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HOLONOMY BRAIDINGS, BIQUANDLES AND QUANTUM
INVARIANTS OF LINKS WITH SL2(C) FLAT

CONNECTIONS

CHRISTIAN BLANCHET, NATHAN GEER, BERTRAND PATUREAU-MIRAND,
AND NICOLAI RESHETIKHIN

Abstract. R. Kashaev and N. Reshetikhin introduced the notion of ho-
lonomy braiding extending V. Turaev’s homotopy braiding to describe
the behavior of cyclic representations of the unrestricted quantum group
Uqsl(2) at root of unity. In this paper, using quandles and biquandles we
develop a general theory for Reshetikhin-Turaev ribbon type functor for
tangles with quandle representations. This theory applies to the unre-
stricted quantum group Uqsl(2) and produces an invariant of links with a
gauge class of quandle representations.

Contents

1. Introduction 2
2. Quandles 4
2.1. Basic definitions 4
2.2. The fundamental quandle 5
2.3. Q-tangles 5
2.4. Gauge action 8
3. Biquandles versus quandles 8
3.1. Basic definitions 9
3.2. Biquandle factorization of a quandle 11
3.3. More gauge actions 15
3.4. Examples 19
4. Biquandle braidings in pivotal categories 21
4.1. Pivotal categories 21
4.2. Biquandle representations 21
4.3. The biquandle ribbon functor 22
4.4. Gauge invariance of the functor F 24
4.5. Modified Q-link invariant 25
4.6. Example: Semi cyclic Uqsl(2)-modules 26
5. Generically defined biquandles in pivotal categories 28
5.1. Generically defined biquandle 28

This work is supported by the NSF FRG Collaborative Research Grant DMS-1664387.
The research of Blanchet was supported by French ANR project ModGroup ANR-11-BS01-
0020. Research of Geer was partially supported by NSF grant DMS-1452093. Geer and
Reshetikhin would like to thank Institut Mathématique de Jussieu, Paris, France for its
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1. Introduction

Following Jones and Reshetikhin-Turaev, it has been known for three
decades that invariants of links and tangles can be obtained from quantum
groups. The relevant structure is that of a ribbon category and categories of
modules over the restricted or unrolled quantum groups are endowed with
such structure, see for example [31]. This paper focus on defining tangle
invariants from categories which are not ribbon but have a more general
structure based on the so called holonomy braiding.

An important and well-studied example of a category that is not ribbon
comes from the non-restricted quantum group associated to a simple Lie
algebra. Such categories have been considered by a number of people in-
cluding De Concini, Kac, Procesi, Reshetikhin, Rosso and others (see for
example [7, 8, 9, 10] and references within). These categories have modules
with vanishing quantum dimensions. To define suitable invariants of tangles
coming from such categories one needs additional algebraic and topological
structures.

In [24], Kashaev and Reshetikhin generalize the Reshetikhin-Turaev link
invariant construction to G-tangles: tangles with a flat connection in a princi-
pal G-bundle over the complement of the tangle. Their construction is based
on the notion of a holonomy braiding: for certain pairs of objects (V,W ) in
a category C there exists a holonomy braiding V ⊗W → W g ⊗ V g where
V g and W g are objects of C (determined by V,W and G) that may not
be isomorphic to V and W , respectively. This map is meant to replace the

braiding and can be represented in a diagram by:
V W

W g V g

. Thus, they con-

sider diagrams where the coloring of the upper and lower strand of a crossing
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can both change. Such transformations are accounted for by connections in
the G-bundle and can be interpreted geometrically in terms of holonomies of
the G-connection along certain paths (see [24]).

The theory of [24] addresses the absence of the braiding but does not
lead to a G-link invariant in the case of the non-restricted quantum group
because of the following observations: (1) vanishing quantum dimensions
force the original construction of [24] to be zero for all links and so only
leads to invariants of open tangles and (2) the braiding is not defined on the
whole category but instead on generic pairs of simple modules. The theory of
modified traces given in [19, 18] can be used to overcome the first observation.
As we will see, the second observation can be tackled with the use of gauge
transformations.

To describe coloring of tangles and their diagrams we use (bi)quandles.
A (bi)quandle is an algebraic structure whose definition follows the Reide-
meister moves between classical knot diagrams. The fundamental quandle
of a knot is an invariant which is stronger that the fundamental group. In-
deed, it was shown independently by Joyce [27] and Matveev [29] that the
fundamental quandle classifies knots, while the fundamental group does only
for prime knots. The fundamental quandle has both intrinsic or diagram
based definition. A biquandle is a more general structure which can be used
to study knots and links via their diagrams. It was shown by Lebed and
Vendramin [28] that a biquandle produce a quandle structure in such a way
that representations of the fundamental quandle can be described combina-
torially with the biquandle. In this situation the biquandle will be called a
factorization of its associated quandle.

We now describe the main results of this paper. Let Q be a quandle, then
a tangle together with a representation of its fundamental quandle to Q will
be called a Q-tangle. We define the notion of representation of a biquandle,
which includes a holonomic braiding. Our first main theorem 4.2 states the
existence of a ribbon functor on the category of Q-tangle, provided we have
a representation of a biquandle factorization of Q. This can be applied to
the semi-cyclic version of quantum sl(2). For non restricted quantum sl(2),
formulas for the biquandle involve rational functions on central characters
which are only generically defined. We extend our theory to this setting; with
an appropriate notion of a representation of a generically defined biquandle
and using gauge action, we obtain similar ribbon functor. Our second main
theorem 5.11 is about invariants of links. The above functor vanishes on Q-
links. We show that a normalization using modified dimension produces an
invariant of gauge classes of Q-links. We apply the generically defined theory
to cyclic representations of non restricted quantum sl(2): we compute the
biquandle, describe the associated quandle Q in relation with the conjugation
quandle of SL2(C) and show that we obtain an invariant of gauge classes of
Q-links which is a complex number modulo a root of unity.

The existence of such an invariant is the first step in constructing a type
of Homotopy Quantum Field Theory [32, 33] in a new context modeled on
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the representation theory of the non-restricted quantum group. In particu-
lar, we hope the invariants given in the main example of this paper extend
to invariants of 3-manifolds endowed with a flat SL(2,C) connection. Such
invariants —and more generally invariants with flat GC connection, where
GC is a complex simple Lie group —are highly amenable to a physical for-
mulation. Indeed, quantum invariants of this type are prime candidates for
the analytic continuation of Chern-Simons theory with compact gauge group
G [22, 34].

The paper is organized as follows. In Section 2 we describe the intrinsic
topological notion of our invariants in terms of the fundamental quandle. In
Sections 3 and 4 we formulate the algebraic setting underlying of our paper
by considering biquandles and their representations in a pivotal category. In
Section 5 we generalize the notions of Sections 2–4 to the setting of generically
defined biquandles in pivotal categories where the holonomic braiding is not
necessarily defined everywhere. Section 6 contains our main example coming
from the cyclic modules of the unrestricted quantum group of sl(2). The
Appendices contain some proofs.

2. Quandles

In this section we will recall some basic definitions and facts about quandle
[27, 14]. Quandles turns out to be the correct topological setting for this
paper; they allow us to define intrinsic topological objects without working
with diagrams. We consider links and tangles with a representation of their
fundamental quandle. The motivating example is the conjugacy quandle
associated to SL2(C). Using representation of the fundamental quandle over
this quandle, we will recover tangles with a flat connection in a principal
SL2(C)-bundle over the complement of the tangle.

2.1. Basic definitions.

Definition 2.1. A quandle is a set Q with a binary operation (a, b)→ aB b
such that

(1) for all a, b, c ∈ Q, aB (bB c) = (aB b)B (aB c),
(2) for all a, b ∈ Q there is a unique c ∈ Q such that a = bB c,
(3) for any a ∈ Q, aB a = a.

A function f : Q→ Q′ between quandles is a homomorphism if f(aB b) =
f(a)B f(b) for all a, b ∈ Q. For each a ∈ Q, Axioms (1) and (2) imply that
the map (a B �) : Q → Q, given by x 7→ a B x is bijective homomorphism,
where the symbol � is used to denote a variable. A subquandle of a quandle
(Q,B) is a subset P of Q such that the restriction of B to P defines a quandle
structure.

Example 2.2 (The conjugacy quandle of a group). Let G be a group. The
binary operation gBh = g−1hg defines a quandle structure on G, denote this
quandle as Conj(G). Any subset of G that is closed under such conjugation
is subquandle of this quandle.
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We are particularly interested in the case when G is equal to SL2(C): the
set of 2× 2 matrices over C with determinant 1. Here the quandle structure
of Conj(SL2(C)) is given by conjugation of matrices:

M BM ′ = M−1M ′M.

The quandle SL2(C) has a self-evident subquandle: Its subset of non parabolic
elements, i.e. matrices with traces not equal to ±2.

2.2. The fundamental quandle. The fundamental quandle of a knot was
first defined by Joyce [23] and Matveev [29]. In this subsection we give the
definition of the fundamental quandle of a tangle.

Here we use the contravariant concatenation of paths in which γ.δ is defined
when γ(1) = δ(0).

A standard tangle is an oriented framed tangle Γ ⊂ (0,+∞)×R×[0, 1] such
that ∂Γ = Γ∩R2×{0, 1} = ({1, . . . , p} × {0} × {0})∪({1, . . . , q} × {0} × {1})
and Γ intersect R2 × {0, 1} transversally. Let Γ be a standard tangle, fix a
base point ∗ in {0} × R × [0, 1] and let MΓ = (R2 × [0, 1]) \ Γ. Let Q(Γ, ∗)
be the set of homotopy classes of continuous paths γ : [0, 1)→MΓ such that
γ(0) = ∗ and limt→1 γ(t) exist and is equal to some point of the tangle Γ.
Loosely speaking, Q(Γ, ∗) is the set of homotopy classes of paths from ∗ to
points close to Γ.

To define the quandle structure we consider the augmentation map

(1) ̂ : Q(Γ, ∗)→ π1(MΓ, ∗) given by a = [γ] 7→ â = [γε.m.γ
−1
ε ]

where m is a positive meridian of Γ around limt→1 γ(t) and γε = γ|[0,1−ε]
for some small ε. There is a left action of π1(MΓ, ∗) on Q(Γ, ∗) given by
concatenation of the paths.

Lemma 2.3. The set Q(Γ, ∗) has a quandle structure defined by the aug-
mentation map and concatenation of paths:

aB b = â−1.b .

Proof. A direct calculation using the definition shows âB b = â−1 .̂b.â. Using
this it is easy to see that B defines a quandle structure. �

The pair (Q(Γ, ∗),B) is called the fundamental quandle of Γ.

2.3. Q-tangles.

Definition 2.4. Let (Q,B) be a quandle. A representation of the funda-
mental quandle, or Q-tangle for short, is a standard tangle Γ together with
a quandle morphism ρ : Q(Γ, ∗)→ (Q,B).

