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An explicit hybridizable discontinuous Galerkin
method for the 3D time-domain Maxwell
equations

Georges Nehmetallah, Stéphane Lanteri, Stéphane Descombes, Alexandra
Christophe

Abstract We present an explicit hybridizable discontinuous Galerkin (HDG) method
for numerically solving the system of three-dimensional (3D) time-domain Maxwell
equations. The method is fully explicit similarly to classical so-called DGTD (Dis-
continuous Galerkin Time-Domain) methods, is also high-order accurate in both
space and time and can be seen as a generalization of the classical DGTD scheme
based on upwind fluxes. We provide numerical results aiming at assessing its nu-
merical convergence properties by considering a model problem and we present
preliminary results of the superconvergence property on the Hcurl norm.

1 Motivations and objectives

The DGTD method is nowadays a very popular numerical method in the computa-
tional electromagnetics community. A lot of works are mostly concerned with time
explicit DGTD methods relying on the use of a single global time step computed so
as to ensure stability of the simulation. It is however well known that when com-
bined with an explicit time integration method and in the presence of an unstructured
locally refine mesh, a high order DGTD method suffers from a severe time step size
restriction. An alternative approach that has been considered in [16, 5, 6] is to use a
hybrid explicit-implicit (or locally implicit) time integration strategy. Such a strat-
egy relies on a component splitting deduced from a partitioning of the mesh cells
in two sets respectively gathering coarse and fine elements. The computational effi-
ciency of this locally implicit DGTD method depends on the size of the set of fine
elements that directly influences the size of the sparse part of the matrix system to
be solved at each time. Therefore, an approach for reducing the size of the subsys-
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tem of globally coupled (i.e. implicit) unknowns is worth considering if one wants
to solve very large-scale problems.

A particularly appealing solution in this context is given by the concept of hy-
bridizable discontinuous Galerkin (HDG) method. The HDG method has been first
introduced by Cockbrun et al. in [3] for a model elliptic problem and has been sub-
sequently developed for a variety of PDE systems in continuum mechanics [14]. The
essential ingredients of a HDG method are a local Galerkin projection of the under-
lying system of PDEs at the element level onto spaces of polynomials to parametrize
the numerical solution in terms of the numerical trace; a judicious choice of the nu-
merical flux to provide stability and consistency; and a global jump condition that
enforces the continuity of the numerical flux to arrive at a global weak formula-
tion in terms of the numerical trace. The HDG methods are fully implicit, high-
order accurate and most importantly, they reduce the globally coupled unknowns
to the approximate trace of the solution on element boundaries, thereby leading to
a significant reduction in the degrees of freedom. HDG methods for the system of
time-harmonic Maxwell equations have been proposed in [13, 9, 10]. We have only
developped the implicit HDG method for the time-domain Maxwell equations [2].
In view of devising a hybrid explicit-implicit HDG method, a preliminary step is
therefore to elaborate on the principles of a fully explicit HDG formulation. It hap-
pens that fully explicit HDG methods have been studied recently for the acoustic
wave equation by Kronbichler al. [8] and Stanglmeier al. [15]. In [15] the authors
present a fully explicit, high order accurate in both space and time HDG method.
In this paper we outline the formulation of this explicit HDGTD, present numeri-
cal results including a preliminary assessment of its superconvergence properties.
We adopt a low storage Runge-Kutta scheme [4] for the time integration of the
semi-discrete HDG equations. This work is a first step towards the construction of a
hybrid explicit-implicit HDG method for time-domain electromagnetics.

2 Problem statement and notations

We consider the system of 3D time-domain Maxwell’s equations on a bounded poly-
hedral domain Ω ⊂ R3{

ε∂tE− curlH =−J, in Ω × [0,T ],
µ∂tH+ curlE = 0, in Ω × [0,T ],

(1)

where the symbol ∂t denotes a time derivate, J the current density, T a final time,
E(x, t) and H(x, t) are the electric and magnetic fields. The dielectric permittivity
ε and the magnetic permeability µ are varying in space, time-invariant and both
positive functions. The boundary of Ω is defined as ∂Ω = Γm∪Γa with Γm∩Γa = /0.
The boundary conditions are choosen as
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n×E = 0, on Γm× [0,T ],

n×E+n× (n×H) = n×Einc +n× (n×Hinc)

= ginc, on Γa× [0,T ].

