnif

LETI (E.N.I.S.), University of Sfax,

TUNISIA

ENET’com Sfax, TNISIA

hassene.mnif@enetcom.usf.tn

M. Kammoun

LETI (E.N.I.S.), University of Sfax,

TUNISIA

National Engineering School of Sfax

(ENIS)

manelkammounenis@gmail.com

Abstract—This paper presents hardware (HW)

architecture for fast parallel computation of Gray Level Co-

occurrence Matrix (GLCM) in high throughput image

analysis applications. GLCM has proven to be a powerful

basis for use in texture classification. Various textural

parameters calculated from the GLCM help understand the

details about the overall image content. However, the

calculation of GLCM is very computationally intensive. In this

paper, an FPGA accelerator for fast calculation of GLCM is

designed and implemented. We propose an FPGA-based

architecture for parallel computation of symmetric co-

occurrence matrices. This architecture was implemented on a

Xilinx Zedboard and Virtex 5 FPGAs using Vivado HLS. The

performance is then compared against other implementations.

The validation results show an optimization on the order of

33% in latency number by contribution to the literature

implementation.

Keywords—Image analysis applications; Symmetric Co-

occurrence matrix (GLCM); Parallel computation; Haralick’s

texture feature; Hardware Implementation; FPGA; Vivado

HLS; Optimization; Latency number

I. INTRODUCTION

The methods of statistical analysis of the texture [1] are

divided into two groups: a first-order analysis such as

mean, variance, etc ..., and a second-order analysis as the

co-occurrence matrix. The purpose of texture analysis is to

extract the characteristic properties of the object in a

complex image and to express them in a feature vector

form. The representation obtained will serve as a basis for

the subsequent steps. The second-order analysis is the most

popular method to detect the texture [2] because the results

obtained by those of the first order are not significant. In

fact, the second-order statistics take into account the spatial

distribution of two pixels thus describing the relation on the

neighborhood of the pixels.

Texture analysis through GLCM matrices is an essential

step for image analysis applications such as medical

imaging [3], recognition of character for complex image [4]

and agronomic or industrial applications. However, the

computation of GLCM matrices are very time consuming.

Therefore, methods to accelerate their computations are

highly desired. In order to improve the performance of co-

occurrence matrices algorithm, we propose an architecture

on FPGA platform. In the proposed architecture, the co-

occurrence matrix is computed in parallel. We have

implemented the proposed architecture on Zedboard Zynq-

7000 FPGA device. The HW/SW implementation on FPGA

shows an optimization on the order of 33% in latency

number by contribution to the literature implementation.

This paper is organized as follows. We discuss the

explanation of Gray level co-occurrence matrix algorithm

(GLCM) in Sect 2 followed by some important related

work in Sect 3. Our proposed hardware architecture is

described in Sect 4. Experimental results are discussed in

Sect 5. Finally, the conclusions are drawn in Sect 6.

II. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM)

Haralick’s texture features extraction algorithms [5] can

be divided into two parts. First, is the calculation of the co-

occurrence matrices and second is the calculation of texture

features using the calculated co-occurrence matrices. For

this research project we are just interested in the GLCM

matrix calculation.

The matrices of co-occurrence [6] have become the

most known and the most used to extract the texture

feature. They estimate properties of images relating to

second-order statistics. A co-occurrence matrix measures

the probability of appearance of pairs of pixel values

located at a distance in the image. This algorithm is known

as GLCM. The matrix defines the probability of joining two

pixels ��,�(�, �) that have values i and j with distance d and 	 as an orientation angular.

The angular directions θ conventionally used are 0, 45,

90 and 135 degrees. The neighborhood relations between

pixels, necessary for calculating the matrices, are illustrated

in Figure 1. The matrices obtained according to the four

directions are calculated as indicated in (1), (2), (3) and (4).

With :

• (k, l) are the coordinates of a graylevel pixel i ∈ [0,

nmax-1].

• (m, n) those of the graylevel pixel j ∈ [0, nmax-1].

Fig. 1. Closest neighbors of pixel 'x' in four directions

Fig. 2. Example of co-occurrence matrices built from a 4 × 4 image

composed of 4 gray levels

The Figure 2 shows an example of calculating P (i, j)

from a small image 4 × 4 composed with four gray levels

(0, 1, 2, 3). This example is limited to the case d = 1 and

θ= 0. The element (2, 3) of the matrix P (1, 0) is equal to 4,

this means that there are four configurations in the image

where a pixel of gray level 2 is separated horizontally from

another pixel of gray level 3 by a distance 1. These

configurations are shown in gray lines in the image (Figure

2).

