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Abstract

Conventional finance models indicate that the magnitude of stock prices should not influence portfolio

choices or future returns. This view is contradicted, however, by empirical evidence. In this paper, we report

the results of an experiment showing that trading prices, in experimental markets, are processed differently

by participants, depending on their magnitude. Our experiment has two consecutive treatments. One where

the fundamental value is a small number (the small price market) and a second one where the fundamental

value is a large number (the large price market). Small price markets exhibit greater mispricing than large

price markets. We obtain this result both between-participants and within-participants. Our findings show

that price magnitude influences the way people perceive the distribution of future returns. This result is

at odds with standard finance theory but is consistent with: (1) a number of observations in the empirical

finance and accounting literature; and (2) evidence in neuropsychology on the use of different mental scales

for small and large numbers.
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¶Université de Montpellier, CEE-M, UFR d’Economie – Mailing address: Avenue Raymond Dugrand,

CS 79606, 34 960 Montpellier Cedex 2, France – Email: marc.willinger@umontpellier.fr

1



1 Introduction

Normative decision theory assumes that expectations are not sensitive to changes in the

way information is presented. For instance, the magnitude of a stock price should not

influence portfolio choices, return expectations or future realized returns. Empirical evi-

dence on financial markets, however, indicates that stock price levels have an impact on

stock returns, analysts’ forecasts and investors’ portfolio choices. For instance, Schultz

(2000) finds that: (1) retail investors hold lower-priced stocks than institutions; and, (2)

the number of retail investors among shareholders of a firm, increases after a forward stock

split that decreases the stock price without changing the fundamentals of the firm. Green

and Hwang (2009) show that the returns on small (large) price stocks comove more to-

gether, than with the returns on large (small) price stocks. Birru and Wang (2016) argue

that investors overestimate the skewness of returns of small price stocks. Baker et al.

(2009) find that firms manage nominal prices through forward stock splits when investors

are willing to pay a premium for small price stocks. More recently, Roger et al. (2018)

show that price forecasts issued by financial analysts deviate more from realized prices for

small price stocks, compared to those of large price stocks.

Yet, the question of why the magnitude of stock prices matters is still unanswered.1 In

this paper, we propose a novel explanation for the influence of stock price magnitude on

agents’ behavior. We posit that economic agents process small and large prices differently,

as a result of a differential processing of small and large numbers by the human brain.

The literature in neuropsychology devoted to the spatial representation of numbers, indi-

cates that humans process numbers on a logarithmic scale (Dehaene, 2003); that is, the

perception of numbers obeys Weber’s law (also called Weber-Fechner law).2 Weber’s law

describes the relationship between the physical magnitude of a stimulus and its perceived

intensity. It states that the ability to detect a change in a stimulus is proportional to the

magnitude of this stimulus. In his original work, Weber (1850) found that while a person

is able to discriminate between two weights of 20g and 21g, it is necessary to add 2g to

a weight of 40g in order to notice the difference in weight. This notion of Just Notice-

able Difference (JND), that is, the minimum change for a stimulus to be noticeable, has

been found for many stimuli such as: sight, sound, taste, touch and for the perception of

numbers.

1The proposed explanations are either based on stock characteristics (lottery features of small price
stocks) or on investors’ mistakes in estimating the skewness of future returns.

2A complete review on the mental representation of numbers can be found in Dehaene (2011).
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The logarithmic scale implies that large numbers are perceived as being closer together

compared to reality, that is, large numbers are compressed on the mental scale. With

the acquisition of formal (mathematical) education, a shift from a logarithmic to a linear

representation of numbers occurs (Siegler and Opfer, 2003; Laski and Siegler, 2007). How-

ever, the linear mapping does not entirely replace the logarithmic one: the two mental

scales coexist. Dehaene et al. (2008) and Viarouge et al. (2010) show that the brain tends

to process small numbers on a linear scale, while tending to apply the logarithmic scale

for large numbers.3

Using an economic experiment, we investigate whether individuals behave differently

when trading small price stocks compared to large price stocks. Our experiment involves

eight sessions with two treatments each. One where the fundamental value of the traded

asset is a small number (in experimental currency units) and one where the fundamental

value is a large number. We refer to the former (latter) treatment as the small (large)

price market. We test whether there are significant differences in mispricing across treat-

ments. If both small prices and large prices were processed on a logarithmic scale, the

minimum difference in prices to induce a perception of price change (i.e., the JND) would

be proportionally smaller for small price markets than for large price markets. However,

as a result of the use of a linear scale for small numbers, the minimum change in prices

necessary to be perceived will be greater in small price markets, compared to what should

be observed under Weber’s law. Hence, we expect to observe greater mispricing when an

individual trades in small price markets.

The experiment is based on a continuous double auction market (Smith et al. (1988),

SSW hereafter) with a random fundamental value (FV hereafter) which is a martingale.

The use of such a stochastic process for the FV (Gillette et al., 1999; Stöckl et al., 2015;

Kirchler, 2009), without intermediate dividend payments, allows us to keep the magnitude

of prices stable over time, a key issue for our research question. In addition, this type of

FV process share more features with real financial markets (Stöckl et al., 2015). In the

small (large) price market, the unconditional expected fundamental value is 6 (72).