(2)

Here n denotes the unit outward normal to ∂Ω and (Einc,Hinc) a given incident
field. The first boundary condition is often referred as a metallic boundary condition
and is applied on a perfectly conducting surface. The second relation is an absorb-
ing boundary condition and takes here the form of the Silver-Müller condition. It is
applied on a surface corresponding to an artificial truncature of a theoretically un-
bounded propagation domain. Finally, the system is supplemented with inital con-
ditions: E0(x) = E(x,0) and H0(x) = H(x,0). For sake of simplicity, we omit the
volume source term J in what follows.

We introduce now the notations and approximation spaces. We first consider a
partition Th of Ω ⊂ R3 into a set of tetraedra. Each non-empty intersection of two
elements K+ and K− is called an interface. We denote by F I

h the union of all interior
interfaces of Th, by F B

h the union of all boundary interfaces of Th, and Fh =
F I

h ∪F B
h . Note that ∂Th represents all the interfaces ∂K for all K ∈Th. As a result,

an interior interface shared by two elements appears twice in ∂Th, unlike in Fh

where this interface is evaluated once. For an interface F ∈F I
h , F = K+ ∩K−, let

v± be the traces of v on F from the interior of K±. On this interior face, we define
mean values as {v}F = (v++v−)/2 and jumps as JvKF = n+×v++n−×v− where
the unit outward normal vector to K is denoted by n±. For the boundary faces these
expressions are modified as {v}F = v+ and JvKF = n+× v+ since we assume v is
single-valued on the boundaries. In the following, we introduce the discontinuous
finite element spaces and some basic operations on these spaces for later use. Let
PpK (K) denotes the space of polynomial functions of degree at most pK on the
element K ∈Th. The discontinuous finite element space is introduced as

Vh =
{

v ∈
[
L2(Ω)

]3
such that v|K ∈ [PpK (K)]3 , ∀K ∈Th

}
, (3)

where L2(Ω) is the space of square integrable functions on the domain Ω . The
functions in Vh are continuous inside each element and discontinuous across the
interfaces between elements. In addition, we introduce a traced finite element space

Mh =
{

η ∈
[
L2(Fh)

]3
such that η |F ∈ [PpF (F)]3

and (η ·n) |F = 0, ∀F ∈Fh} .
(4)

For two vectorial functions u and v in
[
L2(D)

]3, we denote (u,v)D =
∫

D u · vdx
provided D is a domain in R3, and we denote < u,v >F=

∫
F u · vds if F is a two-

dimensional face. Accordingly, for the mesh Th we have
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(·, ·)Th
= ∑

K∈Th

(·, ·)K , 〈·, ·〉
∂Th

= ∑
K∈Th

〈·, ·〉
∂K ,

〈·, ·〉Fh
= ∑

F∈Fh

〈·, ·〉F , 〈·, ·〉
Γa
= ∑

F∈Fh∩Γa

〈·, ·〉F .

We set vt = −n× (n×v) , vn = n(n ·v) where vt and vn are the tangential and
normal components of v such as v = vt +vn.

