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This paper deals with the sampled-data control problem based on state estimation for uncertain linear sampled-data systems. It is possible to show that the sampled-data control problem based on state estimation may be related with the conditions for the exponential stability of impulsive systems. Thus, a vector Lyapunov function-based approach, derived by means of a 2D time domain equivalence, is used for obtaining stability conditions of an impulsive system, and then, a solution to the observer-based control design problem is derived and expressed in terms of LMIs. Some examples illustrate the feasibility of the proposed approach.

Introduction

In the last decades, an enormous interest has appeared in the design of controllers and observers for continuous and/or discrete dynamical systems with communication constraints. This interest has its motivations in systems with sampled-data control, quantization and more generally, in networked control systems. However, all the communications constraints, i.e. delays, sampling intervals, quantization, packet dropouts, and so on (for details, see [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]); imply additional difficulties in the analysis and design compared to the classical control systems. Regarding the observer design problem, one of the main issues is the scheduling: only a subset of sensors is allowed to send their data to the observer at the transmission instants. The sporadic and partial availability of system measurements requires the development of appropriate observer designs. Moreover, for controller design, it would be unreasonable to assume that all states are measurable. Therefore an observer-based control approach is needed.

In this paper the observer-based control problem will be in the focus for sampled-data systems. Several methods have been developed to study sampled-data systems, e.g. the Input/Output stability approach [START_REF] Fujioka | Stability analysis of systems with aperiodic sample-and-hold devices[END_REF], the discretetime approach [START_REF] Fujioka | A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices[END_REF], but two approaches stand out: the input delay approach, where the system is modeled as a continuous system with a delay in the control input (see, e.g. [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF][START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF]), and the impulsive system approach, where the sampled-data system is treated as an impulsive system (see, e.g. [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF][START_REF] Briat | Convex dwell-time characterizations for uncertain linear impulsive systems[END_REF][START_REF] Briat | A looped-functional approach for robust stability of linear impulsive systems[END_REF][START_REF] Sivashankar | Characterization of the L 2 -induced norm for linear systems with jumps with applications to sampled-data systems[END_REF]).

The input delay approach has been applied in [START_REF] Fridman | Input/output delay approach to robust sampled-data H ∞ control[END_REF] to design a sampled-data output-feedback H ∞ control for linear systems while the impulsive system approach was applied in [START_REF] Hu | A LMI approach to robust H 2 sampled-data control for linear uncertain systems[END_REF] to sampled-data stabilization of linear uncertain systems in the case of constant sampling based on piecewise linear in time Lyapunov function. The case of variable sampling based on a discontinuous Lyapunov function method was introduced by [START_REF] Naghshtabrizi | Exponential stability of impulsive systems with application to uncertain sampled-data systems[END_REF]. Also based on discontinuous Lyapunov functions, in [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF] stability and stabilization conditions for periodic and aperiodic sampled-data systems are introduced.

In the context of observer design, one approach is based on continuous and discrete design. In [START_REF] Deza | High gain estimation for nonlinear systems[END_REF], such an approach is used to design a continuous-discrete version of the high-gain observer for nonlinear systems. In [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF] a continuous-discrete observer is proposed for linear and triangular Lipschitz systems based on a sampled-data nonlinear observer that is designed using a continuous-time approach together with an inter-sample output predictor. Applying a small gain approach, in [START_REF] Ahmed-Ali | Global exponential sampled-data observers for nonlinear systems with delayed measurements[END_REF] an observer design is proposed for certain classes of nonlinear systems with sampled and delayed measurements. A Luenberger-like observer is proposed by [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] for a class of continuous-time dynamical systems with non-uniformly sampled measurements. In [START_REF] Mazenc | Construction of interval observers for continuoustime systems with discrete measurements[END_REF], continuous-time systems with sampled uncertain output are considered and the state estimation problem is solved by means of continuous-discrete interval observers that are asymptotically stable in the absence of disturbances. In [START_REF] Mazenc | Design of continuousdiscrete observers for time-varying nonlinear systems[END_REF], based on the notion of cooperative systems, a design for continuous-discrete observers is proposed for continuous nonlinear time-varying systems with discrete-time measurements. Using the hybrid system approach, in [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF] an observer-protocol pair is designed to estimate the states of a linear system under communication constraints induced by the network. In the same vein, in [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF] an observer with jumps triggered by incoming measurements is proposed to deal with the state estimation problem for linear time-invariant systems for which measurements of the output are available sporadically. Adopting a switched observer structure, in [START_REF] Bauer | Decentralized observer-based control via networked communication[END_REF] decentralized observer-based output-feedback controllers are proposed for linear systems connected via a shared communication network.

In this paper a vector Lyapunov function-based approach [START_REF] Lakshmikantham | Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems[END_REF], derived by means of a 2D time domain equivalence (see, e.g. [START_REF] Rogers | Control Systems Theory and Applications for Linear Repetitive Processes[END_REF] and [START_REF] Yeganefar | Lyapunov theory for 2-d nonlinear roesser models: Application to asymptotic and exponential stability[END_REF]), for stability of impulsive systems is used for designing a robust output-feedback control for linear sampled-data systems. Such an approach, proposed in [START_REF] Ríos | Vector Lyapunov function based stability for a class of impulsive systems[END_REF] and [START_REF] Ríos | Nonlinear impulsive systems: 2d stability analysis approach[END_REF], provides a stability analysis based on linear matrix inequalities (LMIs) for linear impulsive dynamical systems. Then, it is possible to show that the sampled-data control problem based on state estimation may turn into one of finding conditions for the exponential stability of impulsive systems. Thus, the proposed vector Lyapunov function approach is applied for obtaining stability conditions of the impulsive system, and then, a solution to the robust output-feedback control design problem is obtained and expressed in terms of LMIs. To the best of our knowledge, the output-feedback control design for uncertain sampled-data system is open in the literature and there exist very few works dealing with such a problem. Moreover, it is worth highlighting that a direct application of the methods given in the literature, e.g. those ones from [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF], [START_REF] Briat | Convex dwell-time characterizations for uncertain linear impulsive systems[END_REF], or in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF], do not provide a constructive method to solve the robust output-feedback control design problem for uncertain linear sampled-data systems.

The outline of this work is as follows. A motivating problem is given in Section 2. Some stability results for impulsive systems are given in Section 3. The main result is described in Section 4. Some simulation results are depicted in Section 5 while some concluding remarks are discussed in Section 6. The corresponding proofs for the main results are postponed to the Appendix.

Motivation

Let us consider the following uncertain sampled-data system

ẋ(t) = Ax(t) + Bu(t) + f (x(t)), x(0) = x 0 , (1) 
y(t) = Cx(t i ), ∀t ∈ [t i , t i+1 ), (2) 
u(t) = K x(t i ), ∀t ∈ [t i , t i+1 ), (3) 
where x, x 0 ∈ R n are the state vector and the initial condition, respectively, u ∈ R m is the sampled control vector, and y ∈ R p is the sampled output vector at each time t i for all i ∈ N, and x ∈ R n represents an estimation of the system state x. The function f : R n → R n represents all the parameter uncertainties of the system satisfying |f (x)| 2 ≤ f 0 |x| 2 , i.e. the function f is Lipschitz. The constant matrices A, B, and C have corresponding dimensions while K is a design control matrix. The sampling instants t i are monotonously increasing, such that lim i→∞ t i = +∞, and

T i := t i+1 -t i ∈ [T min , T max ],
where T min > 0 and T max > 0 are the minimum and maximum sampling intervals, respectively; and t 0 = 0. The control u is designed by means of the following sampled-data state observer

ẋ(t) = Ax(t) + Bu(t) + L(y(t) -C x(t i )), ∀t ∈ [t i , t i+1 ), x(0) = x0 , (4) 
where x, x0 ∈ R n are the estimated state vector and its initial condition, and L ∈ R n×p is a design observer matrix. Define the state estimation error e(t) := x(t) -x(t). Then, the closed-loop and state estimation error dynamics are given as follows

ẋ(t) = Ax(t) + BKx(t i ) -BKe(t i ) + f (x(t)), ∀t ∈ [t i , t i+1 ), ė(t) = Ae(t) -LCe(t i ) + f (x(t)), ∀t ∈ [t i , t i+1 ).
Let us define the extended state vector ξ(t) := (x T (t) e T (t) x T (t i ) e T (t i )) T ∈ R 4n and the timer variable τ ∈ R ≥0 . Then, the above dynamics may be written as follows

d dt ξ τ = A ξ ξ + D ξ f 1 , ∀τ ∈ [0, T i ), i = 0, 1, 2, . . . , (ξ(0), τ (0)) = (ξ 0 , τ 0 ), (5) 
ξ + τ + = I ξ ξ 0 , ∀τ = T i , i = 0, 1, 2, . . . (6) 
where (ξ, τ ), (ξ 0 , τ 0 ) ∈ R 4n × [0, T i ] represents the current state vector and its initial condition, (ξ + , τ + ) ∈ R 4n × T i represents the reset state vector, T i ∈ [T min , T max ] is the sampling interval given for i = 0, 1, 2, . . ., and f ∈ R n denotes the uncertainty. The corresponding matrices have the following structure

A ξ =     A 0 BK -BK 0 A 0 -LC 0 0 0 0 0 0 0 0     , D ξ =     In In 0 0     , I ξ =     In 0 0 0 0 In 0 0 In 0 0 0 0 In 0 0     .
Note that in absence of uncertainties, i.e. f = 0, the set {(ξ, τ )| ξ = 0, τ ∈ [0, T i ]} is an equilibrium set of ( 5). The dynamics ( 5)-( 6) describes periodic/aperiodic time-triggered jumps, when τ = T i , governed by the map given by [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF], while between the jumps the system behaves according to [START_REF] Briat | A looped-functional approach for robust stability of linear impulsive systems[END_REF]. Note also that, due to the linearity of the system and the facts that f is Lipschitz and T i ∈ [T min , T max ], the existence of a unique forward solution is ensured.