3Banks and Coleman (1981) is one of the first papers referring to several mental scales for numbers.
In particular, a logarithmic (linear) scale is used when numbers are sampled in an open (closed)-ended
range. They conclude by saying, “Why do we carry two scales around with us? One justification could be
found in the fact that sometimes we need to be aware of percentage differences and sometimes we need to
be aware of amount of difference. An easy way to approximate percentage differences is to measure with
a compressive scale, whereas a linear scale is needed to record amount differences. It is possible that the
two subjective scales developed in response to these two different cognitive needs.”.

3



Overall, we find that these two different price regimes generate different magnitudes

of mispricing. Consistent with the linear vs. logarithmic scales in processing numbers,

we find greater mispricing in small price markets compared to large price markets. At

the aggregate level (all markets pooled together), we find the average deviation from the

fundamental value is more than 20 percentage points larger in small price markets than

in large price markets. This result is obtained both between-participants and within-

participants.

Our findings have important implications for experimental asset markets. Our results

suggest that the conversion rate from experimental currency (or conversely, the magnitude

of the FV) has an impact on potential mispricing in contrast to other experiments where

the conversion rate of experimental currency does not seem to affect behavior (Drichoutis

et al., 2015).

The remainder of the paper is organized as follows. Section 2 reviews previous literature

on the small price effect and number processing. In section 3, we describe our experimental

design. Section 4 presents our results and section 5 concludes.

2 Related literature

2.1 Small price effect in financial markets

While deemed irrelevant by standard finance theory, the role of nominal prices in the

determination of future returns is a long-standing debate in finance. The debate may

be traced back to Fritzemeier (1936) who showed that small price stocks fluctuate more

than large price stocks. He also found an asymmetry in price reactions of small price

stocks. Small price stocks rose more than large price stocks in bullish markets but the

magnitude of the decrease was smaller in bearish markets. The study was performed over

the years 1926-1934, thus including the period of the great depression. Fifteen years later,

Clendenin (1951) challenged Fritzemeier’s result and argued that the result was an artifact.

When controlling for the quality of stocks (measured by the Fitch rating at that time),

the small price effect disappeared. In other words, differences in returns were justified by

differences in risk, a result which is in line with finance theory in the fifties. Pinches and

Simon (1972) used a more sophisticated approach to test the relationship between price
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level and future returns. They compared a buy-and-hold strategy to a fixed proportion

or reallocation strategy with penny stocks (initially priced less than 5$). They show that

the two strategies generate significantly different results, therefore showing a small price

effect.

The more recent literature confirms the existence of this peculiarity of small price

stocks. Green and Hwang (2009) demonstrate that small (large) price stocks comove

more together, than with large (small) price stocks, a result confirmed by Kumar et al.

(2016). The interpretation provided by Green and Hwang (2009) is that investors think

that low price stocks have “more room to grow” than large price stocks. Kumar et al.

(2016) have a slightly different interpretation, which is linked to the propensity of retail

investors to gamble. The two interpretations refer more or less explicitly to the preference

of retail investors for positive skewness. Kumar et al. (2016) use the LIDX index (Kumar,

2009) which combines the three characteristics of a lottery-like stock: a low price, a high

variance of return and a high positive skewness. The second feature (high variance) is a

by-product of the third one (high skewness) because what is attractive in lottery tickets is

the existence of a large and unlikely jackpot. So positive skewness is the crucial point, not

the high variance induced by the existence of the jackpot. As a consequence, a start-up

stock is attractive because of the unlikely possibility that the firm could be the next Google

or Amazon. Several papers show that investors with a taste for gambling trade more in

lottery-like stocks and influence prices (Kumar et al., 2011; Dorn and Sengmueller, 2009;

Grinblatt and Keloharju, 2001). Birru and Wang (2016), in a paper titled “Nominal price

illusion”, conclude that small price stocks are overpriced because investors overestimate

the positive skewness of their returns.

2.2 Number processing

The ability of humans to process numbers is deeply rooted and precedes the acquisition of

mathematical language and culture. The human brain is endowed with an innate mech-

anism to process quantities (which we share with many species). Animals, human babies

and human adults all possess an intuitive number sense (often referred to as the Approxi-

mate Number Sense (ANS)).4 This non-symbolic representation of numbers takes the form

4See Gallistel and Gelman (1992); Pepperberg (2006); Agrillo et al. (2008, 2009); Nieder and Dehaene
(2009); Garland et al. (2012); Perdue et al. (2012); Mehlis et al. (2015) for studies on animals and Xu
and Spelke (2000); Lipton and Spelke (2003); Xu et al. (2005); Izard et al. (2009); Libertus and Brannon
(2009, 2010); Hyde and Spelke (2011) for studies on babies.
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of a mental number line and follows Weber’s law. Weber’s law is a psychological law that

quantifies the perception of change in a given stimulus. This law states that for a change

in stimulus to be noticed, the magnitude of the change must be proportional to the mag-

nitude of the original stimulus. Weber’s law implies two behavioral responses. First, when

ranking quantities, the reaction time and the error rate is a decreasing function of the

difference between the two numbers. It is faster to distinguish two distant numerosities5,

such as 60 and 80 than two closer numbers such as 61 and 62 (Moyer and Landauer,

1967). This is called the distance effect. Second, when the distance between two num-

bers remains the same, it is easier and quicker to compare two small numbers than two

larger numbers. For instance, it is easier to discriminate 25 dots from 20 dots than to

discriminate 75 dots from 70 dots. This is called the size (or magnitude) effect. It follows

that numerosities are processed by the human brain on a logarithmic scale (Nieder, 2005).