To gain some feeling about quandles we have the following remark:

Remark 2.5. (A) (The fundamental quandle inside the fundamental
group) Let Γ be a link then we can consider the conjugacy quandle of the
fundamental group Conj(π1(MΓ, ∗)). The augmentation map a 7→ â is a
quandle morphism which is injective if and only if a Γ is prime link (the
two parallel arcs realizing a connected sum produce quandle elements with
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aB b

â
a
b

Figure 1. Quandle structure of the fundamental quandle.
There are many choices of convention made in this represen-
tation: base point on the left, “contravariant” composition in
the fundamental groupoid, positive/negative meridian, upward
orientation and the choice of what is a positive crossing.

the same image in the fundamental group, see [30, Theorem 3.5]). In this
situation we can identify Q(Γ, ∗) ⊂ Conj(π1(MΓ, ∗)).

(B) (Q-tangles generalize G-tangles) The associated functor Conj from
groups to quandles has a left adjoint Env that associates to a quandle (Q,B)
its envelope: the group freely generated by Q modulo the relations a B b =
a−1ba. It is well known that the envelope of the fundamental quandle is the
fundamental group, so when Q = Conj(G), we have

ρ ∈ Homquandle(Q(Γ, ∗),Conj(G)) ∼= Homgroup(π1(MΓ, ∗),G)

and a Q-tangle is just a G-tangle. Indeed, if ρ̂ ∈ Homgroup(π1(MΓ, ∗),G) then
its pre-composition with the augmentation map of Equation (1) is a quandle
structure on Γ. In particular, if the quandle Q is a normal sub-quandle of
Conj(G) (that is (G B Q) ⊂ Q) then a Q-tangle is the same as a G-tangle
(Γ, ρ) (see [24]) whose representation ρ̂ : π1(MΓ, ∗)→ G sends the meridians
of Γ into Q.

Example 2.6. Let Q = Conj(SL2(C)). If the complement MΓ of a tangle
Γ is equipped with a flat SL2(C)-bundle trivialized at the base point, the
holonomy map Hol : π1(MΓ, ∗)→ SL2(C) is equivalent to a quandle structure
ρ : Q(Γ, ∗) → Q. Here the trivialization at ∗ ∈ MΓ gives for any loop γ in
M from ∗ to ∗ a canonical lift γ̃ in the bundle from γ̃(0) = I2 ∈ SL2(C)
to Hol([γ]) := γ̃(1). This gives a one to one correspondence between Q-
tangles and diffeomorphism class of such bundles. Furthermore, changing the
trivialization of the bundle at the base point by a translation by x ∈ SL2(C)
correspond to changing the quandle map ρ with xB ρ. Hence gauge classes
of Q-tangle (defined in next section) are in one to one correspondence with
diffeomorphism classes of locally flat SL2(C)-bundles over (MΓ, ∗).

Given a set X let WX be the free monoid generated by pairs (x, ε) where
x ∈ X and ε ∈ {+,−}. If w = (x1, ε1) · · · (xp, εp) ∈ WX , set −w =
(x1,−ε1) · · · (xp,−εp) ∈ WX . Remark that the set X can be identified with
{(x,+) : x ∈ X} ⊂ WX .

A standard Q-tangle (Γ, ρ) determines a word in WQ which depends on its
bottom boundary: We first fix paths γi which are above Γ going from the
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a b

aB b a

and

aB b a

a b

Figure 2. Q-coloring around a crossing

base point to the ith bottom edge ei, i.e. γi ⊂ {x = 0} ∪ {z = 0 and y < 0}
and limt→1 γi(t) = (0, i, 0). Then

∂−Γ = (ρ(γ1), ε1) · · · (ρ(γp), εp) ∈ WQ

where εi is a sign which is + if the orientation of ei is incoming and − if
it is outgoing. Similarly, one can define a word ∂+Γ associated to the top
boundary.

Definition 2.7. The category T Q of Q-tangles is defined as follows. An
object in T Q is an element of WQ. A morphism Γ : w → w′ is an isotopy
class of a Q-tangle Γ such that ∂+Γ = w′ and ∂−Γ = w.

As usual, the composition is given by gluing standard tangles along their
top or bottom boundaries. An argument similar to Van Kampen’s theorem
ensures that the structure of two Q-tangles can be glued (we joint the base
points by a path in the plane x = 0. Similarly the disjoint union of Γ1 and
Γ2 gives the monoidal structure (we joint the base point of Γ2 to the base
point of Γ1 by a path above Γ1 so that ∂±(Γ1 t Γ2) = ∂±(Γ1).∂±(Γ2) ∈ WQ).

The regular planar projection in the (Oy) direction of a Q-tangle Γ is a
standard planar diagram D (a planar oriented graph embedded in (0,+∞)×
[0, 1] with univalent vertices on the boundaries (0,+∞) × {0, 1} and four-
valent vertices with the overcrossing information). The quandle morphism
ρ : Q(Γ, ∗) → (Q,B) gives a coloring of each edge e of D by the element
ρ(γe) where γe is a path above Γ from the base point to a point of Γ which
project on the edge. At a crossing, the four pathes γe are related in Q(Γ, x)
by the relation of Figure 1. Hence the Q-colors of the edges of D form a
quandle coloring, that is the colors in a neighborhood of a crossing satisfy
the relationship given in Figure 2. Remark that the two edge forming the
overcrossing strand have the same color. Reciprocally, the Wirtinger-like
presentation ofQ(Γ, ∗) implies that a quandle morphism ρ : Q(Γ, ∗)→ (Q,B)
is uniquely determined by the quandle Q-coloring of a regular projection of
Γ. One easily see that the elementary diagrams involved in Reidemeister
moves (see a generating set of these moves in Figure 3) have their coloring
uniquely determined by their boundaries and this lead to the notion of Q-
colored Reidemeister move for Q-colored diagrams.

We define a category DQ of planar diagrams up to planar isotopy: The
objects of DQ are the same as those of T Q and morphisms of DQ are formed
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↔ ↔ ↔ ↔

RII++ RII−+ RII+−

↔ ↔

RIII+++ RIf

Figure 3. Oriented framed Reidemeister moves. We call
RII++ and RIII+++ positive and RII−+ and RII+− negative.

by Q-colored diagram. Both categories DQ and T Q are pivotal with duality
given by standard cup and cap like diagrams and tangle. In particular, the
dual of w = (x1, ε1) · · · (xp, εp) ∈ WX is w∗ = (xp,−εp) · · · (x1,−ε1).

Theorem 2.8. The natural surjective pivotal functor DQ → T Q induces

bijections DQ/ ≡
∼=−→ T Q where ≡ is the equivalence relation on diagrams

generated by colored Reidemeister moves.

Proof. This follows from the standard Reidemeister theorem which ensures
that any isotopy of Γ translates into a finite sequence of framed Reidemeister
moves that can be upgraded to Q-colored framed Reidemeister moves between
Q-colored diagrams. �

2.4. Gauge action. Let ϕ : Q → Q′ be a quandle map (i.e. ϕ(a B b) =
ϕ(a)B ϕ(b)). Then post composing a Q-tangle ρ : Q(Γ, ∗) → (Q,B) with ϕ
gives a Q′-tangle ϕ ◦ ρ : Q(Γ, ∗) → (Q′,B). Similarly, changing all colors of
a Q-diagram to their image by ϕ produces a Q′-diagram. These assignments
induce functors which we still denote by ϕ:

(2) ϕ : T Q → T Q′ and ϕ : DQ → DQ′ .

These functors clearly commute with the functors of Theorem 2.8.
In particular, the self distributivity of the quandle operation implies that

for any a ∈ Q, a B � is an automorphism of Q. So if Γ is a Q-tangle with
representation ρ : Q(Γ, ∗) → Q and b ∈ Q then b B ρ : γ 7→ b B ρ(γ) is also
a representation on Γ and the action of b ∈ Q on a Q-colored diagram D is
just given by changing the color c of every edge of D with bB c. We call this
functorial action a gauge transformation by b.

3. Biquandles versus quandles

Here we study a generalization of a quandle called a biquandle (for more
on biquandles see [13, 15, 4]). Our motivation for studying biquandles come
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from unrestricted quantum groups. Kashaev and the last author showed
that even though the representation of the unrestricted quantum group at
root of unity is not braided, one can still define an outer automorphism R-
matrix inducing a holonomic braiding between some simple modules. We
will see that these maps give a canonical structure of a biquandle on the set
of isomorphism classes of simple projective modules.

As for quandles, biquandles were studied in classical knot theory. In par-
ticular, the axioms for a quandle are designed to allow colored Reidemeister
moves. With biquandle coloring, all four colors corresponding to the edges at
a crossing can be different. The algebraic structure underlying the topologi-
cal invariants we define later fit into this setting. Thus, biquandles allow us
to consider colored diagrams corresponding to our desired algebraic setting.
The main point is that quandle colored tangles (topology) correspond to bi-
quandle colored diagrams of the tangle up to colored Reidemeister moves
(algebra).

3.1. Basic definitions. We will use the symbol � as a shortcut for denoting
a variable (“f(�)” means “x 7→ f(x)”) and if a map F : X → Y × Z has
values in a cartesian product, for i = 1, 2, Fi is the ith component of F .

Definition 3.1. A biquandle is a set X with a bijective map B = (B1, B2) :
X ×X → X ×X which satisfies the following axioms:

(1) The map B satisfies the set Yang-Baxter equation

(Id×B) ◦ (B × Id) ◦ (Id×B) = (B × Id) ◦ (Id×B) ◦ (B × Id).

(2) The map B is sideways invertible: there exists a unique bijective map
S : X ×X → X ×X such that

S(B1(x, y), x) = (B2(x, y), y)

for all x, y ∈ X.
(3) The map S induces a bijection α : X → X on the diagonal:

S(x, x) = (α(x), α(x))

for all x ∈ X.

Remark 3.2. Axiom 2 is equivalently written as: for any x ∈ X, the maps
B1(x, �) and B2(�, x) are bijections. Relaxing 3 gives a more general structure
called a birack, for which a similar theory can be developed.

In the rest of this section, let (X,B) be a biquandle. Let DΓ be a regular
projection of a standard tangle Γ. AX-coloring ofDΓ is a coloring of its edges
by elements of X satisfying compatibility condition given by the biquandle
B for the four edges incident to any crossing as in Figure 4.

As in the case of quandle colored tangles, an X-coloring of DΓ determines
two words ∂−Γ and ∂+Γ in WX . On the other hand, the axioms of a biquandle
insure that any word associated to the top (resp. bottom) boundary of an
oriented braid diagram can be extended uniquely to a X-coloring of the whole
braid.
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(x4, x3) = B(x1, x2)
(x3, x2) = S(x4, x1)

:

x1 x2

x4 x3

and

x4 x3

x1 x2

Figure 4. X-coloring of a crossing

Definition 3.3. The category DX of X-colored diagrams is defined as fol-
lows. An object in DX is an element of WX . A morphism D : w → w′ is
a planar isotopy class of a X-colored diagram D such that ∂+D = w′ and
∂−D = w.

It is well known that the category of link diagrams colored by a ribbon
category is generated by crossings, cups and caps (see Lemma 3.1.1 of [31]).
The following lemma is the analogous lemma in the setting of X-colored
diagrams.

Lemma 3.4. As a tensor category, DX is generated by the six families of
elementary tangles:

(1) positive crossing χ+
x1,x2

: (x1,+)(x2,+)→ (B1(x1, x2),+)(B2(x1, x2),+)
where x1, x2 ∈ X (see Figure 4),

(2) negative crossing χ−x1,x2 : (B1(x1, x2),+)(B2(x1, x2),+)→ (x1,+)(x2,+)
where x1, x2 ∈ X (see Figure 4),

(3) left evaluation: =
←−
evx: (x,−)(x,+)→ ∅,

(4) left coevaluation: =
←−

coevx: ∅ → (x,+)(x,−),

(5) right evaluation: =
−→
evx: (x,+)(x,−)→ ∅,

(6) right coevaluation: =
−→

coevx: ∅ → (x,−)(x,+).