Then, the sampled-data control problem based on state estimation, i.e. find the control gain matrix K and the observer gain matrix L, may turn into one of finding conditions for the stability of the impulsive system described by ( 5)- [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF], under arbitrary variations of the sampling intervals.

In the following sections such conditions for the stability of the impulsive system are derived by means of a 2D time domain equivalence and a vector Lyapunov function approach. Afterwards, these conditions will be applied to solve the sampled-data control problem based on state estimation. All the proofs are given in the Appendix.

Stability Analysis for Impulsive Systems

The stability analysis relies on the embedding of system ( 5)-( 6) into a 2D time domain. Indeed, the entire state trajectory (ξ, τ ) can be viewed as a sequence of the diagonal dynamics1 of the following 2D system:

d dt ξ t k τ t k = A ξ ξ t k + D ξ f 1 , ∀τ t k ∈ [0, T i ), ∀i = k = 0, 1, 2, . . . , (ξ(0, 0), τ (0, 0)) = (ξ 0 0 , τ 0 0 ), (7) 
ξ ti+1 k+1 τ ti+1 k+1 = I ξ ξ ti+1 k 0 , ∀τ t k = T i , ∀i = k = 0, 1, 2, . . . (8) 
where

(ξ t k , τ t k ) := (ξ(t, k), τ (t, k)), (ξ 0 0 , τ 0 0 ) ∈ R 4n × [0, T i ]
is the current state vector and its initial condition, (ξ

ti+1 k+1 , τ ti+1 k+1 ) := (ξ(t i+1 , k + 1), τ (t i+1 , k + 1)) ∈ R 4n × T i represents the reset state vector, while (ξ ti+1 k , τ ti+1 k ) := (ξ T (t i+1 , k), τ (t i+1 , k)) T ∈ R 4n × T i
denotes the value of (ξ, τ ) just before the jump k + 1. Taking into account that f is Lipschitz and T i ∈ [T min , T max ], the solutions of ( 7)-( 8) for the diagonal dynamics, i.e. for all i = k, correspond to the solutions of the system (5)- [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF]. Note that the discrete time k depicts the number of impulses in the system.

In the present section some definitions and results for the stability of impulsive systems, in the framework of 2D systems, are introduced (see [START_REF] Ríos | Vector Lyapunov function based stability for a class of impulsive systems[END_REF] and [START_REF] Ríos | Nonlinear impulsive systems: 2d stability analysis approach[END_REF]).

Let |q| denote the Euclidean norm of a vector q. The following stability definition is introduced: Definition 1. [START_REF] Ríos | Vector Lyapunov function based stability for a class of impulsive systems[END_REF]. A 2D system described by ( 7)- [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF], is said to be exponentially diagonal ξ t k -stable (EDξ t k -S) if there exist positive constants κ 1 , κ 2 , κ 3 , and c such that 0 < κ 1 < 1 and

|ξ ti+1 k+1 | 2 ≤ cκ k+1 1 |ξ 0 0 | 2 , ∀τ t k = T i , (9) 
|ξ t k | 2 ≤ κ 2 |ξ ti k | 2 , ∀τ t k ∈ [0, T i ], (10) 
|τ t k | ≤ κ 3 , (11) 
for all i = k ∈ N.

Note that condition [START_REF] Fridman | Robust sampled-data stabilization of linear systems: An input delay approach[END_REF] holds by definition, i.e.

|τ t k | ≤ κ 3 , with κ 3 = T max . Denote z t k := ((ξ t k ) T , τ t k ) T .
In order to give the stability conditions a vector Lyapunov approach is used, i.e.

V (z t k , z ti+1 k+1 ) = V 1 (z t k ) V 2 (z ti+1 k+1 ) , where V 1 (•) > 0, V 2 (•) > 0, for all z t
k and z ti+1 k+1 , and V 1 (0) = 0, V 2 (0) = 0. Now, let us introduce the following definition.

Definition 2. The divergence operator of a function V along the trajectories of system ( 7)-( 8) is defined for all t ∈ [t i , t i+1 ) as follows

divV (z t k , z ti+1 k+1 ) = dV 1 (z t k ) dt + V 2 (z ti+1 k+1 ) -V 2 (z ti+1 k ). (12) 
Note that V 1 is differentiable with respect to continuous time t while the difference in V 2 is calculated in discrete time k. Thus, the following theorem is introduced. Theorem 1. [START_REF] Ríos | Vector Lyapunov function based stability for a class of impulsive systems[END_REF]. Assume that there exist positive constants ε, c 1 , c 2 , c 3 , c 4 and c 5 such that the vector Lyapunov function V (z t k , z ti+1 k+1 ) and its divergence along the trajectories of the system (7)-( 8) satisfy, for all τ t k ∈ [0, T i ], i = k ∈ N, the following inequalities:

c 1 |ξ t k | 2 ≤ V 1 (z t k ) ≤ c 2 |ξ t k | 2 , ( 13 
)
c 3 |ξ p k | 2 ≤ V 2 (z p k ) ≤ c 4 |ξ p k | 2 , ∀p = t i , t i+1 (14) divV ≤ -c 5 (|ξ t k | 2 + |ξ ti+1 k | 2 ), (15) 
c 2 (c 4 -c 5 ) ≤ c 1 c 5 ∨ T i ≤ c 2 c 5 α, (16) 
c 2 c 5 γ ≤ T i , (17) 
where γ = -ln c 3 (1-ε)

c 5 +c 3 (1-ε) and α = -ln c 2 (c 4 -c 5 )-c 1 c 5 c 2 (c 4 -c 5 )
for all c2 (c4 -c5) > c1c5. Then, the 2D system (7)-( 8) is EDξ t k -S for any sequence

{T i } i∈N such that T i ∈ [ c2 c5 γ, c2 c5 α].
The statement given by Theorem 1 relies on a vector Lyapunov function approach in contrast to the results given in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF] (similarly in [START_REF] Nešić | Stability and performance of siso control systems with first-order reset elements[END_REF]), where asymptotic stability is obtained by means of a single Lyapunov function that needs to have a negative semi-definite derivative. Alternatively, our divergence operator, and not each term, needs to satisfy inequality [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF]. Remark 1. The constructive application of Theorem 1 is illustrated by Algorithm 1 which provides some notions of minimum and maximum or ranged dwell-time depending on the structure of the system dynamics. In particular, the first and third cases for exponential diagonal stability (pseudo-code lines: 5 and 13, Algorithm 1) give conditions for minimum dwell-time while the second case (pseudo-code lines: 7, Algorithm 1) provides conditions for maximum or ranged dwell-time. 

V (z t k , z ti+1 k+1 ) = (ξ t k ) T P 1 (τ t k )ξ t k (ξ ti+1 k+1 ) T P 2 (τ ti+1 k+1 )ξ ti+1 k+1 , (18) 
where P 1 ∈ R 4n×4n is continuously differentiable with respect to t, symmetric, bounded, and positive definite matrix for all τ t k ∈ [0, T i ], i = k ∈ N, while P 2 ∈ R 4n×4n is a symmetric and positive definite matrix, i.e.

0 < c 1 I ≤ P 1 (τ t k ) ≤ c 2 I, ∀τ t k ∈ [0, T i ], (19) 
0 < c 3 I ≤ P 2 (τ p k ) ≤ c 4 I, p = t i , t i+1 . (20) 
Thus, based on the previous choice for V 1 and V 2 , if Theorem 1 is applied to the ideal and uncertain impulsive system (5)-( 6), then the following results are obtained.