III. RELATED WORKS

Many researchers have been working on accelerating

the process of computation the GLCMs algorithms on

FPGAs platforms.

Girisha and al [7] proposed a HW implementation to

compute the GLCM matrix for (θ=0°) and (d=1). The

proposed architecture is implemented on a Xilinx

XC2VP30 platform programmed in VHDL. It is

characterized by 13696 Slices and 136 KB RAM block.

The input image of this architecture is 8x8 pixels, each

pixel is represented on 4 bits (Ng=8).

The input image is recorded in two different memory

blocks to determine the pixel and the neighboring pixel. In

this architecture Girisha et al used a comparator to detect

the end of line. This architecture consumes a lot of memory

space because the input image is stored in two memory

blocks. In this case the large images can’t be implemented.

Girisha has just implemented a GLCM matrix for a single

angle.

To solve the problems of Girisha, Ali Reza and al [8]

proposed an architecture making it possible to calculate the

four matrices GLCM of the four angles θ (0 °, 45 °, 90 °,

135 °) in parallel for images of size 128X128 pixels, the

computation of GLCM is done for pixels with 8 bits in

which (Ng=256) and (d=1). So the size of the GLCM is

256x256 pixels. Each coefficient in this matrix is on 16

bits. The proposed architecture is implemented on a Xilinx

Virtex 5 using VHDL language. This architecture makes it

possible to calculate and send the GLCMs in parallel to the

internal RAM modules via a bus interface unit. After this

step, the GLCM core immediately sends the ready signal to

all texture feature modules. The texture feature modules

start their process in parallel. The calculations are done on

the basis of an integer format of 16 bits. The RAMs used in

this architecture is dual port to have the ability to read and

write data at the same time.

This architecture has as disadvantage that the

calculating texture is in an integer format, which generates

0 0 1 2

0 1 3 2

0 2 3 2

1 2 3 0

2 2 1 1

2 0 2 1

1 2 0 4

1 1 4 0

2 1 0 0

1 2 1 0

0 1 0 5

0 0 5 0

0 1 2 2

1 0 1 1

2 1 0 2

2 1 2 0

4 2 0 1

2 0 1 1

0 1 6 0

1 1 0 4

 P(i ,j,1, 45°)=

 P(i ,j,1,135°)=

 P(i, j,1, 0°)=

2

3

�(�, �, d, 0) = ���(�, �), (�, �)� ∈ (� ∗ �)� �ℎ��� �� − � = 0, |� − �| = d, I!," = �, l$,% = ��&� (1)

�(�, �, d, 45) = *+ �(�, �), (�, �)� ∈ (� ∗ �)��ℎ���
(� − � = d, l − n = −d)⌵(� − � = −d, l − n = d), I!," = �, l$,% = �.* (2)

 �(�, �, d, 90) = ���(�, �), (�, �)� ∈ (� ∗ �)� �ℎ����|� − �| = d, � − � = 0, I!," = �, l$,% = � �&� (3)

�(�, �, d, 135) = *+ �(�, �), (�, �)� ∈ (� ∗ �)� �ℎ���
(� − � = d, l − n = d)⌵(� − � = −d, l − n = −d), I!," = �, l$,% = �.* (4)

 P(i, j,1, 90°)=

inaccurate results. The size of the image is fixed and the

distance of the matrix GLCM is also fixed.

The objective of our research project is to propose and

implement a hardware architecture more efficient than the

architecture proposed by Ali Reza.

IV. HARDWARE ARCHITECTURE OF GLCM

FPGA circuits have emerged as a privileged target

platforms to implement intensive signal processing

applications [9]. For this reason several academic and

industrial efforts have been devoted in order to increase the

productivity of FPGA-based designs by means of using

High Level Synthesis (HLS) tools. HLS approach in

Electronic Design Automation (EDA) is a step in the design

flow aiming at moving the design effort to higher

abstraction levels [10]. This evolution towards HLS-based

methodologies can be easily traced along the history of

hardware system design [11]. Although the first generations

of HLS tools failed to produce efficient hardware designs,

different reasons have motivated researchers to continue

improving these tools.

In this context Xilinx propose a new HLS tool allows to

automatically translate a code written in high level

language like c / c ++ or system c into an Register Transfer

Language (RTL) code like the Figure 3 shows. Once the IP

has been designed, it can be integrated into the IPs library

of Vivado IDE and thus used for the construction of the

hardware design.