Proof. Up to planar isotopy, one can put all crossing upward. �

Definition 3.5. X-colored Reidemeister moves. Let D and D′ be X-
colored diagrams whose underlying diagrams are related by a framed Reide-
meister move. We say that they are related by an X-colored framed Reide-
meister move if the color assigned to an unmodified edge of D and D′ is the
same.

Remark 3.6. The axioms of a biquandle are not used in the definition of DX
and in the notion of a X-colored Reidemeister move (only the existence of B).
The map B could even be replaced by an arbitrary subset {(x1, x2, x3, x4)}
of X4 used to define coloring of crossings as in Figure 4.

The theory of biquandles insures that any framed Reidemeister move from
a X-colored diagram gives rise to a unique colored Reidemeister move:

Lemma 3.7.
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(1) Each framed Reidemeister move determines a canonical bijection be-
tween X-colorings of the two diagrams in the move.

(2) Let T be a standard tangle with a regular projection D. Any generic
isotopy ft of T induces a sequence of framed Reidemeister moves

D = D0 → D1 → · · · → Dn = D′.

The associated bijection between colorings of D and D′ only depends
of the homotopy class of ft.

Proof. The first statement follows directly from the axioms of a biquandle.
For the second statement, let (ft,s)t,s∈[0,1] be a generic homotopy of isotopies.
The values (t, s) for which the projection of ft,s(T ) is not a regular planar
diagram form a finite graph in [0, 1]× [0, 1] whose edges correspond to framed
Reidemeister moves. It is enough to show that the loop of Reidemeister moves
around each vertex of this graph (i.e. a movie move, see [5]) induces the
identity on the set of coherent colorings of the initial diagram. This follows
from the fact that the change in any diagram in such a loop is contained
in a flat closures of some braid diagram. Hence, their coloring are uniquely
(over-)determined by the constant coloring of their boundary. �

3.2. Biquandle factorization of a quandle. In [28], Lebed and Ven-
dramin show that each biquandle can be associated with a quandle structure,
they actually prove something more general. In our setting their ideas imply:

Proposition 3.8. Let (X,B) be a biquandle. For x, y ∈ X the operation B
given by

(3) xB y = B1(x, S1(x, y)) :

y

x

xB y

S1(x, y).

defines a quandle structure on X.

Proof. This proposition is essentially a special case of Proposition 5.7 of
[28]. However, in [28] Lebed and Vendramin choose a different convention.
So in Proposition 5.7 they define a slightly different operation x C y =
B2(S2(x, y), y). We change this convention to have biquandle maps asso-
ciated to positive crossings and base point on the left. However, the proof
is essentially the same: The axiom xB x = x follows from Axiom (3) of the
definition of a biquandle. Given x, y ∈ X then z = B−1

1 (y, S2(x, y)) is the
unique element satisfying x = y B z. Finally, the Axiom (1) of a definition
of a quandle follows from an analogous argument using three unknots as in
Figure 5.4 of [28]. �

We say Q is the quandle associated to (X,B). We will denote by Q the

set X (or an isomorphic copy Q : X
∼→ Q) with the quandle structure B.
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x

yz

γ
x′

x′ = B1(z, S1(y, x))

Figure 5. The first image is an example of a X-colored di-
agram (D, c). The second image is the diagram with a path
γ. The third image is the result of the Reidemeister moves
showing f(D,c)(γ) = B1(z, S1(y, x)). Here the S1(y, x) comes
from the passing the edge labeled with x over the edge labeled
with y and the B1 appears after passing the edge under the
edge colored with z.

We say that the biquandle (X,B) is a biquandle factorization of the quandle
(Q,B).

Let Q be a quandle with a biquandle factorization (X,B). Next we will
discuss how Q-colorings are related to X-colorings. Let T be a standard
tangle and let (D, c) be a regular projection of T with a X-coloring c. Recall
MT = R2 × [0, 1] \ T has a base point ∗ to the left of T . Consider the set P
of continuous embedded paths in MT from ∗ to T , i.e. γ : [0, 1] → MT such
that γ(0) = ∗ and γ(1) ∈ T .

We will define a map f(D,c) : P → X. Given γ ∈ P , we can think of T ∪ γ
as a graph in R2 × [0, 1]. Let D ∪ γ be a regular projection of this graph
such that γ meets T on the left, i.e. when looking in the direction of the
orientation of edge of T you see γ on the left. By “pulling” a neighborhood
of γ back to the base point ∗ we obtain a isotopy i which ends with γ
being a short line segment near ∗. This isotopy can be represented by a
series of colored Reidemeister moves. After apply this sequence of colored
Reidemeister moves, the path γ becomes a short line segment near ∗ and the
edge of D which containing γ(1) is colored by an element a ∈ X. We set
f(D,c)(γ) = a. For an example of how to compute f(D,c)(γ) see Figure 5.

In [28], Lebed and Vendramin defined the notion of a guitar map which
makes a correspondence between colorings given by algebraic structures which
are more general than biquandles and quandles. Applying this notion to our
context and generalizing it to the categorical setting, we have the following
theorem:

Theorem 3.9. The map f(D,c) : P → X induces a quandle morphism fD,c :
Q(T, ∗)→ Q from the fundamental quandle of T to Q. Moreover, there exists
a unique bijective functor

Q : DX → DQ
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defined by (D, c) 7→ (D, f(D,c)). This functor induces a unique bijective func-
tor

Q̃ : DX/colored Reidemeister moves→ TQ

defined by (D, c) 7→ (T, f(D,c)).

Proof. First, we will show that for each (D, c) in DX the map f(D,c) : P → X
extends to a quandle homomorphism Q(T, ∗) → Q which is invariant under
colored Reidemeister moves. Given [γ] ∈ Q(T, ∗), let γ : [0, 1) → MT be
a framed representative of [γ] with γ(0) = ∗ and γ(1) = limt→1 γ(t) ∈ D.
Using continuity we can view γ as an element of P and as explained above
can assign f(D,c)(γ) ∈ X. We will show this assignment depends only on the
homotopy class [γ].

Suppose γ′ is another representative of [γ]. Doing the above process we
obtain an isotopy i′ and a corresponding sequence of colored Reidemeister
moves where the path γ′ becomes a short line segment near ∗ and the edge
of D which contains γ′(1) is colored by an element a′ ∈ X. We will show
a = a′.

Assume first that γ′ and γ are isotopic. Let i be the isotopy used to define
f(D,c)(γ) as discussed above the theorem. Let j be an isotopy of R2 × [0, 1]
taking T∪γ to T∪γ′. Now the concatenation of isotopies i′.j.i−1 is an isotopy
taking the short line segment near ∗ (which is isotopic to γ) to the same short
line segment (which is isotopic to γ′). Notice that the line segment near ∗
which is isotopic to γ and γ′ is in a 3-ball. Thus, there exists a isotopy
k which takes the initial embedding of i′.j.i−1 to its final embedding and
does not modify the 3-ball containing the line segment. The isotopy k can
be represented by colored Reidemeister moves. Since the isotopy does not
change the 3-ball the color of the edge near ∗ is the same before and after
any of these Reidemeister moves. Moreover, when the points γ(1) and γ′(1)
are pulled back along the path to ∗ one produces a “doubling” of the path
with the same color but opposite orientations on the two strands. If the color
of the double stand is x and the pull back is going to cross an edge labeled
with y then the crossing becomes:

x x y

y z z

Since this is a double with opposite orientated edges colored with x, the rules
of the biquandle imply that the colors of the edges are the same on both sides
of crossing. Hence a only depends of the isotopy class of γ.
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γ

α̂

α

β

γ

α

β

Figure 6. The 3 pathes defining the Q-coloring near a cross-
ing can be isotoped together near the base point.

Next remark that at a self crossing of γ, the pull back looks like:

x x y y

y y x x

Thus, changing such a crossing we see that the coloring of the diagram does
not change outside a neighborhood of the crossing, so a does not change.
Hence a only depends of the homotopy class of γ and this proves a = a′.

Next, we prove that f(D,c) gives a Q-coloring of D. If e is an edge of D,
define

Q(e) = f(D,c)(γ) ∈ Q

where γ is a path above D going from ∗ to e from the left. We just showed
this assignment is independent of the homotopy class determined by γ. We
need to show that the relation given in Figure 2 holds for every crossing.
Let α, β, γ be representatives of the three paths in Q(T, ∗) going above D to
three edges of a crossing as in left hand side Figure 6. By definition of the
fundamental quandle, we have

αB β = α̂−1.β = (αε.m.α
−1
ε )−1.β = αε.m

−1.α−1
ε .β = γ

Consider an isotopy moving the neighbor of the crossing to the base point
above the diagram. Then the 3 pathes are retracted to the position in the
right of Figure 6. Now, by the definition of the biquandle coloring, we see
that the path γ in Figure 6 ends to an edge colored by

B1(f(D,c)(α), S1(f(D,c)(α), f(D,c)(β))) = f(D,c)(α)B f(D,c)(β)

where B is the quandle structure on X ∼= Q defined in Equation (3) and we
have showed Q is a Q-coloring of D. Moreover, this shows Q is uniquely
defined on objects.

So we have proved that f(D,c) : P → X factors as a map Q(T, ∗) → Q.
By construction, if (D′, c′) is a X-colored regular projection of T related to
(D, c) by colored Reidemeister moves then f(D,c) = f(D′,c′). So we can assign

Q̃ : DX/colored Reidemeister moves→ TQ given by (D, c) 7→ (T, f(D,c)).
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χ+
w,w′ =

B̃+
1 (w,w′) B̃+

2 (w,w′)

(x1, ε1)...(xm, εm) (x′1, ε
′
1)...(x′n, ε

′
n)

χ−w,w′ =

B̃−1 (w,w′) B̃−2 (w,w′)

(x1, ε1)...(xm, εm) (x′1, ε
′
1)...(x′n, ε

′
n)

Figure 7. The diagram χ±w,w′ and words B̃±1 and B̃±1 . The
orientation is induced from the boundary.

Finally, notice that Q is a functor because f(D,c) does not change when a
tangle is glued on top of D. �

3.3. More gauge actions. In Subsection 2.4 we defined a gauge action on
quandle diagrams and Q-tangles. In this subsection, we define gauge actions
on biquandle colored diagrams. We show that the functor Q preserves these
transformations. To do this we extend the gauge actions to functors. The
idea behind the functors is easy: one use colored Reidemeister moves to slide
a component colored by element of X over a diagram, the result is a gauge
transformed diagram. To define the functor we make this idea precise and
extend it to words in X.