The use of symbolic number representations, i.e., Arabic numerals and number words,

distinguishes human adults from animals and babies. Starting with an intuitive number

sense, children progressively acquire formal mathematical education (Siegler and Opfer,

2003; Laski and Siegler, 2007). As the result of a better understanding of numbers, the

logarithmic scale progressively gives way to a linear mapping of numbers onto the mental

number line. However, while the use of a symbolic representation of numbers helps to bet-

ter discriminate between different quantities, research in neuroscience suggests that the

processing of numbers is deeply rooted in the ANS.6 As a result, the linear scale and the

logarithmic scale have been found to coexist (Dehaene et al., 2008; Lourenco and Longo,

2009; Viarouge et al., 2010; Núñez et al., 2011; Anobile et al., 2012; Dotan and Dehaene,

2013), small numbers being processed on a linear scale and large numbers on a logarithmic

scale.

5The word “numerosity”is generally used in this literature to refer to non-symbolic representations
(dots for instance)

6Recently, there has been increased interest in the link between the ANS and the performance in sym-
bolic mathematics . Several studies report a positive correlation between ANS precision and mathematical
abilities both for infants (Halberda and Feigenson, 2008; Mundy and Gilmore, 2009; Gilmore et al., 2010;
Libertus et al., 2011; Mazzocco et al., 2011; Libertus et al., 2013; Starr et al., 2013; van Marle et al., 2014;
Pinheiro-Chagas et al., 2014; Geary et al., 2015; Keller and Libertus, 2015; Chu et al., 2015; Soto-Calvo
et al., 2015) and adults (DeWind and Brannon, 2012; Agrillo et al., 2013; Halberda et al., 2012; Libertus
et al., 2012; Lourenco et al., 2012).
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3 Experimental design

3.1 Experimental implementation

The experiment was conducted at the LEEM, the computerized laboratory of the Univer-

sity of Montpellier, with the software z-Tree (Fischbacher, 2007). We ran eight sessions

involving a total of 72 participants, randomly selected from a subject pool containing over

5,000 volunteers from the University of Montpellier.7 No participant took part in more

than one session.

At first, participants earned money by completing a real effort task (in order to mitigate

the house money effect). They were informed that they would not be allowed to participate

in the subsequent parts of the experiment if they were unable to successfully complete the

real effort task (in which case they would be compensated with the show up fee). After

completion of this preliminary task, participants were awarded 30 Euros. The Euros were

then converted, for the second part of the experiment, into units of asset and experimental

currency.8 The real effort task lasted 15 minutes and consisted of a series of counting

exercises. Here, participants had to count the number of “ones”contained in a sequence of

matrices of various sizes whose cells contained either 0 or 1.

At the beginning of the second part of the experiment, participants were briefed using

written instructions which were followed by one trial period. Each participant was assigned

to a group of nine traders.9 The subjects were only informed that they would participate

in two consecutive markets. They were not told about the specifics of the second market

until the end of the first market.

7We selected only students who are comfortable in mathematics (undergraduate third year students
of Mathematics, Medicine, Physics, Biology and the School of Engineering, and Master’s Degree students
in Economics, Computer Science and Pharmacology) in order to prevent our results from being caused
simply by participants’ difficulties in manipulating numbers.

8All participants successfully completed the real effort task.
9Other participants were assigned to a different role (analyst) where they could only observe the

market data without being able to intervene. Results from the analysts are available in a companion
paper. Traders did not see analysts’ forecasts and did not communicate with analysts.
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3.2 Market architecture

In a given session, traders participated in two consecutive continuous double auction mar-

kets. Each market consisted of ten periods of 120 seconds each. Traders could place as

many buy and sell orders as they wanted provided they held enough units of experimental

currency to buy or enough units of assets to sell. The experimental currency used in the

experiment was called ECU. The appendix provides an excerpt of the user-guide explain-

ing how to submit a buy or a sell order and how to realize a transaction. Short-selling and

borrowing were not allowed. Within a given market, holdings of experimental currency

and assets were carried over from one period to the next. The order book was visible to all

traders at any time. Realized transactions were displayed on each trader’s screen as and

when they were executed. After each period, the software computed the current value of

each trader’s portfolio as follows: Current value of portfolio = available ECUs + (units of

asset × closing price), where the closing price is the last transaction price of the asset in

the current period (screenshots and instructions can be found in the appendix).

3.3 Traded asset

The traded asset has a finite life of ten periods. After each period of trading, a number is

randomly drawn from a uniform distribution with five outcomes and displayed to all partic-

ipants, as the current cash-flow. The set of potential cash-flows is {0.0, 0.3, 0.6, 0.9 , 1.2}
in the small price treatment, and {0.0, 3.6, 7.2, 10.8, 14.4} in the large price treatment.

The traded asset does not pay any dividend but is repurchased by the experimenter at

its redemption value at the end of the market. The instructions made it clear that the

redemption value would be equal to the sum of the ten cash-flows. The cash-flows, while

randomly drawn from a uniform distribution, are pre-determined. Panel A of Table 1

provides the four different sequences of cash-flows. Note that sequences S3 and S4 are

“mirrored”versions of sequences S1 and S2 (with respect to the unconditional fundamen-

tal value). Stöckl et al. (2015) underline that the general trend of the FV process may

influence mispricing. Gillette et al. (1999) and Kirchler (2009) show that markets with

predominantly decreasing (increasing) FV tend to exhibit overvaluation (undervaluation).