Corollary 1. Consider the vector Lyapunov function V (z t k , z ti+1 k+1 ) in [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF]. Assume that there exist matrices P 1 (τ t k ) = P T 1 (τ t k ) > 0, continuously differentiable on t and bounded for all 20), Λ = Λ T > 0 and a constant c 5 > 0, such that the following matrix inequality

τ t k ∈ [0, T i ], i = k ∈ N, P 2 (0) = P T 2 (0) > 0 and P 2 (T i ) = P T 2 (T i ) > 0 satisfying (19)-(
   P 1 (τ t k )A ξ + A T ξ P 1 (τ t k ) + dP1(τ t k ) dt + 2f 0 Λ + c 5 I 4n 0 P 1 (τ t k ) I T ξ P 2 (0)I ξ -P 2 (T i ) + c 5 I 4n 0 -Λ    ≤ 0, (21) 
holds for all ) in [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF]. Assume that there exist matrices P 1 (τ t k ) = P T 1 (τ t k ) > 0, continuously differentiable on t and bounded for all 20), and a constant c 5 > 0, such that the following matrix inequality

τ t k ∈ [0, T i ], i = k ∈ N, |f | 2 ≤ f 0 |x| 2 ,
τ t k ∈ [0, T i ], i = k ∈ N, P 2 (0) = P T 2 (0) > 0 and P 2 (T i ) = P T 2 (T i ) > 0 satisfying (19)-(
P 1 (τ t k )A ξ + A T ξ P 1 (τ t k ) + dP1(τ t k ) dt + c 5 I 4n 0 0 I T ξ P 2 (0)I ξ -P 2 (T i ) + c 5 I 4n ≤ 0, (22) 
holds for all τ t k ∈ [0, T i ], for all i = k ∈ N, and constraints ( 16)-( 17) are satisfied with c 1 , c 2 , c 3 , c 4 and c 5 . Then the system (7)-( 8), with f = 0, is EDξ t k -S for any sequence

{T i } i∈N such that T i ∈ [ c2 c5 γ, c2 c5 α].
For the particular case of linear time-invariant systems, our method can be seen as a generalization of the result in [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF]. In fact, taking P 1 (τ t k ) and P 2 (τ t k ) in the same form for the statements given by Corollary 2, one leads to the conditions given by Theorem 2.2 (ranged dwell-time) and 2.3 (minimum dwell-time) in [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF].

It is also worth mentioning that the results given by Theorem 1 and Corollary 2 are consistent with the ones in Proposition 3.24 (Persistent Flowing) and Proposition 3.27 (Persistent Jumping) in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF], respectively.

Note that Corollaries 1 and 2 are able to deal with linear impulsive systems where matrix A ξ is not Hurwitz, and/or I ξ is anti-Schur, respectively. In this sense, Corollaries 1 and 2 provide general results to deal with the stability of linear impulsive systems.

In the following, a couple of examples, taken from [START_REF] Briat | A looped-functional approach for robust stability of linear impulsive systems[END_REF], are presented in the framework of stability, not in the one of output-feedback control design, to illustrate the potential of the proposed method.

Example 1. Let us consider a system as in ( 7)-( 8) with the following matrices

A ξ = 1 3 -1 2 , I ξ = 0.5 0 0 0.5 .
Note that the continuous dynamics is unstable while the discrete one is stable, i.e. A ξ is not Hurwitz and I ξ is Schur. Corollary 2 with

P1(τ t k ) = τ t k P11 + (Ti -τ t k )P12 Ti , P2(τ t k ) = P21 + τ t k P22,
and a bisection algorithm on τ t k ∈ [0, T i ] can be checked by solving LMIs given by [START_REF] Mazenc | Construction of interval observers for continuoustime systems with discrete measurements[END_REF]. The following results are obtained: 

P 11 = 1.
with c 1 = 1.3545, c 2 = 3.9410 × 10 4 , c 3 = 1.0007, c 4 = 1.
3118 and c 5 = 0.5000. Therefore, according to Corollary 2, the impulsive system is EDξ t k -S for all 0.3333 > T i > 0. It is easy to check that c 4 > c 5 and c 2 (c 4 -c 5 ) > c 1 c 5 hold and then, according to Algorithm 1, the second case for EDξ t k -S is obtained. When, as in [START_REF] Briat | A looped-functional approach for robust stability of linear impulsive systems[END_REF], the analysis is restricted to single quadratic Lyapunov functions linear in τ t k , i.e. P 1 (τ t k ) = P 2 (τ t k ), it is possible to show stability for 0.2400 > T i > 0.

Example 2. Let us consider a system as in ( 7)-( 8) with the following matrices

A ξ = -1 0 1 -2 , I ξ = 2 1 1 3 .
For this example the continuous dynamics is stable while the discrete one is unstable, i.e. A ξ is Hurwitz and I ξ is anti-Schur. Corollary 2 with

P1(τ t k ) = τ t k P11 + (Ti -τ t k )P12 Ti , P2(τ t k ) = P21 + τ t k P22,
and a bisection algorithm on τ t k ∈ [0, T i ] can be checked by solving LMIs given by [START_REF] Mazenc | Construction of interval observers for continuoustime systems with discrete measurements[END_REF]. The following results are obtained: with c 1 = 1.3372, c 2 = 4.1071, c 3 = 0.1123, c 4 = 6.05 and c 5 = 4.58. Therefore, according to Corollary 2, the impulsive system is EDξ t k -S for all T i > 3.3254. It is easy to check that c 4 > c 5 and c 2 (c 4 -c 5 ) ≤ c 1 c 5 hold and then, according to Algorithm 1, the first case for EDξ t k -S is obtained. When, as in [START_REF] Briat | A looped-functional approach for robust stability of linear impulsive systems[END_REF], the analysis is restricted to single quadratic Lyapunov functions linear in τ t k , i.e. P 1 (τ t k ) = P 2 (τ t k ), it is possible to show stability for T i > 5.1000.

P 11 = 3.
The previous examples show numerically that when the analysis is restricted to the same class of Lyapunov functions, i.e. linear with respect to τ k t , the vector Lyapunov function approach is less conservative than the scalar one. Nevertheless, theoretically speaking, it is very difficult to ensure that the proposed method provides, in general, less conservative results.

The rest of the paper is devoted to the application of the conditions for exponential diagonal ξ t k -stability of the impulsive systems ( 7)- [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF], by means of the statements given by Corollaries 1 and 2, in order to solve the sampled-data control problem based on state estimation for system (1)-( 3) in a constructive way.

Robust Output-Control Design

In this section a particular choice for P 1 and P 2 is proposed. Then, by means of the statements given by Corollaries 1 and 2, the control gain matrix K and the observer gain matrix L will be found to provide a stabilization of the state dynamics x as well as an estimation x, i.e. stabilization of the extended state ξ in ( 5)-( 6), for the ideal and uncertain case, respectively.

Thus, the following proposition gives a solution to the sampled-data control problem based on state estimation for the uncertain linear sampled-data system, i.e. f = 0. Proposition 1. Consider that P 1 and P 2 have the following structure for all

τ t k ∈ [0, T i ], i = k ∈ N P 1 (τ t k ) = τ t k P 11 + (T i -τ t k )P 12 T i , P 2 (τ t k ) = P 21 + τ t k P 22 ,
where

P 11 = diag(P - (1) 11 , P -(2) 11 , P -(3) 11 , P -(3) 
11 ),

P 12 = diag(P - (1) 12 , P -(2) 
12 , δI n , δI n ), with a fixed δ > 0, P (q) 1l = (P (q) 1l ) T > 0, and P 2l = P T 2l > 0, for l = 1, 2, and q = 1, 3. If there exist matrices P (q) 11 , P 2l = P T 2l > 0, Y K and L, for l = 1, 2, and q = 1, 3, such that the following matrix inequalities

                     φ11(Θ)+In 0 BY K -BY K 0 0 P (1) 11 P 
(1) 11

0 0 0 0 -R1+In 0 0 0 0 0 0 P (2) 11 P 
(2) 11

0 0 φ3(Θ) 0 In 0 0 0 0 0 P (3) 11 0 -R2 0 In 0 0 0 0 0 P (3) 11 -Λ3 0 0 0 0 0 0 0 -Λ4 0 0 0 0 0 0 -Q1 0 0 0 0 0 -In 2f 0 0 0 0 0 -Q2 0 0 0 -In 2f 0 0 0 -Q3 0 -Q4                      ≤ 0, (23) 
                 φ21(Θ)+In 0 BY K -BY K 0 0 P (1) 12 P 
(1) 12