In this subsection, let Q be a quandle with a biquandle factorization
(X,B). To define the desired functors we first consider the gauge action
of words in WX as follows. Given words w = ((x1, ε1), ..., (xm, εm)) and
w′ = ((x′1, ε

′
1), ..., (x′n, , ε

′
n)) in WX , let χ+

w,w′ be the (m,n)-cable of the posi-

tive crossing. We color and orient the bottom boundary of χ+
w,w′ using the

corresponding color and sign in (w,w′). The biquandle structure allows us
to extend the coloring of the bottom boundary to a X-coloring of the whole
diagram. Thus, the first n components of the top boundary are associated

with a word which we denote by B̃+
1 (w,w′). Similarly, we denote B+

2 (w,w′)
by the word associated to the next n components, see Figure 7. We obtain

a map B̃+ = (B̃+
1 , B̃

+
2 ) : WX ×WX → WX ×WX .

These maps can be extended to diagrams:

B̃+
1 : WX ×DX → DX and B̃+

2 : DX ×WX → DX

such that B̃+
1 (w, �) and B̃+

2 (�, w) are functors where the symbol � is used

to denote a variable. The value of the functor B̃±1 on a diagram is defined
by using colored Reidemeister moves to slide the w colored cable of a strand
above (resp. under) the diagram (see Figure 8). Lemma 3.7 insures that this
definition is well defined.
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D

w

≡
D1

D

w

≡
D2

D

w

≡
D3

D

w

≡
D4

D1 = B̃+
2 (D,w) D2 = B̃+

1 (w,D) D3 = B̃−2 (D,w) D4 = B̃−1 (w,D)

Figure 8. Functors B̃±i . Here the blue strands represent the
parallel strands made from the cabling; their color and orien-
tation is induced from the boundary. The equivalence ≡ is
generated by colored Reidemeister moves.

These functors are not monoidal; instead, if f : w1 → w′1 and g : w2 → w′2
are morphism in DX then

B̃+
1 (w, f ⊗ g) = B̃+

1 (w, f)⊗ B̃+
1

(
B̃+

2 (w,w1), g
)

and

B̃+
2 (f ⊗ g, w) = B̃+

2

(
f, B̃+

1 (w2, w)
)
⊗ B̃+

2 (g, w).

Also

B̃+
1 (w∗, �) = B̃+

1 (w, �)−1 and B̃+
2 (�, w∗) = B̃+

2 (�, w)−1.

Analogously, we define the functors B̃−i by using the (m,n)-cable of the
negative crossing χ−w,w′ instead of χ+

w,w′ , see Figures 7 and 8. All the functors

B̃±i leave unchanged the underlying uncolored diagram and consequently they
are compatible with colored Reidemeister moves.

These functors generate an equivalence relation: we say all the diagrams
D,D1, D2, D3, D4 of Figure 8 are B-gauge equivalent ; we call the functors
representing these equivalences B-gauge transformations. We also say that
two Q-tangles T, T ′ (resp. Q-colored diagrams D,D′) are B-gauge equivalent

if there exists B-gauge equivalent X-diagrams E,E ′ such that Q̃(E) = T

and Q̃(E ′) = T ′ (resp. Q(E) = D and Q(E ′) = D′).
As sets Q = X so B-gauge transformations give bijections of Q which we

see as actions of X on Q and denote with up and down harpoons: if x ∈ X
and b ∈ Q, let

(4) x⇀b = B1(x, b) and x⇁b = B−1
1 (x, b).

We extend this bijective action to words: for w ∈ WX set

w⇀b = B̃+
1 (w, b) and w⇁b = B̃−1 (w, b).

Proposition 3.10. For any w ∈ WX , the bijections of Q given by w⇀� and
w⇁� are quandle automorphisms of Q. In other words, for all b, b′ ∈ Q we
have

w⇀(bB b′) = (w⇀b)B (w⇀b′) and w⇁(bB b′) = (w⇁b)B (w⇁b′).
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Moreover,

bB b′ = x⇀(x′⇁b′) where x = (b,+) and x′ = (b,−).

Proof. We prove the relation for down harpoon, the up harpoon is similar.
Let x ∈ X and b, b′ ∈ Q. By applying a sequence of colored Reidemeister
moves we have the following equivalence of X-colored diagrams:

x b

b′

bBb′

x⇁(bBb′)

≡
x

x⇁b′

x⇁b
≡

(x⇁b)B(x⇁b′)

x⇁b′

x⇁b
.

Since the color on the upper left corner does not change under these moves
we have x⇁(bB b′) = (x⇁b)B (x⇁b′). Applying this relation recursively we
have that the desired relations holds for words.

The last statement of the proposition follows from the fact that for b, b′ ∈
Q = X, the quandle operation b B b′ was defined by the X-coloring of the
following diagram:

(5)

b′

b

bB b′

z ∼=

b b′

z

t

where

{
z = (b,−)⇁b′

t = (b,+)⇀z

Thus bB b′ = (b,+)⇀((b,−)⇁b′).
�

Note the following reformulation of the previous identity:

(6) ∀x ∈ X, ∀b ∈ Q, x⇀b = xB (x⇁b).

As explained in Subsection 2.4, the quandle automorphisms of Proposi-
tion 3.10 induce bijective endofunctors w⇀� and w⇁� on both T Q and DQ,
see Equation (2).

Proposition 3.11. The B-gauge equivalence of Q-tangles are generated by
the harpoon automorphisms. In particular, gauge equivalent Q-tangles (for
the quandle gauge equivalence) are B-gauge equivalent.

Proof. To prove the first statement, it is enough to show the images under
Q of equivalences represented in Figure 8 can be written in terms of the
harpoon automorphisms. Considering the second and fourth equivalence will

be sufficient because bijections from B̃±2 are inverse of those from B̃±1 : for
any D : w1 → w2 and w ∈ WX , an obvious isotopy implies that

(7) B̃±2 (B̃±1 (w±, D), w) = D where w± = B±1 (w2, w) = B±1 (w1, w).
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D

γ′ D4

γ′4

D

D4

Figure 9.

We will show the fourth equivalence, the second analogously follows. Let T
and T4 be standard tangles whose regular projections are the X-diagrams D
and D4, respectively, in the fourth equivalence of Figure 8. We will show

(8) w⇁Q(D) = Q(B̃−1 (w,D))

that is w⇁Q(D) = Q(D4) where w is the word in the equivalence.
To do this, notice the edges of D and D4 are the same. Fix one of these

edges e. Choose a path γ in MT = R2 × [0, 1] \ T from the base point to
e such that γ goes above T . Pulling this edge back to the base point as in
Figure 5 we obtain an X-colored diagram whose color near the base point is
by definition Q(D)(γ) ∈ X = Q. Similarly, by choosing a path γ4 from ∗ to
e above MT4 we obtain Q(D)(γ4).

Next, we compare these values. Let T ′ be the standard tangle obtained
from T by adding strands determined by w having the two regular projections
in the fourth equivalence of Figure 8. Let γ′ be the path in T ′ which is the
extension of γ by going above the strands colored by w then continuing by
γ, see Figure 9. Let γ′4 be the inclusion of γ4 also depicted in Figure 9.
Pulling the paths γ′ and γ′4 back to the bases point we obtain X-colored
diagrams whose colors near the base point are w⇁Q(D)(γ) and Q(D4)(γ4),
respectively (see Figure 9). But the paths γ′ and γ′4 are isotopic in T ′ and
so w⇁Q(D)(γ) = Q(D4)(γ4). Since e is a general edge we have proven
w⇁Q(D) = Q(D4).

The last part of the proposition follows from the last part of Proposition
3.10 which implies that for any Q-tangle T ,

bB T = (b,+)⇀((b,−)⇁T ).

�

Remark that the action ⇁ is the defect of monoidality of Q and Q̃:

Proposition 3.12. For all D,D′ ∈ DX we have

Q(D ⊗D′) = Q(D)⊗ (w⇁Q(D′)) and Q̃(D ⊗D′) = Q̃(D)⊗
(
w⇁Q̃(D′)

)
where w = ∂±D.

Proof. Let e be an edge of D′. To compute the value assigned to e in Q(D⊗
D′) one needs to pass over the edges corresponding to ∂±D then extend to a
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path above D′ as done in the proof of Proposition 3.11. Thus, the proof of
Equation (8) implies the proposition. �

3.4. Examples.

Example 3.13 (Group factorization). A group factorization is a pair of
groups (G,G∗) with morphisms ϕ+, ϕ− : G∗ → G such that the map

ψ : G∗ → G given by x 7→ ϕ+(x)ϕ−(x)−1

is bijective. We generalize this notion as follows: a generalized group factor-
ization is a tuple (G,G,G∗, ϕ+, ϕ−) where:

(1) G,G and G∗ are groups such that G is a normal subgroup of G,
(2) ϕ+, ϕ− : G∗ → G are group morphisms such that the map

ψ : G∗ → G given by x 7→ ϕ+(x)ϕ−(x)−1

restricts to a bijection between G∗ and G.

Then we can associate a biquandle B : G∗×G∗ → G∗×G∗ to a generalized
group factorization. For x1, x2 ∈ G∗, the elements (x4, x3) = B(x1, x2) are
the unique solutions of the system

(9)

{
x4 x3 = x1 x2 ∈ G∗

ϕ+(x4)ϕ−(x3) = ϕ−(x1)ϕ+(x2) ∈ G.

They are given by

x4 = ψ−1
(
ϕ−(x1)ψ(x2)ϕ−(x1)−1

)
and x3 = ψ−1

(
ϕ+(x4)−1ψ(x1)ϕ+(x4)

)
.

Then B satisfies the set braid relation (see [24, 17] for details). Further, one
can see that the sideways map S is given by

(10) S = (Id×i) ◦B−1 ◦ (i× Id)

where i : x 7→ x−1 and x−1 is the inverse of x in G∗. Thus B is sideways
invertible. Moreover, for any x ∈ G∗, let α(x) = ψ−1(ϕ−(x)−1ϕ+(x)) =
ψ−1(ψ(x−1)−1) then B(x, α(x)) = (x, α(x)). Thus the last condition of the
definition of a biquandle holds.

Let us show the quandle structure associated to this biquandle under the
image of ψ is the conjugacy quandle of G. To do this consider B(x1, x2) =
(x4, x3) and B(x4, x3) = (x6, x5) for x1, x2 ∈ G∗. Then from Equation (3) we
have x6 = x4 B x1. So we need to compute the image of x6 under ψ:

ψ(x4 B x1) = ψ(x6) = ϕ−(x4)ψ(x3)ϕ−(x4)−1

= ϕ−(x4)ϕ+(x4)−1ψ(x1)ϕ+(x4)ϕ−(x4)−1

= ψ(x4)−1ψ(x1)ψ(x4).(11)

Thus, the quandle structure on G∗ associated to B is the pull back via ψ
of Conj(G). Finally,

ψ ◦
(
B±1
)

(x, �) = ϕ∓(x)ψ(�)ϕ∓(x)−1

so B-gauge transformations are the pull back of conjugations in G.
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Note that factorizable Poisson Lie groups provide examples of such factor-
ization (G,G∗, ϕ+, ϕ−). In this case G is a factorizable Poisson Lie group and
G∗ is its Poisson Lie dual.

Example 3.14. Let G be a complex simple Lie group. Fix a Borel subgroup
B ⊂ G. According to the Iwasawa decomposition, every element g ∈ G can
be written as

g = ank = k′a′n′.