We follow Stöckl et al. (2015) in using sequences S1 and S2 in the four first sessions and

their mirrored counterparts S3 and S4 in the following four sessions.

Since we opted for a within-participant design, each session involved two consecutive
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treatments: a small price treatment and a large price treatment. Half of the sessions

started with the small price treatment and the other half with the large price treatment.

In the large price treatment, the expected fundamental value of the asset is scaled up by

12 compared to the small price treatment.10

3.4 Endowments

At the beginning of each market, traders were endowed with heterogeneous portfolios

consisting of several units of asset and some amount of experimental currency (ECU).

There were three different types of portfolios. A portfolio of a given type was allocated to

three participants. The existence of different portfolio types was common knowledge. As

a result, participants were able to calculate the total number of outstanding units of the

risky asset (i.e., 54). However, participants did not know the exact allocation of portfolios.

Details about portfolio composition and cash-flow processes are provided in Table 1. We

ensured that participants did not get the same endowments in the two markets in order

for them to fully understand that the asset traded in the second market was different from

the asset traded in the first market. In large price markets, the FV is 12 times the one

in small price markets. The balance between the total value of cash at the start and the

total asset value has an impact on subsequent asset prices (Caginalp et al., 1998, 2001).

To avoid this effect, we multiply the available units of experimental currency by 12 in the

large price market in order to keep the cash/asset ratio constant.

3.5 Earnings

Participants were informed that only one of the two consecutive markets would be ran-

domly selected at the end to be paid out in real currency. Experimental currency accu-

mulated during this market (including the redemption value of the asset) was converted

into Euros to calculate the earnings for the session. The payment rule is:

Payment (in Euros) =
Individual portfolio terminal value (in ECUs)

Sum of the 9 individual portfolio terminal values (in ECUs)
× 270

(1)

10The purpose of choosing a scaling factor of 12 (visible in the cash-flow vectors), an integer that is not
a round number, is to prevent participants from perceiving immediately that the second market is simply
a scaled version of the first market.
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The total endowment of the group of nine traders (30 × 9) was reallocated according to

the relative performance of each trader. Note that this method is incentive compatible

if participants try to maximize the value of their portfolio and is independent of the

magnitude of asset prices. The exchange rate thus depended on the type of market that

was randomly selected. If the small price market was selected, the exchange rate was 3.33

ECUs for 1 Euro. It was 40 ECUs for 1 Euro if the large price market was selected.

Available experimental evidence suggests that the exchange rate from experimental

currency to real currency has mixed effects. Experiments about altruistic (Mazar et al.,

2008; Reinstein and Riener, 2012) behavior found a tendency to behave more altruistically

and to cheat more when decision outcomes are labeled as experimental currency units.

These findings suggest that the use of artificial currencies tends to discount the moral

cost of deviating from pro-social behavior. However available evidence about bidding

behavior in second-price auctions (Drichoutis et al., 2015) does not reveal any difference

in mispricing between real and experimental, suggesting that the conversion rate effects

are specific to experiments involving actions with a moral dimension. Nevertheless, more

evidence about the effects of conversion rates between experimental and real currencies

seems warranted.

4 Results

4.1 Univariate analysis

Figure 1 reports the evolution of individual market prices (gray lines with circles and

squares) and of the FVs (bold line). In sessions 1,3,5 and 7 (respectively 2, 4, 6 and 8),

the first market is a small (large) price market. In the eight sessions shown in Figure 1,

mean prices tend to be higher than the fundamental values in most periods. Mean prices

appear to deviate more from the FV in small price markets than in large price markets. A

specific pattern in prices appears at the beginning of the second markets. When the second

market is a large price market, mean prices are much lower than the FV in the first couple

of periods. On the contrary, when the second market is a small price market, mean prices

of the first periods greatly exceed the FV. In all but one session, traders underreact to the

change of the cash-flow regime. Traders appear to anchor on the last period prices of the

first market. It takes about two periods for some traders to fully assimilate the change of
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the cash-flow regime.11 This feature is consistent with the results of Duclos (2015) who

finds that the last closing price has a disproportionate influence on investment behavior,

a phenomenon he calls end-anchoring.

We follow Stöckl et al. (2010) in measuring the magnitude of the deviations of prices

from the FV by calculating the Relative Absolute Deviation (RAD) and the Relative

Deviation (RD).12 Table 2 reports averages for RAD and RD for small and large price

markets. Figure 2 displays the empirical cumulative distribution function (ECDF) for

these two measures and provides p-values from Mann-Whitney U tests for difference in

averages between small price markets and large price markets.

The results in Table 2 indicate that small price markets exhibit greater mispricing

(mainly greater overpricing) than large price markets. When all markets are pooled to-

gether (i.e., at the aggregate level), RAD is higher in small price markets (32.58%) than in

large price markets (18.75%). Similar results are obtained for RD. RD is 20.90% for small

price markets compared to -1.44% in large price markets. The empirical distributions in

Figure 2 confirm that traders deviate more from the FV in small price markets. For both

RAD and RD, the ECDF of large price markets (solid black line) is systematically on the

left of the ECDF of small price markets (gray dashed line). Reported Mann-Whitney U

tests, indicate that the differences in RAD and RD between small price markets and large

price markets are significant. The study of first markets and second markets separately,

yields the same conclusion: small price markets exhibit less efficient pricing than large

price markets. However, the difference in RAD (and RD) is greater for second markets.