Fig. 3. Vivado HLS conception flow

A. Architectural design for GLCM

The GLCM hardware architecture is illustrated in

Figure 4. Our architecture was developed by a c code

compatible with the HLS tool. The proposed GLCM

architecture is implemented for a 128x128 image. Each

pixel of the image is represented by (n=8) bits, so

(Ng=256) because �2 = 23 . Our IP reads each pixel,

calculates the GLCM for the four directions (θ=0°, 45°,

90° and 135°) and for distance (d=1), and sends them to

the software (SW) part. Our IP has two outputs, one

presents the GLCM results and one to detect the end of

sending data.

In fact, our architecture makes it possible to calculate

the GLCM of the four directions in parallel in order to

accelerate the treatment. The size of GLCM is NgxNg. The

GLCM coefficients are presented on (m=16) bits.

The SW part is processed by the ARM cortex A9

processor at 667 MHz. It is used to send and receive data

through the DMA "Direct Access Memory". In addition, in

our HW design we use a DMA in order to speed the Data

transfer.

B. Optimizations of GLCM architecture

In this section, we are going to explore the possible

optimization steps that could be done in order to achieve an

efficient hardware implementation. The C code was written

in HLS-friendly syntax with neither file read/write, nor

dynamic memory allocation nor system calls. The

optimization steps are incrementally applied to the design

as listed in Table 1. From our point of view, a fair

comparison between designs is valid only for adjacent rows

in order to observe the impact of adding this optimization to

the overall design performance.

We have developed different optimizations for the

implementation of the GLCM matrices for the four angles

in order to select the optimal optimization. First, in the first

optimization "Optimization 1", we ran our code without

adding any options just with default HLS optimization. In

the second optimization "Optimization 2", we added in

addition to the "Optimization 1" the UNROLL directive at

the level of the loops of the GLCM matrices. Finally in the

third optimization "Optimization 3", we added to the

"Optimization 1" the PEPELINE directive at the level of

the loops of the GLCM matrices. Table 1 shows the

implement results of all optimizations in terms of area and

latency number using Zynq-7000 FPGA Device.

TABLE I. EXPERIMENT RESULTS USING DIFFERENT OPTIMIZATIONS

 In fact, the synthesis of the three optimizations which

were developed with the Vivado_HLS tool shows that the

"Optimization 3" presents the best performances. Indeed,

thanks to the use of pipeline in the "Optimization 3", we

managed to reduce the latency number up to 76% compared

to "Optimization 1". We admit the "Optimization 3" since it

ensures a compromise of latency number but with increase

in the area.

 In the next section we present our experiments, discuss

the obtained results and prove the performance of our

proposition.

Architecture

FPGA

DSP

%

FF

%

LUT

%

BRAM

%

Latency

number

#Optimization 1 Zynq-7000 0 0 ~ 0 97 82180

#Optimization 2 Zynq-7000 0 11 40 97 33156

#Optimization 3 Zynq-7000 0 14 41 97 32774

Symmetric

GLCM
Calculator (=0°)

Symmetric

GLCM
Calculator (=45°)

Symmetric

GLCM
Calculator (=90°)

Symmetric

GLCM
Calculator (=135°)

Fig. 4. GLCM HW architecture

Memory

DMA

Image

R/W

Image

�4(�, �) i j �56(�, �) i j �74(�, �) i j �896(�, �) i j

Fill in table

 :�;<= =;>

IP

INPUT

OUTPUT

Clock

Data

Data

V. EXPERIMENTAL RESULTS

In this part, our goal is to valid the performance of our

GLCM architecture in HW/SW context.

The GLCM architecture was implemented using HLS

tool (for θ (0 °, 45 °, 90 °, 135 °)). This architecture were

then implemented on Zedboard Zynq-7000 FPGA device.

The Zedboard card shown in Figure 5 is part of the

FPGA family of Series 7 that benefits both performance

of the two Artix and Kintex families. It is characterized

by 53200 Slices, 560 KB BRAM, with 220 DSP Slices.

Fig. 5. Architecture of Zedboard FPGA

The Figure 6 shows that the architecture of our system

concerns the conception of the hardware design, the

software application and the design of the customized IPs.

In fact, we start by creating the design from the IPs then

validate and synthesize our design, and finally generate the

bitstream to configure the hardware part. This is done from

the Xilinx Vivado IDE tool. Then we move to the software

application designed to program the hardware part of the

design. So, in order to accelerate the applications, we will

design hardware accelerator to integrate them on the

FPGAs part of the circuit via Vivado_HLS[12].

Fig. 6. System design flow

The Xilinx Zedboard-based FPGA platform is an

example of such a circuit integrating a dual Cortex A9

processor and a PL of the FPGA Series 7 as shown in

Figure 7. It uses a series of protocols to connect the

processor with the PL. Inside the Zedboard architecture, the

SW is programmed into the processing system (PS) in which

we find an ARM cortex-A9 processor operating at a

frequency of 667 MHz. In fact, the HLS GLCM architecture

has connected to the PS with DMA. The DMA is able to

manipulate data for reading or writing via memory.