Here a, a′ ∈ A ⊂ H ⊂ B are totally positive elements of the Cartan subgroup
of B (for SLn(C) they are diagonal matrices with positive entries). Elements
n, n′ ∈ N ⊂ B are unipotent (complex) and form the maximal unipotent
subgroup of B, and k, k′ ∈ K ⊂ G are elements of the compact real form of
G. Let K′ = K with opposite multiplication, then we have an example of
factorization (G,G∗, ϕ+, ϕ−) with

G∗ = AN× K′, ϕ+ : (an, k) 7→ an and ϕ− : (an, k) 7→ k−1.

Example 3.15. Here we consider a particular example of a exact group fac-
torization which we will see later is related to the G-link invariants associated
to the semi cyclic Uqsl(2)-modules of [17], see Subsection 4.6.

Let SL2(C) be the group of 2 × 2 matrices with determinate 1. Let G be
the group of 2× 2 upper triangular invertible matrices, G = G ∩ SL2(C) and

G∗ =

{
gκ,ε =

((
κ 0
0 1

)
,

(
1 ε
0 κ

))
: κ ∈ C∗, ε ∈ C

}
⊂ G× G.

Let ϕ+, ϕ− the projections on the two factors.
Then (G,G,G∗, ϕ+, ϕ−) is a group factorization where ψ : G∗ → G is given

by

ψ(gκ,−ε) =

(
κ 0
0 1

)(
1 −ε
0 κ

)−1

=

(
κ ε
0 κ−1

)
.

As above this induces a structure of biquandle B : G∗ × G∗ → G∗ × G∗. In
particular, given x1 = gκ,ε and x2 = gκ′,ε′ we can use the formulas right after
Equation (9) to compute B(x1, x2) = (x4, x3):

x4 = gκ′,(εκ′+ε′−ε(κ′)−1)κ−1 and x3 = gκ,ε(κ′)−1 .

Equation (11) implies the quandle associated to (B,G∗) is Conj(G) where G
is the upper Borel of SL2(C).

Example 3.16 (Fibered product). Let (X,B) be a biquandle and f : X →
Y be a map to a set Y . We say that f is invariant on X if whenever
(x4, x3) = B(x1, x2), one has f(x4) = f(x2) and f(x3) = f(x1). Given an
invariant map f : X → Y and a surjective map g : Z → Y , the fiber product
X ×(f,g) Z = {(x, z) : f(x) = g(z)} is naturally equipped with the biquandle
structure given by

B((x1, z), (x2, z
′)) = ((x4, z

′), (x3, z))

where (x4, x3) = B(x1, x2). Furthermore, the projection on the factors are
biquandle maps.
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4. Biquandle braidings in pivotal categories

In this section we define an invariant of Q-tangles analog to the Reshetikhin-
Turaev ribbon functor. Here Q is a quandle and the algebraic data involved
is a biquandle factorization (X,B) of Q and a representation of (X,B) in a
pivotal category C . The construction can be summarized in a composition
of functors:

TQ
Q̃−1

−→ DX/≡
F−→ C

where as above TQ is the category of Q-tangles (topological intrinsic object),
DX is the category of X-colored planar diagrams (algebraic and computa-
tional object) and the equivalence “≡” is generated by colored Reidemeister
moves.

4.1. Pivotal categories. Recall that a pivotal category is a (strict) tensor
category C , with unit object 1, such that to each object X ∈ C there is
associated a dual object X∗ ∈ C and four morphisms

←−
evX : X∗ ⊗X → 1,

←−
coevX : 1→ X ⊗X∗,

−→
evX : X ⊗X∗ → 1,

−→
coevX : 1→ X∗ ⊗X,

such that (
←−
evX ,

←−
coevX) is a left duality for X, (

−→
evX ,

−→
coevX) is a right duality

for X, and the induced left and right dual functors coincide as monoidal
functors (see for example [2]). Let k = EndC (1). The tensor product gives
k the structure of a commutative monoid which acts on left and right on
homomorphism set in C . We assume that these left and right actions are
equal. If f is a morphism in C and k ∈ k, we just write k.f for

(12) k.f = k ⊗ f = f ⊗ k.

For X ∈ C , the right quantum dimension dimC (X) is the element in k
determined by dimC (X) =

−→
evX ◦

←−
coevX

An object V of C is absolutely simple if the map k→ EndC (X), k 7→ k. IdX
is a bijection. An object V of C is regular if V ⊗ � is a faithful endofunctor
of C , i.e. IdV ⊗� defines a family of injective maps on Hom-sets of C (this is
true for example when k is a commutative ring, for V a non zero object, if
objects of C are free k-modules).

4.2. Biquandle representations. Let (X,B) be a biquandle and let C be
a strict pivotal category. Given a family of objects {Vx}x∈X of C the map
B : X ×X → X ×X induces a map (which we still denoted by B):

B = (B1, B2) : {Vx}x∈X × {Vx}x∈X → {Vx}x∈X × {Vx}x∈X
given by B((Vx, Vy)) = (VB1(x,y), VB2(x,y)).

A Yang-Baxter model (V�, c�,�) of a biquandle (X,B) in C is a family of
objects {Vx}x∈X of C and a family of isomorphisms

{cx,y : Vx ⊗ Vy → B1(Vx, Vy)⊗B2(Vx, Vy)}(x,y)∈X2
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which satisfy the colored braid relation: for any elements x, y, z in X, we
have an equality of isomorphisms
(13)
(c�,�⊗ Id�) ◦ (Id�⊗c�,�) ◦ (cx,y ⊗ IdVz) = (Id�⊗c�,�) ◦ (c�,�⊗ Id�) ◦ (IdVx ⊗cy,z)
where the � objects are completed with the biquandle structure B.

Let (V�, c�,�) be a Yang-Baxter model of (X,B) in C . For any objects
V1, V2, in {Vx}x∈X , with B(V1, V2) = (V4, V3), the isomorphisms c�,� and the
pivotal structure give rise to sideways morphisms:

s+
L(V4, V1) =

(
←−
evV4 ⊗ IdV3⊗V ∗2

)
◦
(
IdV ∗4 ⊗cV1,V2 ⊗ IdV ∗2

)
◦
(

IdV ∗4 ⊗V1 ⊗
←−

coevV2

)
,

s−R(V4, V1) =
(

IdV ∗4 ⊗V1 ⊗
−→
evV2

)
◦
(
IdV ∗4 ⊗c

−1
V1,V2
⊗ IdV ∗2

)
◦
(
−→

coevV4 ⊗ IdV3⊗V ∗2

)
.

We say the model (V�, c�,�) is sideways invertible if s+
L and s−R are inverse

isomorphisms. In other words, for any objects V1, V2, V3, V4 as above, we
have

s−R(V4, V1) ◦ s+
L(V4, V1) = IdV ∗4 ⊗V1 , s+

L(V4, V1) ◦ s−R(V4, V1) = IdV3⊗V ∗2 .(14)

For x ∈ X, let θx : Vx → Vx be the endomorphism defined by

θx =
(

IdVx ⊗
−→
evVα(x)

)(
cVx,Vα(x) ⊗ Id(Vα(x))

∗

)(
IdVx ⊗

←−
coevVα(x)

)
where α : X → X is the bijection given in Definition 3.1. We say that the
model (V�, c�,�) induces a twist θ if

θx =
(
←−
evVα−1(x)

⊗ IdVx

)(
Id(Vα−1(x))

∗ ⊗cVα−1(x),Vx

)(
−→

coevVα−1(x)
⊗ IdVx

)
.

Definition 4.1. A representation (V�, c�,�) of a biquandle (X,B) in a pivotal
category C is a Yang-Baxter model of (X,B) in C which is sideways invertible
and induces a twist.

4.3. The biquandle ribbon functor. Here we define the analog of the
Reshetikhin-Turaev ribbon functor for Q-tangles. First we define a functor
on X-diagrams.

Theorem 4.2. Let (V�, c�,�) be a representation of a biquandle (X,B) in a
pivotal category C . Then there exists a unique tensor functor

F : DX/≡→ C

such that for any x, y in X we have F ((x,+)) = Vx, F ((x,−)) = V ∗x and the
morphisms are determined by it value on the elementary tangle diagrams:

F (χ+
x,y) = cx,y, F (χ−x,y) = c−1

x,y,

F (
←−
evx) =

←−
evVx , F (

←−
coevx) =

←−
coevVx , F (

−→
evx) =

−→
evVx and F (

−→
coevx) =

−→
coevVx .

Proof. The pivotal category C gives rise to a RT-pivotal functor from the
category of C -colored planar graphs with coupons to C . A diagram D ∈ DX
is made up of the elementary tangles: strands, cap, cup and braidings. By



HOLONOMY BRAIDINGS, BIQUANDLES AND QUANTUM INVARIANTS 23

replacing all the ±-crossings of D ∈ DX with coupons filled with the mor-
phisms c±1 we can obtain a C -colored planar graph with coupons which we
denote by D′. Define F (D) as the RT-pivotal functor evaluated on D′. From
the properties of the RT-pivotal functor, F (D) only depends on the planar
isotopy class of D′. To see F is invariant under the equivalence generated
by the color Reidemeister moves it is sufficient to check that it satisfy the
generating set of six colored Reidemeister moves:

{the two RII++, RIII+++, RII+−, RII−+, RI
f},

see Figure 3. But the axioms of the biquandle representation imply these
moves are satisfied. Thus, we obtain a tensor functor F : DX/≡→ C . By
definition this functor satisfies the values on the elementary tangles given
in the statement of the theorem. By Lemma 3.4 these elementary tangles
generate the tensor category DX and so determine the functor. �

Corollary 4.3. Let Q be a quandle with a biquandle factorization (X,B)
and (V�, c�,�) be a representation of (X,B) in a pivotal category C . Then the

formula F̃ = F ◦ Q̃−1 defines a functor

F̃ : T Q → C .

This functor is uniquely determined by F̃ ((x,+)) = Vx, F̃ ((x,−)) = V ∗x , the
image of the elementary tangles cap, cup and braidings and by the property:
for any T, T ′ ∈ T Q,

(15) F̃ (T ⊗ T ′) = F̃ (T )⊗ F̃ (w⇁T ′),

where w = Q̃−1(∂±T )∗.

Proof. Clearly, F̃ is a functor. Let us prove that Equation (15) holds. By

applying Q̃−1 to both sides of the equality in Proposition 3.12 we have

D ⊗D′ = Q̃−1
(
Q̃(D)⊗

(
w⇁Q̃(D′)

))
where w = ∂±D. Substituting the tangles T = Q̃(D) and T ′ = w⇁Q̃(D′)
into this equation we have

Q̃−1(T )⊗ Q̃−1(w∗⇁T ′) = Q̃−1(T ⊗ T ′).

where D′ = Q̃−1(w∗⇁T ′) because (w⇁�)−1 = (w∗⇁�) which follows from
an argument using a Reidemeister II move. Since F is a tensor functor the
desired equation holds.

Finally, we need to prove the functor is uniquely determined by the above
properties. Each tangle in T Q can be written as the composition of the
tensor product (i.e. disjoint union) of the elementary tangles cap, cup and
braidings. But Equation (15) says that such a tensor product is determined
by the values of the elementary tangles. �
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4.4. Gauge invariance of the functor F . Here we consider gauge invari-
ance of the restriction of F to Q-links. Recall that we assume that C is a
pivotal category for which Equation (12) is satisfied.

Definition 4.4. A representation (V�, c�,�) of a biquandle (X,B) in C is
simple (resp. regular) if each object Vx is absolutely simple (resp. regular),
see Subsection 4.1 for definitions of absolutely simple and regular.