3 Principles and formulation of the HDG method

Following the classical DG approach, approximate solutions (Eh,Hh), for all t ∈
[0,T ], are seeked in the space Vh×Vh satisfying for all K in Th{

(ε∂tEh,v)K− (curlHh,v)K = 0, ∀v ∈ Vh,

(µ∂tHh,v)K +(curlEh,v)K = 0, ∀v ∈ Vh.
(5)

Applying Green’s formula, on both equations of (5) introduces boundary terms
which are replaced by numerical traces Êh and Ĥh in order to ensure the connection
between element-wise solutions and global consistency of the discretization. This
leads to the global formulation for all t ∈ [0,T ]{

(ε∂tEh,v)K− (Hh,curlv)K +
〈
Ĥh,n×v

〉
∂K = 0, ∀v ∈ Vh,

(µ∂tHh,v)K +(Eh,curlv)K−
〈
Êh,n×v

〉
∂K = 0, ∀v ∈ Vh.

(6)

It is straightforward to verify that n×v = n×vt and < H,n×v >=−< n×H,v >.
Therefore, using numerical traces defined in terms of the tangential components Ĥt

h
and Êt

h, we can rewrite (6) as{
(ε∂tEh,v)K− (Hh,curlv)K +

〈
Ĥt

h,n×v
〉

∂K = 0, ∀v ∈ Vh,

(µ∂tHh,v)K +(Eh,curlv)K−
〈
Êt

h,n×v
〉

∂K = 0, ∀v ∈ Vh.
(7)

The hybrid variable Λ h introduced in the setting of a HDG method [3] is here defined
for all the interfaces of Fh as

Λ h := Ĥt
h, ∀F ∈Fh. (8)

We want to determine the fields Ĥt
h and Êt

h in each element K of Th by solving
system (7) and assuming that Λ h is known on all the faces of an element K. We
consider a numerical trace Êt

h for all K given by

Êt
h = Et

h + τKn× (Λ h−Ht
h) on ∂K, (9)
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where τK is a local stabilization parameter which is assumed to be strictly positive.
We recall that n×Ht

h = n×Hh. The definitions of the hybrid variable (8) and nu-
merical trace (9) are exactly those adopted in the context of the formulation of HDG
methods for the 3D time-harmonic Maxwell equations [13]-[10].
Following the HDG approach, when the hybrid variable Λ h is known for all the
faces of the element K, the electromagnetic field can be determined by solving the
local system (7) using (8) and (9).
From now on we will note by ginc the L2 projection of ginc on Mh. Summing the
contributions of (7) over all the elements and enforcing the continuity of the tangen-
tial component of Êh, we can formulate a problem which is to find (Eh,Hh,Λ h) ∈
Vh×Vh×Mh such that for all t ∈ [0,T ]

(ε∂tEh,v)Th
− (Hh,curlv)Th

+ 〈Λ h,n×v〉
∂Th

= 0, ∀v ∈ Vh,

(µ∂tHh,v)Th
+(Eh,curlv)Th

−
〈
Êt

h,n×v
〉

∂Th
= 0, ∀v ∈ Vh,〈

JÊhK,η
〉
Fh
−〈Λ h,η〉Γa

−
〈
ginc,η

〉
Γa

= 0, ∀η ∈Mh,

(10)

where the last equation is called the conservativity condition with which we ask the
tangential component of Êh to be weakly continuous across any interface between
two neighboring elements.

We now reformulate the system with numerical fluxes. We can deduce from the
third equation of (10) that

Λh =



1
τK+ + τK−

(
2
{

τKHt
h
}

F + JEt
hKF
)
, if F ∈F I

h ,

1
τK

n×Et
h +Ht

h, if F ∈Fh∩Γm,

1
τK +1

(
τKHt

h +n×Et
h−ginc

)
. if F ∈Fh∩Γa.

(11)

By replacing (11) in (9) we obtain Êt
h = Êt,+

h = Êt,−
h with

Êt
h =


τK+τK−

τK+ + τK−

(
2
{

1
τK

Et
h

}
F
− JHt

hKF

)
, if F ∈F I

h ,

0, if F ∈Fh∩Γm,

1
τK +1

(
Et

h− τKn×Ht
h− τKn×ginc

)
. if F ∈Fh∩Γa.