P (1) 12 -R3+In 0 0 0 0 0 0 0 φ3(Θ) 0 δP (3) 11 0 0 0 0 -R4 0 δP (3) 11 0 0 0 -Λ3 0 0 0 0 -Λ4 0 0 0 -Q1 0 0 -In 2f 0 0 -ΘP (1) 11 P Q                  ≤ 0, (24) 
P =        0 T P (2) 12 0 T 0 T 0 T P (2) 12 0 T 0 T 0 T P (2) 12 0 T 0 T 0 T 0 T P (3) 11 0 T 0 T 0 T 0 T P (3) 11 0 T        T , Q =       -Q2 0 0 0 0 -In 2f 0 0 0 0 -ΘP (2) 11 0 0 -Q3 0 -Q4       , R 1 + φ 12 (Θ) -LC -C T L T In In -Λ1 ≤ 0, R 2 + φ 3 (Θ) P (3) 11 P 
(3) 11

-Λ1 ≤ 0, (25) 
R 3 + φ 22 (Θ) -LC -C T L T In In -Λ2 ≤ 0, R 4 + φ 3 (Θ) P (3) 11 P 
(3) 11 

-Λ2 ≤ 0, φ(Θ) ≤ 0, (26 
Θ , φ 3 (Θ) = P (3) 11 Θ -2P (3) 11 + ΘIn δ , φ(Θ) = I T ξ P 21 I ξ -P 21 -ΘP 22 + Q 5 , hold for the finite open set Θ ∈ 0, c2 c5 α , Q = Q T = diag(Q -1 1 , Q -1 2 , Q -1 3 , Q -1 4 , Q 5 ) > 0, Λ = Λ T = diag(I n , I n , Λ 3 , Λ 4 ), some Λl = Λl
T > 0, R j > 0, for l = 1, 2, and j = 1, 4, respectively, and |f (x)| 2 ≤ f 0 |x| 2 ; and the constraints ( 16)-( 17) also hold with c 1 = λ min (P 11 ), c 2 = λ max (P 12 ), c 3 = λ min (P 21 ), c 4 = λ max (P 21 + T max P 22 ) and c 5 = λ min (Q); then the system (7)-( 8) is EDξ t k -S for any sequence

{T i } i∈N such that T i ∈ 0, c2 c5 α with K = Y K P -(3) 11
and L solution of ( 23)- [START_REF] Ríos | Vector Lyapunov function based stability for a class of impulsive systems[END_REF]. Now, the following proposition gives a solution to the sampled-data control problem based on state estimation for the ideal linear sampled-data system, i.e. f = 0. Proposition 2. Consider that P 1 and P 2 have the following structure for all 12 , δI n , δI n ), with a fixed δ > 0, P (q) 1l = (P (q) 1l ) T > 0, and P 2l = P T 2l > 0, for l = 1, 2, and q = 1, 3. If there exist matrices P (q) 11 , P 2l = P T 2l > 0, Y K and L, for l = 1, 2, and q = 1, 3, such that the following matrix inequalities

τ t k ∈ [0, T i ], i = k ∈ N P 1 (τ t k ) = τ t k P 11 + (T i -τ t k )P 12 T i , P 2 (τ t k ) = P 21 + τ t k P
             φ 11 (Θ) 0 BY K -BY K P (1) 11 
0 0 0 -R 1 0 0 0 P (2) 11 0 0 φ 3 (Θ) 0 0 0 P (3) 11 0 -R 2 0 0 0 P (3) 11 -Q 1 0 0 0 -Q 2 0 0 -Q 3 0 -Q 4              ≤ 0, (27) 
                  φ 21 (Θ) 0 BY K -BY K P (1) 12 
P (1) 12 
0 0 0 0 -R 3 0 0 0 0 P (2) 12 P (2) 12 0 0 φ 3 (Θ) 0 0 0 0 0 P (3) 11 0 -R 4 0 0 0 0 0 P (3) 11 -Q 1 0 0 0 0 0 -ΘP (1) 11 0 0 0 0 -Q 2 0 0 0 -ΘP (2) 11 0 0 -Q 3 0 -Q 4                   ≤ 0, (28) 
R 1 + φ 12 (Θ) -LC -C T L T In In -Λ1 ≤ 0, R 2 + φ 3 (Θ) P (3) 11 P (3) 11 -Λ1 ≤ 0, (29) 
2

The variables are P

(1)

11 , P (2) 
11 , P

11 , P

12 , P 

R 3 + φ 22 (Θ) -LC -C T L T In In -Λ2 ≤ 0, R 4 + φ 3 (Θ) P (3) 11 P (3) 11 -Λ2 ≤ 0, φ(Θ) ≤ 0, (2) 
Θ ∈ 0, c2 c5 α , Q = Q T = diag(Q -1 1 , Q -1 2 , Q -1 3 , Q -1 4 , Q 5 ) > 0, some Λl = Λl T > 0, R j >
0, for l = 1, 2, and j = 1, 4, respectively, and constraints ( 16)-( 17) also hold with c 1 = λ min (P 11 ), c 2 = λ max (P 12 ), c 3 = λ min (P 21 ), c 4 = λ max (P 21 + T max P 22 ) and c 5 = λ min (Q); then the system (7)-( 8) is EDξ t k -S for any sequence

{T i } i∈N such that T i ∈ 0, c2 c5 α with K = Y K P -(3) 11 
and L solution of ( 27)-( 30).

Remark 2. Propositions 1 and 2 provide a particular way to solve the proposed problem, i.e. find the control gain matrix K and the gain matrix L such that the system (5)-( 6) is exponentially stable for the ideal case and also for the uncertain case.

Numerical Aspects: In order to solve the matrix inequalities provided by Propositions 1 and 2, one may use a bisection-like approach using SeDuMi solver among YALMIP in Matlab (see e.g. [START_REF] Löfberg | Yalmip: A toolbox for modeling and optimization in MATLAB[END_REF] and [START_REF] Sturm | Using SEDUMI 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF]) on the variable

Θ ∈ 0, c 2 c 5 α .
Providing some initialization values, the bisection method is used to establish the maximum value of Θ that satisfies the corresponding matrix inequalities, and in turn, compute the constants c 1 , c 2 , c 3 , c 4 and c 5 that hold constraints ( 16)- [START_REF] Hu | A LMI approach to robust H 2 sampled-data control for linear uncertain systems[END_REF]. Note that for fixed Θ, δ and f 0 , the matrix inequalities given by Propositions 1 and 2 become LMIs.

Note that a different selection for P 1 (τ t k ) and P 2 (τ t k ), even for Lyapunov functions with non-quadratic structure, may decrease the conservatism. More complex tools like sum-of-squares [START_REF] Briat | Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints[END_REF], looped-functional approach [START_REF] Briat | A looped-functional approach for robust stability of linear impulsive systems[END_REF], or convex characterizations [START_REF] Briat | Convex dwell-time characterizations for uncertain linear impulsive systems[END_REF], may be applied to improve the application of this method.

Simulation Results

Ideal Case

Let us consider system (1)-( 2) with f = 0 and

A = 0 1 0 0 , B = 0 1 , C = 1 0 .
This example represents a double-integrator that has a wide range of applications. Proposition 2 is applied together with a bisection-like approach using SeDuMi solver among YALMIP in Matlab to find a solution for the LMIs, and the corresponding control and observer gains. The simulations have been done in Matlab with the Euler discretization method, sample time equal to 0.001, and initial conditions x(0) = (-1, 1) T and x(0) = (0, 0) T .

Based on Proposition 2, it is possible to show that the impulsive system (5)-( 6), with f = 0, is EDξ t k -S for all 2.55 ≥ T i > 0, i.e. for any sequence {T i } i∈N such that T i ∈ (0, 2.55] = (T min , T max ], there is a set of feasible control 3 The variables are P 

0.0294 0.0035 0.0035 0.1299 , P

0.0991 0 0 0.0074 , P

0.0672 0.0803 0.0803 0.2420 , P

0.0382 0.0038 0.0038 0.0522 , δ = 1, The trajectories of the system, the state estimation error and the control signal for different values of T i are depicted in Figures 1234. From Fig. 1 it is clear that the trajectories and the estimation worsen whenever the sampling interval increases. However, the proposed approach is capable of stabilizing ξ t k for a reasonable sampling interval equal to 2 seconds. For the aperiodic case, from Fig. 2 it is clear that the proposed approach is able to deal also with the aperiodic case and the behavior is very similar with any of the values in the set of feasible control and observer gains for the same sequence of T i . The state estimation error for the ideal case is depicted in Fig. 3 where the estimation error worsens whenever the sampling interval increases. However, the proposed approach is capable of stabilizing ξ t k for a reasonable sampling interval equal to 2 seconds. Finally, the control signals are shown in Fig. 4.

P 21 =            70 

Uncertain Case

Let us consider system (1)-(2) with

A = 0 1 0 0 , B = 0 1 , C = 1 0 , f (x) = 0.1 0 x 1 + sin(x 2 )
.