If a regular object V ∈ C , has an endomorphism f ∈ k. IdV , we denote by
〈f〉 the unique element of k such that f = 〈f〉 IdV .

Theorem 4.5. Let (V�, c�,�) be a simple regular representation of a biquandle
(X,B) in a pivotal category C and Q its associated quandle. For any x, y ∈ X
and any diagram Dx ∈ EndDX ((x,+)) one has

(16) 〈F (Dx)〉 =
〈
F (B̃±1 (y,Dx))

〉
.

Moreover, if T and T ′ are B-gauge equivalent 1-1 Q-tangle then〈
F̃ (T )

〉
=
〈
F̃ (T ′)

〉
.

Proof. We prove the positive version of Equation (16), the negative is similar.

By definition, the diagrams Id(y,+)⊗Dx and χ−B(y,x) ◦
(
B̃1(y,Dx)⊗ Id

)
◦ χ+

y,x

are related by a sequence of colored Reidemeister moves so their images under
F are equal. Using this observation we have

〈F (Dx)〉 Id(y,+)⊗ Id(x,+) = F (Id(y,+)⊗Dx)

= F
(
χ−B(y,x) ◦

(
B̃1(y,Dx)⊗ Id(B2(y,x),+)

)
◦ χ+

y,x

)
=
〈
F (B̃1(y,Dx))

〉
c−1
y,x ◦ cy,x

and the result follows from the regularity of Vx ⊗ Vy.
To prove the last statement, recall that the bijections B̃±2 are inverses

of B̃±1 , see Equation (7). Thus, Equation (16) implies a generating set of
equivalences are satisfied and the result follows. �

Lemma 4.6. Let (V�, c�,�) be a regular representation of a biquandle (X,B)
in a pivotal category C . Then the right quantum dimension dimC (V�) : X →
k is gauge invariant, i.e. dimC (Vx) = dimC (VB±1 (y,x)) for all x, y ∈ X.

Proof. The proof is similar to the previous one: Let ux denote a clockwise
oriented planar unknot colored with x ∈ X, let y ∈ X and x′ = B1(x, y).
Then Id(y,+)⊗ux and ux′ ⊗ Id(y,+) are related by colored Reidemeister moves
thus their image by F are equal. Then F (ux) IdVy = F (ux′) IdVy and F (ux) =
F (ux′) follows because Vy is regular. �

Let LQ be the set of Q-links, i.e. closed Q-tangles. By closing 1-1 Q-tangles
Lemma 4.6 immediately implies a version of Theorem 4.5 for Q-links:

Corollary 4.7. The invariant F̃ restricted to the set LQ of Q-links is gauge

invariant, i.e. F̃ (L) = F̃ (w⇁L) and F̃ (L) = F̃ (w⇀L) for all L ∈ LQ and
w ∈ WX .
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Proof. Any Q-link L is the closure of a 1-1 Q-tangle Tx and its invariant is
the product of the corresponding element of k with the quantum dimension

dimC (Vx)
〈
F̃ (Tx)

〉
. By Theorem 4.5 and Lemma 4.6 both of these functions

are gauge invariant, implying is F (L). �

4.5. Modified Q-link invariant. Here we use the modified dimension to
re-normalize the functor F̃ .

Let {Vx}x∈X be a family of simple modules in the pivotal category C . Let
d : X → k be a function called the modified dimension. Let DC be the set of
C -colored spherical ribbon graph with coupons whose edges are colored with
the objects {Vx}x∈X . Let D ∈ DC and let e be an edge of D. By cutting e we
can obtain a 1-1 C -colored diagram Dx where x ∈ X is the color of both the
top and bottom boundary with positive orientation: ∂±Dx = (Vx,+). We
call Dx a cutting presentation of D.

Following [21] we say that ({Vx}x∈X , d) is an ambidextrous pair, or ambi
pair for short, if the map DC → k = EndC (1) given by

(17) D 7→ F ′(D) := d(x)〈F (Dx)〉

is independent of the choice of the cutting presentation Dx of D. In such a
situation we have the following renormalized invariant:

Theorem 4.8. Let Q be a quandle with a biquandle factorization (X,B)
and (V�, c�,�) be a simple regular representation of (X,B) in C . Assume
({Vx}x∈X , d) is an ambi pair, then the function

F̃ ′ : LQ → k
T 7→ F ′(Q̃−1(D))

is a well defined invariant of the Q-link T where D is any Q-diagram repre-

senting T . Moreover, the function F̃ ′ is gauge invariant if d is an invariant
map (see Example 3.16).

We end the subsection by recalling how one can obtain an ambi pair. Sup-
pose that k = EndC (1) is a commutative ring and C is a tensor k-category :
C is a tensor category such that its hom-sets are left k-modules, the compo-
sition and tensor product of morphisms are k-bilinear.

By an ideal of C we mean a full subcategory I of C such that:

(1) If V ∈ I and W ∈ C , then V ⊗W, W ⊗ V ∈ I;
(2) If V ∈ I and if W ∈ C is a retract of V , then W ∈ I.

A trace on an ideal I is a family of linear functions

{tV : EndC (V )→ k}V ∈I
such that:

(1) If U, V ∈ I then for any morphisms f : V → U and g : U → V in C
we have

tV (gf) = tU(fg).
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(2) If U ∈ I and W ∈ C then we have

tU⊗W (f) = tU
(

(IdU ⊗
−→
evW )(f ⊗ IdW ∗)(IdU ⊗

←−
coevW )

)
,

tW⊗U(g) = tU
(

(
←−
evW ⊗ IdU)(IdW ∗ ⊗g)(

−→
coevW ⊗ IdU)

)
for any f ∈ EndC (U ⊗W ) and g ∈ EndC (W ⊗ U).

Let {Vx}x∈X be any family of simple objects of C . Let {tV }V ∈I be a trace
on an ideal I in C such that Vx ∈ I for each x ∈ X. Then Theorem 5 of [19]
implies ({Vx}x∈X , d) is an ambi pair where the modified dimension d : X → k
is defined by d(x) = tVx(IdVx).

4.6. Example: Semi cyclic Uqsl(2)-modules. In [17], G-links invariants
associated to semi cyclic Uqsl(2)-modules are introduced. In this subsection
we discuss a biquandle which has a representation formed from the semi cyclic
modules of quantum sl(2). Using a modified trace, these representation gives
rise to a renormalized invariant which we show is equal to the ADO type
invariants of C-colored link in S3 defined in [6], which is a generalization of
[1].

Fix a positive integer r ≥ 2 and let ξ = e
iπ
r be a 2rth-root of unity. If

x ∈ C then let ξx = e
2ixπ
N , {x} = ξx − ξ−x and let σ = ξ−

r(r−1)
2 = i1−r.

Let (G,G,G∗, ϕ+, ϕ−) be the generalized group factorization given in Exam-
ple 3.15 with G the upper Borel of SL2(C). Let (X,B) be the sub biquandle
of the fibered product G∗ ×κ̃,f C where κ̃ : gκ,ε 7→ κ and f(α) = ξrα, see
Example 3.16. That is

X = {(gκ,ε, α) : α ∈ C \ Z, κ = ξrα, ε ∈ C} ∪ {(g1,0, 0)}

where gκ,ε =

((
κ 0
0 1

)
,

(
1 ε
0 κ

))
∈ G × G. Its associated quandle is

Q = Conj(G)×κ̃,f C where G is the upper Borel of SL2(C).
In [17], it is shown that the pivotal C-category C of semi-cyclic Uξsl(2)-

modules gives a representation of the braid group which supports a Markov
trace. In Appendix F we discuss how these semi-cyclic Uξsl(2)-modules lead
to a regular simple representation (V�, c�,�) of the biquandle (X,B) which

we will now use in this subsection. Let F̃ be the functor associated to this
biquandle representation given in Corollary 4.3.

In [18] a modified trace on the projective modules of unrestricted quantum
group is defined. This trace restricts to a trace t on the ideal of projective
modules Proj of C . The modules in the representation (V�, c�,�) are all projec-

tive. Thus, Theorem 4.8 implies there exists a Q-link invariant F̃ ′ : LQ → C.

Theorem 4.9. The invariant F̃ ′ is equal to the semi-cyclic link invariant
M ′ : LQ → C of [17].

Proof. In [17], the use of a Markov trace on the colored braid group was used
because at that time the existence of a modified right trace was only known
(from [18] we have a modified left and right trace). The above construction



HOLONOMY BRAIDINGS, BIQUANDLES AND QUANTUM INVARIANTS 27

is more general because colored braids are Q-tangles and if σ is such a braid

whose braid closure is a Q-link L then F̃ ′(L) = t(F̃ (σ)) by the properties of
a modified trace. But this was the definition of M ′ given in [17]. �

This new approach and the following lemma imply that M ′ = F̃ ′ is gauge
invariant:

Lemma 4.10. The modified dimension d and the invariant F̃ ′ are both gauge
invariant.

Proof. From Theorem 4.8 it is enough to show d gauge invariant. By defini-
tion t(IdVx) is the modified dimension of the semi-cyclic module Vx. In [18]
it is shown that t(IdVx) only depends on the value Ωx of the casimir action
on Vx. But now the map x 7→ Ωx is invariant (as in Subsection 3.16) on X
so the modified dimension is gauge invariant. �

Let π : Q→ C be the group morphism given by

(gκ,ε, α) 7→ α.

The following theorem answers a question of [17]:

Theorem 4.11. By applying π to the colors of the strands of a Q-link L,
one gets a C-colored link which we denote by π∗L. Let M ′ be the semi-
cyclic invariant of Q-links of [17] and let ADO be the nilpotent invariant of
C-colored links in S3 given in [6]. Then for any Q-link L, we have

M ′(L) = ADO(π∗L).

Proof. The invariant M ′ is designed as an extension of ADO: let Qd be the
sub-quandle of Q formed by elements with diagonal matrices; if L is a Qd-
link then by definition we have M ′(L) = ADO(π∗(L)). The restriction π|Qd :
Qd → C is a bijection. Theorem 4.9 and Lemma 4.10 imply that M ′ is gauge
invariant. Fixing a regular projection of a Q-link L, we get a diagram D.
From the algebraic formulas for the holonomy R-matrix of [17], one can see
that the invariant M ′ is a continuous function of the X-colors of the edges
of Q−1(D) and so of the finite set of Q-colors of the edges of D. Let xκ ∈ Q

be an element whose matrix part is

(
κ−1 0

0 κ

)
. Then the colors of xκ BD

are the same as those of D except that their upper diagonal coefficient is
multiplied by κ2. Hence we have that π∗L = limκ→0 xκBL (after identifying
Qd
∼= C). Thus, using the continuity of M ′, we get

M ′(L) = M ′(lim
κ→0

xκ B L) = ADO(π∗L).

�



28 C. BLANCHET, N. GEER, B. PATUREAU-MIRAND, AND NICOLAI RESHETIKHIN

5. Generically defined biquandles in pivotal categories

Recall that in Section 2, we used quandles to give the needed topological
notion of this paper. Then in Sections 3 and 4 we used biquandles as the
algebraic objects associated to this topological notion. These settings are
related by the functor Q given in Theorem 3.9, which sends a biquandle
coloring to a quandle coloring and is equivariant for gauge transformations.