This increased difference is particularly striking for RD and can be explained by traders’

underreaction to the change of cash-flow regime. Indeed, when the second market is a

11We ensured that participants understood that the asset traded in a second market was a different
asset from the one in the first market. Specifically, the instructions given at the beginning of the second
market clearly indicated that while the mechanism of the second market was identical to the one of the
first market, the cash-flows and the initial portfolios were different. As a result, it is more likely that what
we observe at the beginning of the second market is caused by anchoring rather than by money illusion
(Fehr and Tyran, 2001, 2007; Noussair et al., 2012). In addition, during experiments on money illusion,
the underreaction following the nominal shock is long-lasting and asymmetric while, in our experiment,
we have a symmetric and short-lived reaction.

12For transaction i in market m in period p, RAD and RD are defined as

RADm
i,p =

∣∣Pm
i,p − FV m

p

∣∣
FV

m and RDm
i,p =

Pm
i,p − FV m

p

FV
m . (2)

where Pm
i,p is the price of transaction i in market m in period p, FV m

p is the fundamental value in period

p of market m and FV
m

is the average fundamental value for market m.
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large price market, traders’ anchor on the first market’s prices (that is, small prices). We,

thus, observe a negative deviation of prices from the FV. On the contrary, when the sec-

ond market is a small price market, the first transactions occur at large prices, generating

positive deviations. While the mispricing in second markets may be explained in part by

underreaction, our results on first markets do not suffer from the same issue and provide

an ideal setup for a between-participants analysis.

While the underreaction, which takes place at the beginning of the second market, is

of concern to us, we want to take advantage of our within-participant design. Indeed, in

our experiment, each of the 72 traders was involved in two markets, a small price market

and a large price market. Thus, for each trader, the paired observations for RAD and RD

allow us to test whether there are significant differences between the two markets. The

within-participant design allows us to neutralize individual differences in deviations from

the FV. Table 3 reports the results of our paired difference test. A Wilcoxon signed-rank

test indicates that both RAD and RD are significantly larger (at a 1% significance level)

for small price markets compared to large price markets. The difference is about 18% for

RAD and 27% for RD. We consider the influence of the initial underreaction in second

markets and test whether our results are robust when excluding the first period and the

two first periods of each market. The difference in RAD and RD between small price

markets and large price markets decreases but remains large and significant. Thus, the

observed difference in RAD and RD between small price and large price markets, is not a

by-product of an underreaction to the change in the cash-flow process.

4.2 Multivariate analysis

To investigate further the small price bias, we conduct a multivariate analysis. Table 4

reports the results of regressions of RAD (Panel A) and RD (Panel B) on our treatment

dummy (i.e., a small price dummy) and different control variables. In all specifications,

we include our treatment dummy, a dummy variable that is equal to one if the transaction

takes place during the second market and 0 otherwise, the period number, the transaction

number within a period, and a dummy for the cash-flow sequence type (a value of 0

corresponds to sequence S1 followed by sequence S2 – in the first four sessions – and a

value of 1 corresponds to S3 followed by S4 – in the next four sessions). In specification

(1), we consider all transactions. Specification (2) is the same specification as (1) but we

cluster standard errors at the order initiator level. In specification (3), we cluster standard
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errors at the session level. In specification (4), we remove trades that took place in the first

period to account for the initial underreaction in second markets. Finally, specification

(5) considers only transactions that take place in first markets.

Our treatment dummy, the small price dummy, is positive and strongly significant at

the 1% significance level in all specifications. The t-stat is larger than 10 in the baseline

specification for RAD and greater than 4 for RD. In fact, for RAD (RD), the regression

coefficient of the small price dummy is 0.2952 (0.1042) with a corresponding standard error

of 0.021(0.027). Across specifications, the minimum value of the regression coefficient is

0.1921 for RAD and 0.0600 for RD when only first markets are considered. Overall, the

regression results indicate that traders exhibit greater overvaluation in small price markets

than in large price markets.

5 Conclusion

This paper investigates the impact of price magnitude on trading prices observed on exper-

imental markets. We show the existence of a small price effect. Prices deviate more from

fundamental values in small price markets compared to large price markets. On a small

(large) price market with an unconditional fundamental value of 6 (72), RD is 20.90%

(-1.44%). This result is in line with recent empirical literature in finance and accounting,

showing that market participants behave differently when trading small price and large

price assets. Our within participant design allows us to argue that the main reason for

the difference between markets is the co-existence of two mental scales, a linear one for

small numbers and a logarithmic one for large numbers. We are able to measure between-

participants and within-participants effects of price magnitude. In the within-participants

analysis, we find that the average participant trades in small price markets at an average

deviation from the fundamental value, which is approximately 27 percentage points larger

than the corresponding deviation in the large price market. The result is striking since

the two types of markets are identical, except that we scaled up the FV and cash holdings

by a factor of 12.