This example represents an uncertain double-integrator where f (x) is a Lipschitz function with f 0 = 0.1. Proposition 1 is applied together with a bisection-like approach using SeDuMi solver among YALMIP in Matlab to find a solution for the LMIs, and the corresponding control and observer gains. The simulations have been done in Matlab with the Euler discretization method, sample time equal to 0.001, and initial conditions x(0) = (-1, 1) T and x(0) = (0, 0) T .

Based on Proposition 1, it is possible to show that the impulsive system ( 5)-( 6) is EDξ t k -S for all 0.30 > T i > 0 i.e. for any sequence {T i } i∈N such that T i ∈ (0, 0.30] = (T min , T max ], there is a set of feasible control and observer gains. For the aperiodic case the gains were K = (-0.0627, -0.8393), L = (46.7717, 17.7768) T corresponding to Ti = 2.0. The trajectories of the system, the state estimation error and the control signal for different values of T i are depicted in Figures 5678. From Fig. 5 it is clear that for the uncertain case, the trajectories deteriorate, more than the ideal case, whenever the sampling interval increases. The proposed approach is capable of stabilizing ξ t k for a sampling interval less than or equal to 0.30 seconds. For the aperiodic case, from Fig. 6 it is clear that the proposed approach is able to deal also with the aperiodic case and the behavior is very similar with any of the values in the set of feasible control and observer gains for the same sequence of T i but the sampling interval has decreased with respect to the ideal case. The state estimation error for the ideal case is depicted in Fig. 7 where the estimation error deteriorates, more than the ideal case, whenever the sampling interval increases. The proposed approach is capable of stabilizing ξ t k for a sampling interval less than or equal to 0.30 seconds. Finally, the control signals are shown in Fig. 8.

T i ∈ [0.5, 2.0] 10 0 -5 x 1 (t) vs x1 (t) 0 -1 0 1 2 5 x 2 (t) vs x2 (t) x(t) x(t)

Conclusions

In this paper a vector Lyapunov function-based approach, derived by means of a 2D time domain equivalence, for stability of impulsive systems is used for designing a robust output-feedback control for linear sampled-data systems. This approach provides a stability analysis based on LMIs for linear impulsive dynamical systems. Then, it is possible to show that the sampled-data control problem based on state estimation may turn into one of finding conditions for the exponential stability of impulsive systems. Thus, the proposed vector Lyapunov function approach is applied for obtaining stability conditions of the impulsive system, and then, a solution to the robust output-feedback control design problem is derived and expressed in terms of LMIs. Some numerical examples illustrate the feasibility of the proposed approach. The analysis of uncertain sampled-data nonlinear systems is in the scope of the future research. 13), ( 14) and [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF], it follows that

T i = 0.1 0 -1 0 x 1 (t) vs x1 (t) 1 -2 2 0 2 x 2 (t) vs x2 (t) x(t) x(t) 150 100 Time k 50 T i = 0.2 0 -1 0 x 1 (t) vs x1 (t) 1 -2 0 2 2 x 2 (t) vs x2 (t) x(t) x(t) 100 80 Time k 60 40 T i = 0.3 20 0 -2 0 x 1 (t) vs x1 (t) 2 0 -2 2 4 x 2 (t) vs x2 (t) x(t) x(t)
dV 1 (z t k ) dt ≤ -c 5 (|z t k | 2 + |z ti+1 k | 2 ) -V 2 (z ti+1 k+1 ) + V 2 (z ti+1 k ), ≤ -βV 1 (z t k ) + λV 2 (z ti+1 k ) -V 2 (z ti+1 k+1 ), (31) 
where λ = 1 -c5 c4 and β = c5 c2 . By means of the comparison principle, with respect to the time t, from [START_REF] Yeganefar | Lyapunov theory for 2-d nonlinear roesser models: Application to asymptotic and exponential stability[END_REF], for all t ∈ [t i , t i+1 ), it is obtained that

V 1 z t k ≤ e -β(t-ti) V 1 (z ti k ) + t ti e -β(t-τ ) λV 2 (z ti+1 k ) -V 2 (z ti+1 k+1 ) dτ, = e -β(t-ti) V 1 (z ti k ) + ρ i (t)(λV 2 (z ti+1 k ) -V 2 (z ti+1 k+1 )), (32) 
where

ρ i (t) = 1-e -β(t-t i ) β > 0, for all t ∈ [t i , t i+1 ).
In order to fulfill the statements given by Definition 1 it is necessary to prove convergence and boundedness. Thus, let us prove each one separately. For the aperiodic case the gains were K = (-0.3107, -0.6213), L = (2.5714, 1.9137) T corresponding to Ti = 0.3.

1. Convergence. Evaluating (32) for t = t i+1 , it gives V 1 (z ti+1 k ) ≤ e -βTi V 1 (z ti k ) + ρ i (t i+1 )λV 2 (z ti+1 k ) -ρ i (t i+1 )V 2 (z ti+1 k+1 ), (33) 
T i ∈ [0.1, 0.3] 50 0 -1 0 x 1 (t) vs x1 (t) 1 0 -2 2 2 x 2 (t) vs x2 (t) x(t) x(t) 200 150 Time k 100 T i ∈ [0.1, 0.3] 50 0 -1 0 x 1 (t) vs x1 (t) 1 -2 0 2 2 x 2 (t) vs x2 (t) x(t) x(t) 200 Time k 150 100 T i ∈ [0.1, 0.3] 50 0 -2 0 x 1 (t) vs x1 (t) 2 -2 0 2 4 x 2 (t) vs x2 (t) x(t) x(t) 200 Time k 150 100 T i ∈ [0.1, 0.3] 50 0 -5 x 1 (t) vs x1 (t) 0 0 1 2 -1 5 x 2 (t) vs x2 (t) x(t) x(t)
T i = 0.1 |e(t)|, T i = 0.2 |e(t)|, T i = 0.3 |e(t)|, T i ∈ [0.1, 0.3]
u(t), T i = 0.1 u(t), T i = 0.2 u(t), T i = 0.3 u(t), T i ∈ [0.1, 0.3]
with ρ i (t i+1 ) = 1-e -βT i β > 0, for all T i ≥ 0. From the inequalities ( 13) and ( 14), it follows that ∀i

= k ∈ N V 2 (z p k ) c 4 ≤ |ξ p k | 2 ≤ V 1 (z p k ) c 1 , ∀p = t i , t i+1 (34) V 1 (z p k ) c 2 ≤ |ξ p k | 2 ≤ V 2 (z p k ) c 3 , ∀p = t i , t i+1 . (35) 
From (34), it is given that c1 c4 V 2 (z

ti+1 k ) ≤ V 1 (z ti+1 k
), and therefore from (33), it is obtained that

ρ i (t i+1 )V 2 (z ti+1 k+1 ) ≤ e -βTi V 1 (z ti k ) + ρ i (t i+1 )λ - c 1 c 4 V 2 (z ti+1 k ). (36) 
Let us consider that c 4 > c 5 , i.e. λ ∈ (0, 1). Thus, from (35) and (36) it follows that

V 2 (z ti+1 k+1 ) ≤ c 2 e -βTi c 3 ρ i (t i+1 ) V 2 (z ti k ) + ρ i (t i+1 )λ -c1 c4 ρ i (t i+1 ) V 2 (z ti+1 k ). (37) 
Note that if the constraint ρ i (t i+1 )λ ≤ c1 c4 holds, then the term depending on V 2 (z ti+1 k

) can be disregarded. In this sense, in order to satisfy such a constraint, recalling that β = c5 c2 , λ = 1 -c5 c4 and ρ i (t i+1 ) = 1-e -βT i β , the following condition is founded

c 2 1 -e -βTi (c 4 -c 5 ) ≤ c 1 c 5 , 1 -e -βTi ≤ c 1 c 5 c 2 (c 4 -c 5 )
.