The rest of the paper is motivated by our main example which is the
conjugacy quandle of the group SL2(C), see Example 2.2. The topological
setting for this example is a locally flat SL2(C)-bundle over the complement
of a tangle. In this example the underlying algebraic object is not a biquandle
but instead what we call a generic biquandle factorization. This is almost a
biquandle in the sense that there is a “generically” defined binary operation B
which (generically) satisfies the Yang-Baxter equation and the other axioms
of a biquandle. What is interesting here is that the topological notion is
defined everywhere but the associated algebraic object is not. In other words,
quandle colorings always exist but not all biquandle colorings exist. Thus,
in the setting of this section, we do not have a bijective functor Q which
relates biquandle and quandle colorings. Instead, we require there exists a
map Q from biquandle colorings to quandle colorings which is injective and
up to gauge transformation onto (loosely speaking, one could say the map Q
is generically bijective).

Let us explain how this is useful in our example. We start with a locally
flat SL2(C)-bundle over the complement of a tangle. This is interrupted
in terms of a quandle closely related to Conj(SL2(C)). This quandle has a
generic biquandle factorization which is related to the representation theory
of the unrestricted quantum group. Up to gauge, the bundle gives a generic
biquandle coloring of a diagram of the tangle. Then representation theory
of unrestricted quantum group can be used to get an invariant of the tangle
which only depends on the bundle.

5.1. Generically defined biquandle. Let Y be a set and G ⊂ P(Y ) a set
of subset of Y such that

(1) Y ∈ G, ∅ /∈ G,
(2) if Z1, Z2 ∈ G then Z1 ∩ Z2 ∈ G.

A natural example comes from taking Y as a non empty topological space
then the set of open dense subsets G of Y satisfies the above axioms (other
examples are the set of full measure subspaces of a measured space or the
set of comeagre sets of a Baire space).

We use the following terminology:

Partial map: By a partial map f : A → B we mean a map whose
domain is some subset of A and range is B.

Generic bijection: By a generic bijection of Y we mean a bijection
f : Z1 → Z2 where Z1, Z2 ∈ G such that for any Z ∈ G, the sets
f(Z ∩ Z1) and f−1(Z ∩ Z2) are elements of G.
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Generic x in Y : If P(x) is a statement partially defined for x ∈ Y
then “P(x) is true for generic x ∈ Y ” means “there exists Z ∈ G
such that P(x) is true for all x ∈ Z.”

Next we give the notion of a generically defined biquandle associated to
a quandle. This definition requires the existence of a functor Q relating
biquandle colorings and quandle colorings. This functor is modeled after
the bijective functor Q given in Theorem 3.9 (we use the same notation for
the map and functor). In Section 3, we showed the bijective functor Q was
compatible with B-gauge transformations, this is done using the action w⇁�,
see both Proposition 3.12 and the proof of Proposition 3.11. In this section,
this compatibility is expressed using a map, which we also denote by w⇁�.

Definition 5.1. Let (Q,B) be a quandle. A generic biquandle factorization
of Q is a tuple (Y,G, B,Q,⇁) equipped with four partial maps

B, S,B−1, S−1 : Y × Y → Y × Y

satisfying the following axioms:

(1) For any (x1, x2, x3, x4) ∈ Y 4,

(x4, x3) = B(x1, x2) ⇐⇒ (x1, x2) = B−1(x4, x3)
⇐⇒ (x3, x2) = S(x4, x1)
⇐⇒ (x4, x1) = S−1(x3, x2).

(2) For all x ∈ Y , the eight mapsB±1 (x, �), B±2 (�, x), S±1 (x, �) and S±2 (�, x)
are generic bijections of Y .

(3) There exists a function Y → Aut(Q,B), x 7→ (x⇁�). Since x⇁� is a
quandle morphism it induces a functor

x⇁� : DQ → DQ

see Subsection 2.4 and Equation (2).
(4) As in the case of a biquandle, we use B to define Y -colored diagrams

that form a categoryDY (see Remark 3.6). Then there exists a functor
Q : DY → DQ inducing the identity on the underlying uncolored
diagrams, which is injective on Y -colored diagram and satisfies:

(18) Q
(
(x,±)⊗ w

)
= Q

(
(x,±)

)
⊗ (x⇁�)±1

(
Q(w)

)
for all x ∈ Y and w ∈ WY .

(5) For any D ∈ DQ, Q−1(x⇁D) exists for generic x ∈ Y .

Let (Y,G, B,Q,⇁) be a generic biquandle factorization of a quandle (Q,B).
Let D and D′ be two diagrams of a tangle which are related by a Reidemeis-
ter move. If D is Y -colored then it may happen that the coloring of D does
not induce a coloring on D′ via the Reidemeister move. In the case when a
Reidemeister move is colored we use the following notation: if two colored di-
agrams D and D′ in DY or in DQ are related by a single colored Reidemeister

move we write D
1≡ D′.
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Proposition 5.2. The functor Q is compatible with colored Reidemeister

moves: For any D,D′ ∈ DY we have D
1≡ D′ ⇐⇒ Q(D)

1≡ Q(D′).

The proof of the proposition is given in Appendix A. The proposition
implies the functor Q induces a functor

Q̃ : DY /colored Reidemeister moves→ TQ.

Remark 5.3. Proposition 5.2 implies that whenever both side are defined,
the set Yang-Baxter equation for B holds. Also, if (x4, x3) = B(x1, x2) then
x1 = x4 ⇐⇒ x2 = x3. Indeed, if one of the two equalities holds, we can
form the Y -colored diagram of a twist with colors {x1, x2, x3, x4}. Then its
image by Q is an endomorphism which implies that the two other colors are
equal.

As mentioned above Y -colored Reidemeister moves may not exist; however,
the following theorem says they generically exist after tensoring with the
identity.

Theorem 5.4. Let D and D′ be two Y -colored diagrams such that Q(D) and
Q(D′) represent isotopic Q-tangles. Then for generic x ∈ Y the diagrams
Id(x,+)⊗D and Id(x,+)⊗D′ are related by a sequence of Y -colored Reidemeis-
ter moves.

The proof of Theorem 5.4 is given in Appendix A.

5.2. Example: generic Lie group factorization of SL2(C). We will give
an example of a generic biquandle factorization of the conjugacy quandle of
SL2(C). To do this we first consider a generic Lie group factorization which
is closely related to the generalized group factorization of Example 3.13 in
the case of SL2(C).

Let G = SL2(C), G = GL2(C) and

G∗ =

{((
κ 0
ϕ 1

)
,

(
1 ε
0 κ

))
: ε, ϕ ∈ C, κ ∈ C∗

}
⊂ G× G.

Let ϕ+, ϕ− : G∗ → G be the maps defined by

ϕ+((M1,M2)) = M1, ϕ−((M1,M2)) = M2

where (M1,M2) ∈ G∗. Then ψ : G∗ → G is given by
(19)

ψ

((
κ 0
ϕ 1

)
,

(
1 ε
0 κ

))
=

(
κ 0
ϕ 1

)(
1 ε
0 κ

)−1

=

(
κ −ε
ϕ

1

κ
− εϕ

κ

)
.

The map ψ is a bijection from G∗ to the Zariski open dense subset G′ of G,
where G′ is the set of determinant 1 matrices M = (mij) such that m11 6= 0.
Remark that each conjugacy class C in G is non-empty, connected and con-
tains a trigonal matrix then since G′ contains all invertible trigonal matrices
we have C ∩ G′ is a Zariski open dense subset of C.
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Next we explain how Y = G∗ and G extends to a generic biquandle fac-
torization of the quandle Conj(SL2(C)). First, analogously to the case of
a generalized group factorization the tuple (G,G,G∗, ϕ+, ϕ−) gives rise to a
partial map B : G∗ × G∗ → G∗ × G∗ coming from solving Equations (9). In
particular, for y1, y2 ∈ G∗, the elements (y4, y3) = B(y1, y2) are given by
(20)

y4 = ψ−1
(
ϕ−(y1)ψ(y2)ϕ−(y1)−1

)
and y3 = ψ−1

(
ϕ+(y4)−1ψ(y1)ϕ+(y4)

)
.

This definition make sense if ϕ−(y1)ψ(y2)ϕ−(y1)−1 and ϕ+(y4)−1ψ(y1)ϕ+(y4)
are in G′. These formulas also imply that B has a partially defined inverse
B−1. As in the group factorization, Equation (10) defines a partially defined
invertible sideways map S.

Let Q = (Conj(SL2(C)),B) be the conjugacy quandle structure on G, see
Example 2.2. Define the harpoon automorphisms as follows: for any x ∈ Y
it is easy to show

x⇁� = ϕ+(x)−1 B � = ϕ+(x) �ϕ+(x)−1 : Q→ Q

is a quandle automorphism. Finally, the definition of the functor Q : DG∗ →
DG was given in [24], also see [17]. In Appendix B we recall this definition
and prove the following theorem:

Theorem 5.5. The tuple

(Y = G∗,G = {Zariski open subsets of Y }, B,Q,⇁)

is a generic biquandle factorization of the quandle Conj(SL2(C)).

As we will now explain, the generic biquandle factorization of Theorem 5.5
can be extended to a generic biquandle factorization (Y ′,G ′, B′,Q′,⇁) of
the quandle Conj(SL2(C))×Cbr C defined using a fibered product: Following
Example 3.16 let f : Y = G∗ → C be given by f(y) = trace(ψ(y)). If
(y4, y3) = B(y1, y2) then using the formulas for y3 and y4 given in Equation
(20) it is easy to see f(y1) = f(y3) and f(y2) = f(y4). Let ` ≥ 3 and set
r = `/2 if ` is even and r = ` else. Let Cbr : C→ C be the renormalized rth

Chebyshev polynomial (determined by Cbr(2 cos θ) = 2 cos(rθ)). Then

(21) Y ′ = Y ×(f,Cbr) C = {(y, z) ∈ Y × C : f(y) = Cbr(z)}

is naturally equipped with a partial map given by

(22) B′((y1, z), (y2, z
′)) = ((y4, z

′), (y3, z))

which is defined whenever B(y1, y2) = (y4, y3). This assignment naturally
gives maps (B′)−1 and (S ′)± which satisfy Axiom (1) of Definition 5.1. Set-
ting G ′ = {Z × C ∩ Y ′ : Z ∈ G} then these maps satisfy Axiom (2).

The quandle Q′ = Conj(SL2(C))×CbrC is defined as follows. The elements
of the quandle are pairs (y, z) such that y ∈ SL2(C) and trace(y) = Cbr(z).
The quandle structure is given by (y, z) B (y′, z′) = (y−1y′y, z′). There is a
function Y ′ → Aut(Q′,B) given by (y, z)⇁� = (ϕ+(y)−1, z)B �. Finally, the
functor Q : DY → DQ extends to a functor Q′ : DY ′ → DQ′ which satisfies
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the last two axiom of Definition 5.1. Thus, the tuple (Y ′,G ′, B′,Q′,⇁) is a
generic biquandle factorization of the quandle Conj(SL2(C))×Cbr C.

In our main example, given in Section 6, we need to consider a sub-quandle
of Conj(SL2(C)) ×Cbr C and its corresponding factorization. Let us discuss
this now. Let Q` be the sub-quandle of Q′ defined by

Q` = {(x, z) ∈ Q′ : trace(x) = Cbr(z) 6= ±2} ∪
{(

(−1)r−1 Id2×2, 2(−1)`−1
)}
.