(12)

Thus, the numerical traces (8) and (9) have been reformulated from the conserva-
tivity condition. This means that the conservativity condition is now included in the
new formulation of the numerical fluxes and can be neglected in the global system of
equations. Hence, the local system (6) takes the form of a classical DG formulation,
∀v ∈ Vh {

(ε∂tEh,v)K− (Hh,curlv)K +
〈
Ĥt

h,n×v
〉

∂K = 0,

(µ∂tHh,v)K +(Eh,curlv)K−
〈
Êt

h,n×v
〉

∂K = 0.
(13)
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where the numerical fluxes are defined by (11) and (12).

Remark 3. Let YK =
√

εK/
√

µK be the local admittance associated to cell K and
ZK = 1/YK the corresponding local impedance. If we set τK = ZK in (11) and
1/τK = YK in (12), the obtained numerical traces coincide with those adopted in
the classical upwind flux DGTD method [7].

4 Numerical results

In order to validate and study the numerical convergence of the proposed HDG
method, we consider the propagation of an eigenmode in a closed cavity (Ω
is the unit square) with perfectly metallic walls. The frequency of the wave is
f =
√

3/
√

2c0 where c0 is the speed of light in vacuum. The electric permittiv-
ity and the magnetic permeability are set to the constant vacuum values. The exact
time-domaine solution is given in [7].
We start our study by assuming that the penalization parameter τ is equal to 1. In
order to insure the stability of the method, numerical CFL conditions are determined
for each value of the interpolation order pK . In our particular case we have εK and
µk are constant = 1 ∀K ∈ Th, so we have verified that, as we said in Remark 3, for
τ = 1, the values of CFL number correspond to the classical upwind flux-based DG
method. In Table 1 we summarize the maximum ∆ t obtained numerically to insure
the stability of the scheme

Table 1: Numerically obtained values of ∆ t max.

Interpolation order P1 P2 P3 P4

∆ t max (s.) 0.32×10−9 0.19×10−9 0.13×10−9 0.94×10−10

Given these values of ∆ t max, the L2-norm of the error is calculated for a uniform
tetrahedral mesh with 3072 elements which is constructed from a finite difference
grid with nx = ny = nz = 9 points, each cell of this grid yielding 6 tetrahedra. The
wave is propagated in the cavity during a physical time tmax corresponding to 8 pe-
riods (as shown in Figure 1). Figure 2 depicts a comparison of the time evolution of
the L2-norm of the error between the solution obtained with an HDG method and a
classical upwind flux-based DG method for pK = 4. An optimal convergence with
order pK +1 is obtained as shown in Figure 3.
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Fig. 1 Time evolution of
the exact and the numeri-
cal solution of Ex at point
A(0.25,0.25,0.25) with a P3
interpolation
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Fig. 2 Time evolution of the
L2-norm of the error for P4
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Fig. 3 Numerical conver-
gence order of the time ex-
plicit HDG method for τ = 1.
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Now, we keep the same case than previously and we assess the behavior of the
HDG method for various values of the penalization parameter τ . We observe that
the time evolution of the electromagnetic energy for any order of interpolation, for
different values of the parameter τ 6= 1 and when the ∆ t used is fixed to the values
defined in Table 1, the energy increases in time . In fact, It is necessary to reevaluate
the ∆ t max for each value of τ (see Table 2 & Figure 4). For this example, the
optimal value of the parameter τ is 1 (corresponding to an upwind flux for a DG
method). On Figure 5, we show the time evolution of the L2-error for several values
of τ with respect to the maximal timestep for the considered parameters. In addition,
Table 3 sums up numerical results in term of maximum L2 errors and convergence
rates. It appears that the order of convergence is not affected when the stabilization
parameter is varied from 1 (with their associated CFL conditions).
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Table 2: Numerically obtained values of the CFL number as a function of the stabilization pa-
rameter τ for a P1 interpolation.