Then, it is clear that if c 2 (c 4 -c 5 ) ≤ c 1 c 5 holds then ρ i (t i+1 )λ ≤ c1 c4 is trivially satisfied. Otherwise e -βTi ≥ c 2 (c 4 -c 5 ) -c 1 c 5 c 2 (c 4 -c 5 ) ⇔ T i ≤ c 2 c 5 α, where α = -ln c 2 (c 4 -c 5 )-c 1 c 5 c 2 (c 4 -c 5 )
> 0, for all c 2 (c 4 -c 5 ) > c 1 c 5 . Note that these two possibilities, i.e. c 2 (c 4 -c 5 ) ≤ c 1 c 5 or T i ≤ c2 c5 α, are represented by [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF] in Theorem 1. Therefore, if one of them is satisfied, from (37) it is obtained that

V 2 (z ti+1 k+1 ) ≤ c 2 e -βTi c 3 ρ i (t i+1 ) V 2 (z ti k ).
Then, by induction, it follows that

V 2 (z ti+1 k+1 ) ≤ c 2 e -βTi c 3 ρ i (t i+1 ) k+1 V 2 (z 0 0 ). (38) 
Hence, (38) decreases if the following condition holds

c 2 e -βTi c 3 ρ i (t i+1 ) ≤ 1 -ε, c 5 e -βTi ≤ c 3 (1 -ε) 1 -e -βTi , e -βTi ≤ c 3 (1 -ε) c 5 + c 3 (1 -ε) ⇔ T i ≥ c 2 c 5 γ,
which is the same that [START_REF] Hu | A LMI approach to robust H 2 sampled-data control for linear uncertain systems[END_REF], with γ = -ln c 3 (1-ε) c 5 +c 3 (1-ε) . Then, from (34), (35), and (38) , it follows that ∀i

= k ∈ N |ξ ti+1 k+1 | 2 ≤ cκ k+1 1 |ξ 0 0 | 2 , with c = c4
c3 > 0 and 0 < κ 1 = c5 c3(1-e -γ ) < 1 -ε, for some small positive ε. Thus, the trajectories of system (7)-( 8) are convergent under the constraints c 4 > c 5 , c 2 (c 4 -c 5 ) ≤ c 1 c 5 or T i ≤ c2 c5 α, and T i ≥ c2 c5 γ, i.e. eq. ( 9) from Definition 1 is obtained. Now, let us take into account that c 5 ≥ c 4 , i.e. λ ≤ 0. Therefore, from (36), it follows that the term depended on V 2 (z ti+1 k

) can be disregarded, then one gets (38) and just under condition T i ≥ c2 c5 γ convergence is obtained. Thus, it is concluded that the trajectories of system ( 7)-( 8) are convergent under constraints ( 16)-( 17) if c 4 > c 5 , or only under [START_REF] Hu | A LMI approach to robust H 2 sampled-data control for linear uncertain systems[END_REF] if c 5 ≥ c 4 holds. In order to complete the proof, let us prove boundedness between the impulses, i.e.

|ξ t k | 2 ≤ κ 2 |ξ ti k | 2 for all t ∈ [t i , t i+1 ). 2. Boundedness. From (32), it is given that V 1 (z t k ) ≤ e -β(t-ti) V 1 (z ti k ) + ρ i (t i+1 )λV 2 (z ti+1 k ). (39) 
Let us consider the case c 5 ≥ c 4 , i.e. λ ≤ 0. Therefore, from (39), it follows that

V 1 (z t k ) ≤ e -β(t-ti) V 1 (z ti k ), ∀i = k ∈ N,
and boundedness is given, i.e.

|ξ t k | 2 ≤ κ 2 |ξ ti k | 2 , ∀t ∈ [t i , t i+1 ) ,
with κ 2 = c2 c1 . Finally, for the case c 4 > c 5 , i.e. λ ∈ (0, 1), from (39) and evaluating t = t i+1 , one gets

c 1 c 4 V 2 (z ti+1 k ) ≤ e -βTi V 1 (z ti k ) + ρ i (t i+1 )λV 2 (z ti+1 k ), V 2 (z ti+1 k ) ≤ e -βTi c1 c4 -ρ i (t i+1 )λ V 1 (z ti k ). (40) 
Note that ρ i (t i+1 )λ < c1 c4 has to hold in order to satisfy inequality (40). However, as it was previously described, if c 2 (c 4 -c 5 ) ≤ c 1 c 5 holds, ρ i (t i+1 )λ < c1 c4 is trivially satisfied, otherwise T i should be less than or equal to c2 c5 α, i.e.

T i ≤ c2 c5 α with α = -ln c 2 (c 4 -c 5 )-c 1 c 5 c 2 (c 4 -c 5 )
> 0, for all c 2 (c 4 -c 5 ) > c 1 c 5 . Thus, applying (40) in (39), it is given that

V1(z t k ) ≤   e -β(t-t i ) + ρi(ti+1)λe -βT i c 1 c 4 -ρi(ti+1)λ   V1(z t i k ), ≤ c5 (c1 -c4ρi(ti+1)λ) + c2c4 c5 (c1 -c4ρi(ti+1)λ) V1(z t i k ). (41) 
Therefore, from (41), boundedness is obtained, i.e.

|ξ t k | 2 ≤ κ 2 |ξ ti k | 2 for all t ∈ [t i , t i+1 ) and κ2 = c2 (c1c5 + c2c4) c 2 1 c5 -c1c2 (c4 -c5) (1 -e -γ )
, which clearly is also valid for the case c 5 ≥ c 4 , i.e. λ ≤ 0.

Thus, during each interval between impulses, the trajectories of the system are bounded by a constant value as in [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF], and due to the convergence property given by ( 9), according to Definition 1, the 2D system described by ( 7)-( 8) is EDξ t k -S.

Proof of Corollary 1: Let us calculate the divergence operator for the quadratic vector Lyapunov function

V (z t k , z ti+1 
k+1 ) given by ( 18), i.e.

divV (z t k , z ti+1 k+1 ) = dV 1 (z t k ) dt + V 2 (z ti+1 k+1 ) -V 2 (z ti+1 k ) = (ξ t k ) T P 1 (τ t k )A ξ + A T ξ P 1 (τ t k ) + dP 1 (τ t k ) dt ξ t k + (ξ t k ) T P 1 (τ t k )D ξ f + f T D T ξ P 1 (τ t k )ξ t k + (ξ ti+1 k ) T I T ξ P 2 (0)I ξ -P 2 (T i ) ξ t k .
From the Λ-inequality (see, for instance, [START_REF] Poznyak | Advanced Mathematical Tools for Control Engineers: Volume 1: Deterministic Techniques[END_REF]), it follows that

XY T + Y X T ≤ XΛ -1 X T + Y ΛY T ,
Therefore, the LMI ( 23) is obtained when all the elements of Ξ 3 (Θ) are merged, and it is concluded that if the set of LMIs ( 23) and ( 25) is feasible then (42) holds, i.e. Υ 1 (Θ) ≤ 0. that holds for every X ∈ R n×k , Y ∈ R n×k , and 0 < Λ = Λ T ∈ R k×k . Applied with X = (ξ t k ) T P 1 (τ t k ) and Y = f T D T ξ , it follows that

(ξ t k ) T P 1 (τ t k )D ξ f + f T D T ξ P 1 (τ t k )ξ t k ≤ (ξ t k ) T P 1 (τ t k )Λ -1 P 1 (τ t k )ξ t k + f T D T ξ ΛD ξ f,
for any 0 < Λ = Λ T ∈ R 4n×4n . Therefore, the divergence can be upper bounded as

divV (z t k , z ti+1 k+1 ) ≤ (ξ t k ) T P 1 (τ t k )A ξ + A T ξ P 1 (τ t k ) + dP 1 (τ t k ) dt + P 1 (τ t k )Λ -1 P 1 (τ t k ) ξ t k + f T D T ξ ΛD ξ f + (ξ ti+1 k ) T I T ξ P 2 (0)I ξ -P 2 (T i ) ξ t k , and since f T f ≤ f 0 x T x ≤ f 0 (ξ t k ) T ξ t k and D T ξ D ξ = 2I n → |D T ξ D ξ | ≤ 2, it is obtained that divV (z t k , z ti+1 k+1 ) ≤ (ξ t k ) T P 1 (τ t k )A ξ + A T ξ P 1 (τ t k ) + dP 1 (τ t k ) dt + P 1 (τ t k )Λ -1 P 1 (τ t k ) + 2f 0 Λ ξ t k + (ξ ti+1 k ) T I T ξ P 2 (0)I ξ -P 2 (T i ) ξ t k .
By Theorem 1, it follows that the divergence must satisfy [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF]. Thus, it is given that

ξ t k ξ t i+1 k T    P1(τ t k )A ξ + A T ξ P1(τ t k ) + dP 1 (τ t k ) dt +P1(τ t k )Λ -1 P1(τ t k ) + 2f0Λ 0 0 I T ξ P2(0)I ξ -P2(Ti)    ξ t k ξ t i+1 k ≤ -c5(|ξ t k | 2 + |ξ t i+1 k | 2 ), ξ t k ξ t i+1 k T    P1(τ t k )A ξ + A T ξ P1(τ t k ) + dP 1 (τ t k ) dt +P1(τ t k )Λ -1 P1(τ t k ) + 2f0Λ + c5I4n 0 0 I T ξ P2(0)I ξ -P2(Ti) + c5I4n    ξ t k ξ t i+1 k ≤ 0.
By Schur's complement to the previous inequality, one gets the matrix inequality [START_REF] Mazenc | Design of continuousdiscrete observers for time-varying nonlinear systems[END_REF]. Then, if [START_REF] Mazenc | Design of continuousdiscrete observers for time-varying nonlinear systems[END_REF] is feasible for all τ t k ∈ [0, T i ], i = k ∈ N, some P 1 (τ t k ) = P T 1 (τ t k ) > 0, continuously differentiable on t and bounded, P 2 (0) = P T 2 (0) > 0 and P 2 (T i ) = P T 2 (T i ) > 0 satisfying ( 19)-( 20), Λ = Λ > 0 and a constant c 5 ∈ R ≥0 , the divergence will satisfy [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability and Robustness[END_REF].