Fig. 7. Heterogeneous SoC system

The Table 2 shows a comparison of the proposed

method with the literature.

The Figure 8 shows that our HW / SW architecture has

allowed an optimization on the order of 33% in latency

number compared to Reza architecture [8]. In fact the

treatment is done in 32774 latency number by our method

instead of 48769 latency number by Reza method [8].

Fig. 8. Comparison of latency number of the two architectures

VI. CONCLUSION

In conclusion, we proposed a HW / SW implementation

of the four GLCM matrices for the four angles θ (0°, 45°,

90°, 135°). This architecture is developed on a Zedboard

platform that integrates an ARM Cortex A9 processor. The

GLCM design was completely implemented on hardware.

The validation results show an optimization on the order of

33% in latency number by contribution to the literature

implementation.

Finally as a perspective we are considering to integrate

the GLCM architecture in an Optical Character Recognition

(OCR).

ACKNOWLEDGMENT

We thank our colleagues from ESIEE Paris, who

provided insight and expertise that greatly assisted the

research and improved the manuscript.

REFERENCES

[1] G. N. Srinivasan, and Shobha G, “Statistical Texture Analysis,”
Proceedings of world academy of science, engineering and
technology volume 36 december 2008 ISSN 2070-3740.

[2] Shervan Fekri-Ershad, “A Review on Image Texture Analysis
Methods,” International Online Journal of Image Processing and
Pattern Recognition Vol. 1, No.1, pp. 1-63, 2018.

[3] M.A. Tahir, A. Bouridane, and F. Kurugollu, “An FPGA Based
Coprocessor for the Classification of Tissue Patterns in Prostatic
Cancer,” International Conference on Field Programmable Logic and
Applications, FPL 2004: Field Programmable Logic and Application
pp 771-780 |.

[4] M.A. Ben Atitallah, A. Boudabous, A. Ben Atitallah, R. Kachouri,
“Complexity study of the Gamma correction method for text
extraction from complex images,” 16th International Conference on
Sciences and Techniques of Automatic Control and Computer
Engineering (STA, 2015).

[5] A.Dasha, P.Kanungoa, B.P.Mohantyb b, “A Modified Gray level Co-
occurrence Matrix based Thresholding for Object Background
Classification,” Image Analysis & Computer Vision Lab., Procedia
Engineering 30 (2012) 85 – 91.

[6] Haralick, Robert M., and Karthikeyan Shanmugam, “Textural
features for image classification,” IEEE Transactions on systems,
man, and cybernetics 6 (1973).

[7] Girisha A B, M C Chandrashekhar, Dr.. M Z kurian, “FPGA
implementation of GLCM,” International Journal of Advanced
Research in Electrical, Electronics and Instrumentation Engineering
Vol. 2, Issue 6, June 2013.

[8] Ali Reza, Asadollah, Babak , “High performance implementation of
texture features extraction algorithms using FPGA architecture,” J
Real-Time Image Proc (2014) 9:141–157.

[9] I. Gonzalez, E. El-Araby, P. Saha, T. El-Ghazawi, H. Simmler, S. G.
Merchant, B. M. Holland, C. Reardon, A. D. George, H. Lam, G.
Stitt, N. Alam, and M. C. Smith, “Classi_cation of Application
Development for FPGA-Based Systems,” Aerospace and Electronics
Conference, 2008. NAECON 2008.

[10] W. Meeus, K. Van Beeck, T. Goedeme, J. Meel, and D. Stroobandt,
“An Overview of Today's High-Level Synthesis Tools,” Design
Automation for Embedded Systems (2012).

[11] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An
Introduction to High-Level Synthesis,” IEEE Design Test of
Computers (2009).

[12] Declan O'Loughlin, Aedan Coffey, Frank Callaly, Darren Lyons,
Fearghal Morgan, “Xilinx Vivado High Level Synthesis,” Case
studies (2013).

Proposed

architectures

FPGA Bits

number

GLCM

size

Image

size

HW

calculation

Freq

(Mhz)

Latency

number

Execution

time

Ali Reza [8] virtex 5 8 256x256 128x128 GLCM 250 48769 0.19 ms

Our

architecture

virtex 5 8 256x256 128x128 GLCM 250 32774 0.12 ms

Our

architecture

Zynq-

7000

8 256x256 128x128 GLCM 100 32774 0.39 ms

TABLE II. PERFORFORMACE OF DIFFERENT PROPOSED ARCHITECTURES