τ 0.1 1.0 2.0 5.0 10.0

∆ t max (s.) 0.31×10−10 3.2×10−10 1.7×10−10 0.66×10−10 0.32×10−10

Fig. 4 Variation of the ∆ t
max as a function of τ
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Fig. 5 Time evolution of the
L2-error as a function of τ

with a P3 interpolation.
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Table 3: Maximum L2-errors and convergence orders.

τ = 1.0
1/h P1, ∆ t = 0.16×10−09 P2, ∆ t = 0.99×10−10 P3, ∆ t = 0.66×10−10

1/4 8.29e-02 - 9.87e-03 - 9.34e-04 -
1/8 1.90e-02 2.13 1.34e-03 2.88 5.68e-05 4.04
1/16 4.74e-03 2.00 1.72e-04 2.97 3.46e-06 4.04

τ = 0.1
1/h P1, ∆ t = 0.16×10−10 P2, ∆ t = 0.96×10−11 P3, ∆ t = 0.66×10−11

1/4 2.14e-01 - 1.78e-02 - 2.19e-03 -
1/8 5.46e-02 1.97 2.85e-03 2.65 1.68e-04 3.70
1/16 1.18e-02 2.21 4.06e-04 2.81 1.14e-05 3.88

τ = 10.0
1/h P1, ∆ t = 0.16×10−10 P2, ∆ t = 0.96×10−11 P3, ∆ t = 0.68×10−11

1/4 1.74e-01 - 1.53e-02 - 1.68e-03 -
1/8 4.24e-02 2.04 2.23e-03 2.76 1.17e-04 3.84
1/16 9.4e-03 2.16 3.10e-04 2.87 7.81e-06 3.91
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5 Local postprocessing in the case of k = 1

We define here, following the ideas of the local postprocessing developped in [1],
new approximations for electric and magnetic field and expect that both En∗

h and Hn∗
h

converge with order 2 in the Hcurl(Th)-norm, whereas En
h and Hn

h converge with or-
der 1 in the Hcurl(Th)-norm. To postprocess En∗

h we first compute an approximation
(pn

1,h,p
n
2,h) ∈ V(K)×V(K) to the curl of E, p1(tn) = ∇×E(tn) and the curl of H,

p2(tn) = ∇×H(tn) by locally solving the below system

(pn
1,h,v)K = (En

h,∇×v)K−〈Êt,n
h ,n×v〉∂K ∀v ∈ V(K)

and,
(pn

2,h,v)K = (Hn
h,∇×v)K−〈Ĥt,n

h ,n×v〉∂K ∀v ∈ V(K)

We then find (En∗
h ,Hn∗

h ) ∈ [P2(K)]3× [P2(K)]3 such that{
(∇×En∗

h ,∇×W)K = (pn
h,1,∇×W)K , ∀W ∈ [P2(K)]3,

(En∗
h ,∇Y )K = (En

h,∇Y )K ∀Y ∈P4(K)

and, {
(∇×Hn∗

h ,∇×W)K = (pn
h,2,∇×W)K , ∀W ∈ [P2(K)]3,

(Hn∗
h ,∇Y )K = (Hn

h,∇Y )K ∀Y ∈P4(K)

It is important to point out that we can compute En∗
h and Hn∗

h at any time step with-
out advancing in time. Hence, the local postprocessing can be performed whenever
we need higher accuracy at particular time steps. Numerical results given in Table
4 shows that a second order convergence rate is obtained for the post-processed
solution.

Table 4: Errors and orders of convergence before and after postprocessing

τ = 1.0
||E−Eh||Hcurl ||E−E∗h ||Hcurl

1/h Error order Error order
1/4 9.94e-01 - 7.50e-01 -

P1 1/6 5.96e-01 1.26 3.21e-01 2.09
1/8 4.36e-01 1.09 1.78e-01 2.05
1/10 3.44e-01 1.06 1.15e-01 1.94
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6 Conclusion

In this paper we have presented an explicit HDG method to solve the system of
Maxwell equations in 3D. The next step is to couple explicit and implicit HDG
methods to treat the case of a locally refined mesh.
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