Thus, based on Theorem 1, if the constraints ( 16)-( 17) are satisfied for the given c 1 , c 2 , c 3 , c 4 and c 5 ; then the system ( 7)-( 8) will be EDξ t k -S for any sequence

{T i } i∈N such that T i ∈ [ c2 c5 γ, c2 c5 α].
Proof of Corollary 2: It is straightforward from the proof of Corollary 1.

Proof of Proposition 1: Due to the linear structure on τ t k given for P 1 and P 2 , the matrix inequality ( 21) is affine in τ t k and its negative definiteness is given by the negativeness over the finite set τ t k ∈ {0, T i }. Therefore, taking into account the structure given by A ξ and D ξ , and the fact that P 11 = diag(P 12 , δI n , δI n ), with δ > 0, after some algebraic manipulations on matrix inequality [START_REF] Mazenc | Design of continuousdiscrete observers for time-varying nonlinear systems[END_REF] given by Corollary 1, it is possible to obtain the following inequalities

Υ 1 (Θ) =   Ω 1 (Θ) 0 P 11 φ(Θ) 0 -Λ   ≤ 0, (42) 
Υ 2 (Θ) =   Ω 2 (Θ) 0 P 12 φ(Θ) 0 -Λ   ≤ 0, (43) 
where φ(Θ) = I T ξ P 21 I ξ -P 21 -ΘP 22 + Q 5 , Λ = diag(I n , I n , Λ 3 , Λ 4 ), and 

Ω1(Θ) =              P - (1 
+ Q -1 2 0 -P -(2) 11 LC (P -(3) 11 -δIn) Θ + Q -1 3 0 (P -(3) 11 -δIn ) Θ + Q -1 4              , Ω2(Θ) =              P -(1) 12 
A + A T P -(1) 12 
+ 2f0In + (P -(1) 11 -P -(1) 12 ) Θ + Q -1 1 0 P -(1) 12 
BK -P -(1) 12 BK P -(2) 12 A + A T P -(2) 12 + 2f0In + (P -(2) 11 -P -(2) 12 ) Θ + Q -1 2 0 -P -(2) 12 
LC (P -(3) 11 -δIn) Θ + Q -1 3 0 (P -(3) 11 -δIn ) Θ + Q -1 4             
, that should be satisfied for the finite set Θ ∈ {T min , T max }. Let us begin with the inequality (42). Applying the quadratic non-singular transformation

T 1 = diag(P (1) 
11 , P

11 , I n , I n , I 4n , I 4n ), to (42), one gets

W 1 (Θ) = T 1 Υ 1 (Θ)T T 1 =   Ω1 (Θ) 0 P11 φ(Θ) 0 -Λ   , (44) 
where

Ω1(Θ) =             φ11(Θ) -P (1) 11 ( 
P -(1) 12 Θ -2f0In -Q -1 1 )P (1) 11 0 BK -BK φ12(Θ) -P (2) 11 ( 
P -(2) 12 Θ -2f0In -Q -1 2 )P (2) 11 0 -LC P -(3) 11 -δIn Θ + Q -1 3 0 P -(3) 11 -δIn Θ + Q -1 4             , P11 = diag(In, In, P - (3) 11 
, P

-(3) 11 
),

where φ11(Θ) = AP (1) 11 + P 12 , respectively. Therefore, the matrix W 1 (Θ) in (44) can be upper estimated as W 1 (Θ) ≤ W 1 (Θ), where W 1 (Θ) is defined as

W 1 (Θ) =   Ω1 (Θ) 0 P11 φ(Θ) 0 -Λ   , (45) 
and

Ω1 (Θ) =        φ 11 (Θ) + P (1) 11 
(2f 0 In + Q -1 1 )P (1) 11 0 BK -BK φ 12 (Θ) + P (2) 11 (2f 0 In + Q -1 2 )P (2) 11 0 -LC P -(3) 11 -δIn Θ + Q -1 3 0 P -(3) 11 -δIn Θ + Q -1 4       
, with φ11(Θ) = φ11(Θ) -2P (1) 11 + ΘP

12 and φ12(Θ) = φ12(Θ) -2P (2) 11 + ΘP

12 . Then, it is clear that

W 1 (Θ) = W 1 (Θ) + P (1) (2f 0 I n + Q -1 1 )( P (1) ) T + P (2) (2f 0 I n + Q -1 2 )( P (2) ) T , (46) 
where ( P (1) ) T = (P (1) 11 , 0, ..., 0), ( P (2) ) T = (0, P

11 , 0, ..., 0) and W 1 (Θ) is given by as

W 1 (Θ) =   Ω1 (Θ) 0 P11 φ(Θ) 0 -Λ   , (47) 
where For the aperiodic case the gains were K = (-0.3107, -0.6213), L = (2.5714, 1.9137) T corresponding to Ti = 0.3.

Ω1(Θ) =      φ11(Θ) 0 BK -BK φ12(Θ) 0 -LC P - (3 
By Schur's complement to (46), it is obtained that W 1 (Θ) ≤ 0 is equivalent to W 2 (Θ) ≤ 0, where W 2 (Θ) is Therefore, the matrix Ξ 2 (Θ) can be upper estimated as Ξ 2 (Θ) ≤ Ξ 3 (Θ), where Ξ 3 (Θ), is defined by Therefore, the LMI ( 23) is obtained when all the elements of Ξ 3 (Θ) are merged, and it is concluded that if the set of LMIs ( 23) and ( 25) is feasible then (42) holds, i.e. Υ 1 (Θ) ≤ 0.

Ξ 3 (Θ) =   Ψ 1 (Θ) P (3) P (4) -Q 3 0 -Q 4   , (55) 
To conclude the proof, it is clear that a similar method may be used to obtain the LMIs ( 24) and ( 26) by means of inequality (43), and prove that if the set of LMIs ( 24) and ( 26) is feasible then (42) also holds, i.e. Υ 2 (Θ) ≤ 0. This procedure is omitted for the sake of brevity. Thus, the theorem is proven.

Proof of Proposition 2: Due to the linear structure on τ t k given for P 1 and P 2 , the matrix inequality ( 21) is affine in τ t k and its negative definiteness is given by the negativeness over the finite set τ t k ∈ {0, T i }. Thus, given the structure of A ξ and D ξ , and the fact that P 11 = diag(P 12 , δI n , δI n ), with δ > 0, after some algebraic manipulations on matrix inequality [START_REF] Mazenc | Construction of interval observers for continuoustime systems with discrete measurements[END_REF] given by Corollary 2, it is possible to obtain the following inequality 

Υ 1 (Θ) = Ω 1 (Θ) 0 0 φ(Θ) ≤ 0, (56) 
Υ 2 (Θ) = Ω 2 (Θ) 0 0 φ(Θ) ≤ 0, (57) 
11 , I n , I n , I 4n ), to (56), one gets

W 1 (Θ) = T 1 Υ 1 (Θ)T T 1 = Ω1 (Θ) 0 0 φ(Θ) , (58) 
where 12 , respectively. Therefore, the matrix W 1 (Θ) in (58) can be upper estimated as W 1 (Θ) ≤ W 1 (Θ), where W 1 (Θ) is defined as 12 and φ12(Θ) = φ12(Θ) -2P (2) 11 + ΘP

W 1 (Θ) = Ω1 (Θ) 0 0 φ 1 (Θ) , (59) 
(2)

12 . Then, it is clear that

W 1 (Θ) = W 1 (Θ) + P (1) Q -1 1 ( P (1) ) T + P (2) Q -1 2 ( P (2) ) T , (60) 
where ( P (1) ) T = (P (1) 11 , 0, ..., 0), ( P (2) ) T = (0, P

11 , 0, ..., 0) and W 1 (Θ) is given by as Then, by Schur's complement to (60) twice, it is obtained that W 1 (Θ) ≤ 0 is equivalent to W 2 (Θ) ≤ 0, where W 2 (Θ) is defined as

W 1 (Θ) = Ω1 (Θ) 0 0 φ 1 (Θ) , (61) 
W 2 (Θ) =   W 1 (Θ) P (1) P (2) -Q 1 0 -Q 2   . (62) 
In a similar way, applying the equivalent transformation

T 2 = diag(I n , I n , P (3) 
11 , P

11 , I n , I 4n , I n ), to the matrix W 2 (Θ), it is obtained

Ξ 1 (Θ) = T 2 W 2 (Θ)T T 2 =   Γ 1 (Θ) P (1) P (2) -Q 1 0 -Q 2   , (63) 

  ) = I T ξ P 21 I ξ -P 21 -ΘP 22 + Q 5 , hold for the finite open set

12 P 5 P

 125 [START_REF] Mazenc | Design of continuousdiscrete observers for time-varying nonlinear systems[END_REF] , P 22 , Y K and L. The matrices Q i , Λl and R j , for i = 1, 5, k = 3, 4, l = 1, 2, and i = 1, 4, respectively, can be declared as variables or fixed values. and observer gains. The following feasible results are obtained by fixing different constant values of T i ∈ (0, 2.55], for all i = 0, 1, 2, . . .:T i = 0.