Our results make significant contributions in different domains. First, we show that

the price magnitude is not a neutral choice in experimental studies; bubbles are larger

in small price markets, a result that has not been shown before. Our findings underline

a potential impact of the conversion rate from experimental currency to real currency.
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Second, our paper contributes to the finance literature since the controlled environment

of our experiments puts into perspective the traditional explanations for the small price

effect, such as the lottery features of small price stocks or investors’ mistakes in estimating

the skewness of future returns. Finally, our paper also contributes to the literature on the

perception of numbers. To the best of our knowledge, the literature in neuropsychology

does not consider numbers in the context of financial markets. Our paper shows that the

peculiarity of small numbers can also be found in an economic environment.
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Appendix – Instructions to participants (translated

from French)13

I. Sequence 1

At this stage, you own the 30 Euros that you won in part 1. During part 2, you will use

your 30 Euros to participate in experimental markets, in which you can make gains or

losses. If you make gains they will be added to your 30 Euros and if you make losses, they

will be deducted from your 30 Euros. Details about the calculation of your final gains

(losses) are provided at the end of the instructions.

You will participate in two consecutive experimental markets in which you will be able

to make transactions by buying and selling assets. All transactions are realized in Ecus.

After reading the instructions, you will be invited to answer a brief questionnaire in order

to assess your understanding of the tasks. Then, you will participate in a practice round

to be trained with the transaction software. Eventual gains or losses during the practice

round will not be counted in your final balance.

After the practice round...

Generalities

There are nine participants in the session.

1. Duration of a market and random draws

You will be involved in two consecutive markets. Each market consists of a sequence

of 10 periods. Each period lasts two minutes during which you are able to make

transactions. At the end of the session, only one of the two markets will be randomly

selected to be paid in Euros. Your score for this market will be converted into Euros

according to a conversion rule that will be given at the end of the instructions. The

computer program will post your final score for the selected market.

The remainder of these instructions applies only to market 1. Once market 1 is

closed you will receive new instructions, specific to market 2.

13These instructions correspond to a session starting by a small price market
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2. Portfolios

Before the market opens, each trader receives a portfolio containing a number of

units of asset and an amount of Ecus. A total of 54 units of asset can be traded in

the market.

There are three types of portfolios, noted P1, P2 and P3. They differ by the number

of units of asset and the amount of Ecus. A portfolio that contains more units of

asset contains less Ecus, and vice versa, a portfolio that contains more Ecus contains

less units of asset. The division of these portfolios among the traders is the following:

three traders will get P1, three other traders P2 and the remaining three get P3.

The assignment of a portfolio to a trader is made on a random basis. Each trader

will be the only one to know exactly his portfolio.

3. Lifetime of assets and redemption value

In each period, traders can buy and sell units of asset. Each unit has a lifetime of

10 periods. After each period, the computer program selects randomly the cash-flow

(in Ecu) attached to each unit of asset (see below the determination of cash-flows).

At the end of the 10 periods, the market closes. All units of asset held by a trader

are bought back by the experimenter at the same unit price for all traders, called

the redemption value. The redemption value is equal to the sum of the 10 cash-flows

randomly drawn during the market.

4. Cash-flows

Five cash-flow values (in Ecus) can occur, {0; 0.3; 0.6; 0.9; 1.2}. At the end of each

period, the computer randomly selects the value of the cash-flow for the period. Each

of the five possible values is equally likely, i.e. one chance out of five. The selected

cash-flow is posted on participants’ screens and is identical for all units of asset. The

computer screen also displays the sum of the cash-flows revealed since the beginning

of the market. Note that the selected cash-flow in any given period is not distributed

to the asset owners. Therefore, it does not affect the amount of Ecus available in

the traders’ portfolios. Cash-flows are only used to determine the redemption value

of each unit of asset at the end of period 10. As mentioned before, this redemption

value is equal to the sum of all cash-flows revealed over the 10 periods.

Example 1 Consider the following sequence of cash-flows:

The redemption value of each unit of asset is equal to the sum of the cash-flows over

the 10 periods: 0.3 + 0.0 + 0.9 + 0.9 + . . . + 1.2 + 0.6 = 6.0 Ecus. In this example,
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Period 1 2 3 4 5 6 7 8 9 10

Cash-flow 0.3 0.0 0.9 0.9 0.6 0.3 0.3 0.9 1.2 0.6

Cumulated cash-flow 0.3 0.3 1.2 2.1 2.7 3.0 3.3 4.2 5.4 6.0

each unit of asset would be bought back by the experimenter at a price of 6 ecus at

the end of period 10.

5. Carrying over portfolios

The portfolio of each trader is carried over from one period to the next without

changing its content.

Example 2

At the end of period 5, a trader’s portfolio contains 5 units of asset and 67 Ecus. At

the beginning of period 6 the composition of his portfolio will be identical: 5 units of

asset and 67 Ecus.

6. Losses and profits

The value of a portfolio can change from one period to the next, even if its com-

position is unchanged because the value of a portfolio depends on the price of the

asset.

Example 3

At the end of period 7, your portfolio contains 80 Ecus and 3 units of asset. The

last traded price was 7.2 Ecus. At the beginning of period 8, the value of each unit

of asset is equal to 7.2 Ecus and the value of your portfolio is equal to 80 + (3×7.2)

= 101.6 Ecus. At the end of period 8, the asset price is equal to 7.6 Ecus. If you

did not trade during period 8, the value of your portfolio is equal to 80 + (3×7.6) =

102.8 Ecus, that is an increase of 1.2 Ecus corresponding to 3× (7, 6− 7, 2) = 1.2

Ecus.