Figure 1 : 1 P

 11 Figure 1: Real and estimated trajectories of the ideal sampled-data system for different values of T i

Figure 2 :

 2 Figure 2: Real and estimated trajectories of the ideal sampled-data system for the aperiodic case T i ∈ [0.5, 2.0] and different values of K and L. For a fixed sequence in Ti, four different matrix gains, in the set of feasible solutions, for K and L were used, i.e. K = (-0.0352, -0.4698), L = (254.4294, 33.8006) T -left top; K = (-0.0796, -1.0652), L = (50.1074, 21.1055) T -right top; K = (-0.0771, -1.0328), L = (41.5574, 17.6644) T -left bottom; K = (-0.0627, -0.8393), L = (46.7717, 17.7768) T -right bottom.

Figure 3 :

 3 Figure 3: State estimation error of the ideal sampled-data system for different values of T i including the aperiodic case.

Figure 5 :

 5 Figure 5: Real and estimated trajectories of the uncertain sampled-data system for different values of T i

Figure 6 :

 6 Figure 6: Real and estimated trajectories of the ideal sampled-data system for the aperiodic case T i ∈ [0.1, 0.3] and different values of K and L. For a fixed sequence in Ti, four different matrix gains, in the set of feasible solutions, for K and L were used, i.e. K = (-1.4364, -2.8729), L = (2.6175, 3.7852) T -left top; K = (-0.2810, -0.5620), L = (2.5540, 3.1337) T -right top; K = (-0.1013, -0.2025), L = (2.5453, 4.7680) T -left bottom; K = (-0.3107, -0.6213), L = (2.5714, 1.9137) Tright bottom.

Figure 7 :

 7 Figure 7: State estimation error of the uncertain sampled-data system for different values of T i including aperiodic case. For the aperiodic case the gains were K = (-0.3107, -0.6213), L = (2.5714, 1.9137) T corresponding to Ti = 0.3.

Figure 8 :

 8 Figure 8: Control signal of the uncertain sampled-data system for different values of T i including the aperiodic case.

  where φ(Θ) = I T ξ P 21 I ξ -P 21 -ΘP 22 + Q 5 and for the finite set Θ ∈ {T min , T max }. Let us begin with the inequality (56). Applying the quadratic non-singular transformation T 1 = diag(P

,

  with φ11(Θ) = φ11(Θ) -2P(1) 11 + ΘP[START_REF] Ahmed-Ali | Global exponential sampled-data observers for nonlinear systems with delayed measurements[END_REF] 

  Define the Lyapunov functions V 1 and V 2 2: Calculate the constants c 1 , c 2 , c 3 , c 4 and c 5 3: if c 4 > c 5 then 4: if c 2 (c 4 -c 5 ) ≤ c 1 c 5 and T i > c 2

	Algorithm 1 Exponential Stability
	1: c 5	γ then
	5: 6:	"System is EDξ t k -S" else if c 2 c 5 α > T i > c 2 c 5	γ then
	7:	"System is EDξ t k -S"
	8:	else	
	9:	"No Conclusion"
	10:	end	
	11: else		
	12:	if T i > c 2 c 5	γ then
	13:	"System is EDξ t k -S"
	14:	else	
	15:	"No Conclusion"
	16:	end	
	17: end		
	18: end Algorithm	
	3.1. Exponential Diagonal ξ t k -Stability: Quadratic Lyapunov Functions
	Consider that V 1 and V 2 take the following quadratic structure

  and constraints (16)-(17) are satisfied with c 1 , c 2 , c 3 , c 4 and c 5 .

	Then the system (7)-(8) is EDξ t k -S for any sequence {T i } i∈N such that T i ∈ [ c2 c5 γ, c2 c5 α].
	Now, the following result is established for the ideal impulsive system, i.e. f = 0.
	Corollary 2. Consider the vector Lyapunov function V (z t k , z k+1 ti+1

  )

	with 2						
	φ 11 (Θ) = AP	(1) 11 + P	(1) 11 A T +	(1) 11 Θ P	-2P	(1) 11 + ΘP	(1) 12 ,
	φ 12 (Θ) = AP	(2) 11 + P	(2) 11 A T +	(2) 11 Θ P	-2P	(2) 12 -ΘP	(2) 12 ,
	φ 21 (Θ) = AP	(1) 12 + P	(1) 12 A T -	(1) 12 Θ P	,
	φ 22 (Θ) = AP	(2) 12 + P	(2) 12 A T -	P	(2) 12

The diagonal dynamics make reference only to those dynamics given by (7)-(8) corresponding to i = k, for all i, k ∈ N and for all t ∈ R ≥0 .

P 21 , P 22 , Y K and L. The matrices Q i ,Λ k , Λl and R j , for i = 1, 5, k = 3, 4, l = 1, 2, and i = 1, 4, respectively, can be declared as variables or fixed values.
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defined by

P (1)

In an analogous manner, applying the equivalent transformation

11 , P

11 , I 4n , I 4n , I 4n ),

to the matrix W 2 (Θ), it is obtained

where

(3) 11

(3) 11

.

with P11 = diag(I n , I n , I n , I n ). By Λ-inequality, it follows that (P (3) 11 -δP

(3)

11 + ΘIn/δ = φ3(Θ) . Therefore, the matrix Ξ 1 (Θ) is upper estimated as Ξ 1 (Θ) ≤ Ξ 1 (Θ), where Ξ 1 (Θ) is given by

where

Then, it is given that

where ( P (3) ) T = (0, 0, P (3) 11 , 0, ..., 0), ( P (4) ) T = (0, 0, 0, P

11 , 0, ..., 0) and Ξ 1 (Θ) defined by

where

Then, the bilinear term -LCP

11 is simplified as follows. By Λ-inequality with

where

and

for any Λ1 = ΛT 1 > 0. Let R 1 , R 2 > 0 be new matrix variables. Then, applying Λ-inequality to φ12 it follows that

and applying Schur's complement one gets the LMIs (25), i.e.

(3) 11

-Λ1 ≤ 0.

Thus the term Φ 1 is upper estimated as Φ 1 (Θ) ≤ Φ1 (Θ), where Φ1 (Θ) is defined by

where

(3) 11

.

By Λ-inequality, it follows that (P (3) 11 -δP 

11 + ΘIn/δ = φ3(Θ) . Therefore, the matrix Ξ 1 (Θ) is upper estimated as Ξ 1 (Θ) ≤ Ξ 1 (Θ), where Ξ 1 (Θ) is given by

where

-BKP

(3) 11

Then, it is given that

where ( P (3) ) T = (0, 0, P (3) 11 , 0, ..., 0), ( P (4) ) T = (0, 0, 0, P

11 , 0, ..., 0) and Ξ 1 (Θ) defined by

where

11 . Thus, applying Schur's complement to (66), it is obtained that Ξ 1 (Θ) ≤ 0 is equivalent to Ξ 2 (Θ) ≤ 0, where Ξ 2 (Θ) is defined as

Then, the bilinear term -LCP

11 is simplified as follows. By Λ-inequality with

the matrix Ξ 2 (Θ) can be upper estimated as Ξ 2 (Θ) ≤ Ξ 2 (Θ), where Ξ 2 (Θ) is defined by

where

and

for any Λ1 = ΛT 1 > 0. Let R 1 , R 2 > 0 be new matrix variables. Then, applying Λ-inequality to φ12 it follows that

and applying Schur's complement one gets the LMIs (29), i.e.

(3) 11

-Λ1 ≤ 0.

Thus the term Φ 1 is upper estimated as Φ 1 (Θ) ≤ Φ1 (Θ), where Φ1 (Θ) is defined by

Therefore, the matrix Ξ 2 (Θ) can be upper estimated as Ξ 2 (Θ) ≤ Ξ 3 (Θ), where Ξ 3 (Θ), is defined by Therefore, the LMI ( 27) is obtained when all the elements of Ξ 3 (Θ) are merged, and one conclude that if the set of LMIs ( 27) and ( 29) is feasible then Υ 1 (Θ) ≤ 0.

To conclude the proof, it is clear that a similar method may be used to obtain the LMIs ( 28) and ( 30) by means of inequality Υ 2 (Θ) ≤ 0. However, this procedure is omitted for the sake of brevity. Hence, the theorem is proven.