Example 4

At the end of period 7, your portfolio contains 80 Ecus and 3 units of asset. The

last traded price was 7.2 Ecus. At the beginning of period 8, the value of each unit

of asset is equal to 7.2 Ecus and the value of your portfolio is equal to 80 + (3×7.2)

= 101.6 Ecus. At the end of period 8, the asset price is equal to 5.7 Ecus. If you

did not trade during period 8, the value of your portfolio is equal to 80 + (3 × 5.7)
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= 97.1 Ecus, that is a decrease of 4.5 Ecus corresponding to 3× (5.7− 7.2) = −4.5

Ecus.

7. Conditions for transactions

In any given period, a trader cannot sell more units than he owns in his portfolio.

Equivalently, a trader cannot buy a unit of asset if he does not own the corresponding

amount of Ecus.

8. Earnings

At the end of the experiment, one of the two markets (market 1 or market 2) will

be randomly selected for the payment, in Euros, of all traders. The conversion rule

from ECUs to Euros in the selected market is detailed below.

Conversion rule

The total payment for the nine traders is 30 × 9 = 270e (this corresponds to the

total amount obtained by all the traders at the end of part 1 of the experiment).

Your gain depends on the return of your own portfolio during the 10 periods and on

the returns of other traders’ portfolios. Specifically, your gain in Euros is calculated

as follows:

Payment in e = 270× Terminal value of your portfolio

Sum of the terminal values of the portfolios of the 9 traders

II. Sequence 2

The instructions below are specific to market 2. The group of traders remain the same as

in market 1 and the functioning of market 2 is identical to market 1, with two exceptions:

– new portfolios will be assigned to traders

– cash-flow values are different

Changes are detailed below.

Generalities

1. Portfolios
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As for market 1, the total number of available units of asset in market 2 is equal to

54. In market 2, new starting portfolios will be assigned to the traders, noted P4,

P5 and P6. As in market 1, 3 traders will receive P4, 3 other traders will receive P5

and the 3 remaining traders will receive portfolio P6. The assignment will be made

on a random basis. Each trader will be the only one to know exactly his portfolio.

2. Cash-flows

In market 2, five cash-flow values can occur : {0, 3.6, 7.2, 10.8, 14.4}. Each of the

five possible values is equally likely, i.e. each one has one chance out of five to

be drawn. At the end of each period, the selected cash-flow will be posted on all

participants’ screens, as well as the sum of the realized cash-flows since the beginning

of the market. The selected cash-flow in any given period is not distributed to asset

owners and, therefore, does not affect the amount of Ecus available to a trader. The

cash-flows are only used to determine the redemption value of each unit of asset at

the end of period 10. This redemption value is equal to the sum of all cash-flows

revealed over the 10 periods.

Example 1

The sequence of cash-flows for market 2 is as follows:

Period 1 2 3 4 5 6 7 8 9 10

Cash-flow 3.6 0 10.8 10.8 7.2 3.6 3.6 10.8 14.4 7.2

Cumulated cash-flow 3.6 3.6 14.4 25.2 32.4 36 39.6 50.4 64.8 72

The redemption value in this example is equal to: 3.6+0+10.8+10.8+. . .+14.4+7.2 =

72 Ecus. Each unit of asset held by a trader at the end of the 10 periods is bought

back by the experimenter at a price of 72 Ecus.

3. Rules of market 2

The rules of market 2 are identical to those of market 1. As for market 1, market 2

is divided into 10 periods. Each period lasts 2 minutes. Traders will therefore have

20 minutes for realizing their transactions. Remember that at the end of part 2, one

of the two markets (market 1 or market 2) will be randomly selected to be paid for

real. The computer will calculate your earnings for the selected market.
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III. User-guide for the software

Transaction screen

In each period a screen similar to the one above will be displayed on your computer. Dif-

ferent information appears on this screen. For ease of description, information is grouped

into 4 areas. Zone 3 is the main zone, it will allow you to follow the evolution of transac-

tions and traders to make purchases or sales. Block 3.1 allows traders to make purchase

and sale offers. Block 3.2 contains the order book. This is the display area for all offers

to buy and sell. Each trader will be able to easily identify his own sales and purchase

offers: they will appear in blue color while the other offers will be displayed in black. Note

that the contents of the order book are visible to all.

Issuing bids and asks

Each trader can submit an ask (sale offer) for a unit of asset that he wishes to sell or a

bid (purchase offer) for a unit of asset that he wishes to acquire. The bids and asks are

displayed in the order book. The order book has two columns: a column which contains

the list of bids (left column) and a column which contains the list of asks (right column).

In each period the lists are updated as new offers are made and transactions are made.

This is illustrated in the example below. (several examples (not reported) illustrate how

the order book is updated (1) following new incoming bids , (2) following new incoming

asks, (3) following the acceptance of a bid and (4) following the acceptance of an ask).
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Zone 1

On the left hand side the number of the current period is displayed. The right hand side

shows the remaining time (in seconds) in the current period.

Zone 2

Zone 2 has two blocks: Block 2.1 entitled “Information on securities”, reminds you of

the possible values for the cash flows of the period, and the corresponding probabilities.

Note that the information of this block is common to all members of the group. Block

2.2 entitled “Contents of your portfolio”is specific to each trader and visible only to him.

It shows to each trader the composition of his portfolio for the current period: the number

of units of asset, the amount of cash and the current value of his portfolio in Ecus (during

the experiment this value starts to be displayed at the end of period 1).

Zone 3

Zone 3 on your screen corresponds to the transaction area. Block 3.1 allows traders to

make bids and asks Block 3.2 corresponds to the order book. This is the display area of

all bids and asks. Each trader will be able to easily identify his own bids and asks: they

will appear in blue color while the other offers will be displayed in black. Note that the

contents of the order book are visible to all (traders and analysts).

Important notes: The bids are ranked in descending order: the highest bid will

always be at the top of the list. This is the bid that is most likely to be accepted by

another trader. Selling offers are ranked in ascending order: the lowest offer will always be

at the top of the list. This is the bid that is most likely to be accepted by another trader.

Zone 4

As transactions are made during the period, the price of each transaction is displayed in

the order of execution in the “Realized Prices”panel. The time in seconds is displayed in

the column “Time (seconds)”and the order of completion is displayed in the “Order of

completion”column. Note that the Zone 4 chart is visible by all members of the group.
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Figure 1
Fundamental value (bold line) and mean prices for individual markets (gray lines with circles and
squares). The x-axis represents the different periods.
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Figure 2
Distributions of RADp,t and RDp,t for large price markets (solid black lines) and small price
markets (dashed gray lines). Empirical cumulative distribution functions are represented for (1)
the aggregate level; (2) first markets; and, (3) second markets. Reported p-values are associated
with Mann-Whitney U tests between small price markets and large price markets.
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Table 1
Panel A gives the basic sequences of cash-flows used in the experiment. The cash-flows real-
izations used in the experiment are randomly generated but determined in advance to ensure
comparability. Sequences S3 and S4 are obtained by “mirroring ”(at the unconditional expected
value of 6) sequences S1 and S2. For large price markets, the sequences are scaled up by 12. The
first (second) line of Panel B gives the number of units of asset (cash) in the different portfolios.
Portfolios P1 to P3 (P4 to P6) correspond to the small (large) price markets. Quantities are
determined to have a theoretical portfolio value in large price markets equal to 12 times the
theoretical portfolio value in small price markets.

Panel A: Time series of cash-flows

Periods 1 2 3 4 5 6 7 8 9 10

Basic sequence 1 (S1) 0.6 0.3 0.6 0.9 0.6 1.2 0.9 0.3 0.0 0.6

Basic sequence 2 (S2) 0.9 0.6 0.6 0.6 0.6 1.2 0.9 0.0 0.3 0.6

Mirrored sequence 1 (S3) 0.6 0.9 0.6 0.3 0.6 0 0.3 0.9 1.2 0.6

Mirrored sequence 2 (S4) 0.3 0.6 0.6 0.6 0.6 0 0.3 1.2 0.9 0.6

Panel B: Portfolio composition

Small price market Large price market

Portfolios P1 P2 P3 P4 P5 P6

Units of asset 3 6 9 3 6 9

Amount of experimental
currency (ECU)

82 64 46 984 768 552

Table 2
Averages for RAD and RD. At the aggregate level, all markets are pooled together (8 sessions
× 2 markets). First markets (Second markets) correspond to the first (second) market of each
session (8 markets). Small to large (Large to small) corresponds to the four sessions which starts
by a small (large) price market.

Relative absolute deviation (RAD) Relative deviation (RD)

Small price markets Large price markets Small price markets Large price markets

Aggregate level 0.3258 0.1875 0.2090 −0.0144

First markets 0.2344 0.1750 0.1744 0.0535

Second markets 0.4935 0.1968 0.2725 −0.0645

Small to large 0.2344 0.1968 0.1744 −0.0645

Large to small 0.4935 0.1750 0.2725 0.0535
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Table 3
Within-participants: Paired observations for RAD and RD

All periods Without first period Without two first periods

RAD RD RAD RD RAD RD

Small price markets 0.3926 0.2671 0.3201 0.1919 0.2836 0.1422

Large price markets 0.2087 −0.0078 0.1896 0.0321 0.1856 0.0513

Difference 0.1838*** 0.2749*** 0.1305*** 0.1598*** 0.0980*** 0.0909***

(5.1970) (6.7039) (5.3343) (5.3050) (5.1389) (3.7877)

This table presents the within-traders comparison between small price markets and large
price markets. For each trader and each market, we compute the average of RAD (and
RD). Statistical significance is assessed with a Wilcoxon signed-rank test. z -statistics are
reported in parentheses. ***/**/* correspond to 1%/5%/10% significance levels.
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Table A1
Summary of the experiment

Type of market Cash-flow sequence Average FV Average RAD Average RD

Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2

Session 1 Small price Large price S1 S2 6.15 77.40 0.1661 0.1288 0.1425 −0.0237

Session 2 Large price Small price S1 S2 73.80 6.45 0.0743 0.2255 0.0103 0.2085

Session 3 Small price Large price S1 S2 6.15 77.40 0.0505 0.1542 0.0358 −0.1464

Session 4 Large price Small price S1 S2 73.80 6.45 0.1510 0.5004 0.1461 0.2985

Session 5 Small price Large price S3 S4 5.85 66.60 0.3395 0.2615 0.3395 0.0032

Session 6 Large price Small price S3 S4 70.20 5.55 0.1952 0.4198 −0.0209 0.2187

Session 7 Small price Large price S3 S4 5.85 66.60 0.3661 0.1491 0.3661 0.0523

Session 8 Large price Small price S3 S4 70.20 5.55 0.1105 0.0764 0.1055 0.0560

Our experiments consists of 8 sessions. Each session contains one small price market and
one large price market. Cash-flow sequences are determined in Table 1.
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