Let

Y` = {(y, z) ∈ Y ′ : Cbr(z) 6= ±2} ∪
{(
ψ−1

(
(−1)r−1 Id2×2

)
, 2(−1)`−1

)}
.

Then the maps (B′)± and (S ′)± restrict to maps B±` and S±` which satisfy
Axiom (1) of Definition 5.1. Setting G` = {Z × C ∩ Y` : Z ∈ G} then these
maps satisfy Axiom (2). Finally, the functor Q′ : DY ′ → DQ′ restricts to a
functor Q` : DY` → DQ` which satisfies the last two axiom of Definition 5.1.
Thus, the results of this subsection can be summarized by the following
theorem.

Theorem 5.6. The tuple (Y`,G`, B`,Q`,⇁) is a generic biquandle factoriza-
tion of the quandle Q` which is a sub-quandle of Conj(SL2(C))×Cbr C.

5.3. Representation of a generically defined birack. Here we give the
notion of a representation of a generic biquandle factorization of a quandle.
This is almost exactly the same as the biquandle representations defined in
Subsection 4.2 except that we only require morphisms to be defined when
the generic biquandle is defined. We use the notation and terminology of
Subsection 4.2.

Let (Y,G, B,Q,⇁) be a generic biquandle factorization of a quandle (Q,B)
and C be a pivotal category. Let A be the set of (x, y) ∈ Y × Y such that
B(x, y) is defined. A representation of Y in C is a family of objects {Vy}y∈Y
and a family of isomorphisms of C

{cx,y : Vx ⊗ Vy → B1(Vx, Vy)⊗B2(Vx, Vy)}(x,y)∈A

which satisfy the colored braid relation, is sideways invertible and induces a
twist whenever relevant elements of the biquandle B are defined.

As in the case of biquandles (see Theorem 4.2), there is a well defined
functor at level of Y -diagrams:

Theorem 5.7. Let (V�, c�,�) be a representation of Y in a pivotal category
C . Then there exists a unique tensor functor

F : DY → C ,

such that for any x, y in Y one has F ((x,+)) = Vx, F ((x,−)) = V ∗x and the
morphisms are determined by its value on the elementary tangle diagrams:

F (χ+
x,y) = cx,y, F (χ−x,y) = c−1

x,y if (x, y) is in the domain of B±,

F (
←−
evx) =

←−
evVx , F (

←−
coevx) =

←−
coevVx , F (

−→
evx) =

−→
evVx and F (

−→
coevx) =

−→
coevVx .

Furthermore, the functor F is invariant by Y -colored Reidemeister moves.
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Proof. The proof is the same as the proof of Theorem 4.2. �

Two Y -colored diagrams representing the same Q-tangle are not necessarily
related by a sequence of Y -colored Reidemeister moves. Nevertheless, we
have:

Theorem 5.8. Assume that the representation of Y is regular as in Def-
inition 4.4. If D and D′ are two Y -diagrams such that Q(D) and Q(D′)
represent isotopic Q-tangles then F (D) = F (D′).

Proof. By Theorem 5.4, for generic x ∈ Y , Idx⊗D ≡ Idx⊗D′ ∈ DY . As F
is invariant by Y -colored Reidemeister moves, we have that

IdVx ⊗F (D) = F (Idx⊗D) = F (Idx⊗D′) = IdVx ⊗F (D′).

Now the theorem follows from the fact that Vx is regular. �

There is a natural equivalence on Q-tangles, which we call B-gauge equiv-
alence, generated by the automorphisms (a B �)a∈Q and (x⇁�)x∈Y . The
terminology is justified by Equation (6). As in the case of biquandle repre-
sentations, F restricts to a k-valued B-gauge invariant function for links or
1-1-tangles:

Theorem 5.9. Assume that the representation of Y is regular and simple as
in Definition 4.4. Let D,D′ be two Y -colored diagrams such that Q(D) and
Q(D′) are B-gauge equivalent 1-1 Q-tangles (resp. Q-links) then 〈F (D)〉 =
〈F (D′)〉 (resp. F (D) = F (D′)).

The proof of Theorem 5.9 is given in Appendix C.

5.4. Q-link invariants. Here we define two invariants of Q-links, using the
following hypothesis:

(1) Q is a quandle and LQ is the set of isotopy class of Q-links,
(2) (Y,G, B,Q,⇁) is a generic biquandle factorization of Q,
(3) (V�, c�,�) is a regular simple representation of Y in a pivotal category

C and k = EndC (1).

Theorem 5.10. Under these hypothesis, the partial map F ◦ Q̃−1 : LQ → k
extends uniquely to a gauge invariant globally defined map

F̃ : LQ → k given by L 7→ F ◦ Q̃−1(x⇁L)

where x is any element of Y such that Q−1(x⇁L) is defined.

Proof. This is an immediate consequence of Theorem 5.9. �

In the main examples of this paper this map is trivial. However, one can

renormalize F̃ using modified dimension: let us assume

(4) There is a gauge invariant modified dimension function d on {Vx}x∈Y
such that (V�, d) is an ambi pair.

Then recall the map F ′ is defined on closed Y -colored diagrams, see Equa-
tion (17).
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Theorem 5.11. Under the four hypothesis listed in this subsection, the par-

tial map F ′ ◦ Q̃−1 : LQ → k extends uniquely to a gauge invariant globally
defined map

F̃ ′ : LQ → k given by L 7→ F ′ ◦ Q̃−1(x⇁L)

where x is any element of Y such that Q−1(x⇁L) is defined.

Proof. Clearly, d induces a map on gauge equivalence class of elements of

Q. Theorem 5.9 implies that
〈
F̃ (�)

〉
uniquely extends to a globally defined

gauge invariant map on 1-1 Q-tangles. If Ta is a 1-1 Q-tangle whose open

strand is colored by a then the map F̃ ′ is given on the braid closure T̂a of Ta

by d(a)
〈
F̃ (Ta)

〉
. This clearly extends uniquely to a global gauge invariant

Q-link invariant. �

Conclusion 5.12. The following steps can be used to compute F̃ ′(L):

(1) Choose a diagram D ∈ DQ representing L.
(2) IfQ−1(D) exists then let D′ = D else, replace D by a gauge equivalent

diagram D′ = y⇁D (for some y ∈ Y ) which is in the image of Q.
(3) Consider any diagram D′x which is a cutting presentation of Q−1(D′)

and compute its image by F : F (D′x) = 〈F (D′x)〉. IdVx .
(4) Finally, multiply this bracket with the modified dimension d(Vx):

F̃ ′(L) = d(Vx)〈F (D′x)〉.

6. A biquandle representation from cyclic quantum sl(2)
modules

Recall the generic biquandle factorization (Y`,G`, B`,Q`,⇁) of the quan-
dle Q` given in Theorem 5.6. In this section we define a representation of Y`
from cyclic quantum sl(2) modules. There are two main objects needed to do
this: a holonomic braiding and a modified trace. In the context of quantum
sl(2) both of these objects have been studied in [25] and [18], respectively.
In Subsections 6.2 and 6.3 we review the material we need from these pa-
pers. Then in Subsection 6.4 we prove the holonomic braiding leads to a
generically defined Yang-Baxter model which is sideways invertible. Finally
in Subsection 6.5 we show the representation induces a twist.

6.1. The algebra Uq = Uqsl(2) and cyclic Uξ-modules. Let Uq = Uqsl(2)
be the C[q]-algebra given by generators E,F,K,K−1 and relations:

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
.(23)
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The algebra Uqsl(2) is a Hopf algebra where the coproduct, counit and an-
tipode are defined by

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,(24)

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,(25)

∆(K) = K ⊗K ε(K) = 1, S(K) = K−1.(26)

Let ξ = e2iπ/` be a ` root of unity. Set r = `/2 if ` is even and r = `
else. Let Uξ = Uξsl(2) be the specialization of Uqsl(2) at q = ξ. Let Z0 be
the subalgebra of Uξ generated by the central elements K±r, Er and F r. The
center Z of Uξ is generated by Z0 and the Casimir element

Ω = {1}2EF +Kξ−1 +K−1ξ = {1}2FE +Kξ +K−1ξ−1

where {x} = ξx − ξ−x. The Casimir satisfies the polynomial equation:

(27) Cbr (Ω) = {1}2rErF r − (−1)`(Kr +K−r) ∈ Z0

where Cbr is the renormalized rth Chebyshev polynomial (determined by
Cbr(2 cos θ) = 2 cos(rθ)).

By a Uξ-weight module we mean a finite-dimensional module over Uξ which
restrict to a semi-simple module over Z0. Let C be the tensor category of
Uξ-weight modules. The category C is a pivotal C-category where for any
object V in C , the dual object and the duality morphisms are defined as
follows: V ∗ = HomC(V,C) and

←−
coevV :C→ V ⊗ V ∗ is given by 1 7→

∑
vj ⊗ v∗j ,

←−
evV :V ∗ ⊗ V → C is given by f ⊗ w 7→ f(w),
−→
evV :V ⊗ V ∗ → C is given by v ⊗ f 7→ f(K1−rv),
−→

coevV :C→ V ∗ ⊗ V is given by 1 7→
∑

v∗j ⊗Kr−1vj,(28)

where {vj} is a basis of V and {v∗j} is the dual basis of V ∗.
The set of characters on Z0 (resp. Z) is Homalg(Z0,C) (resp. Homalg(Z,C)).

The set Homalg(Z0,C) is a group where the multiplication is given by χ1χ2 =
(χ1 ⊗ χ2)∆. For each χ character on Z0 let Cχ be the full subcategory of C
whose objects are modules where each z ∈ Z0 acts by χ(z). At the end of
the next subsection we will see that Cχ is semi-simple if χ(Cbr(Ω)) 6= ±2.
For such a character χ the simple modules in Cχ are called cyclic; the name
comes from the fact that Er and F r can act by non-zero scalars creating a
circular diagram depicting the action on the weight vectors.

6.2. The algebra isomorphism R and the matrix R. Let Uh = Uh(sl(2))
be h-adic completion version of the Uqsl(2). Following [25], there exists an
algebra isomorphism

R : Uh ⊗ Uh → Uh ⊗ Uh
given by conjugation of the R-matrix in the h-adic completion. As in [25],

this isomorphism induces an outer automorphism of the division ring U⊗2
ξ of
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U⊗2
ξ which we also denote by the same letter R. In particular, it induces a

map

(29) R : Uξ ⊗ Uξ → Uξ ⊗ Uξ[W−1]

where

W =
(
1− qr{1}2r(K−1E)r ⊗ (FK)r

)
=
(
1 + (−1)`{1}2rK−rEr ⊗ F rKr

)
,

which satisfies
(30)
(∆⊗1)R(u⊗v) = R13R23(∆(u)⊗v) and (1⊗∆)R(u⊗v) = R13R12(u⊗∆(v))

and

(31) (ε⊗ 1)R(u⊗ v) = ε(u)v and (1⊗ ε)R(u⊗ v) = ε(v)u.

The map R is given on Z0 ⊗ Z0 by

R(Kr ⊗ 1) = (Kr ⊗ 1)W, R(1⊗Kr) = (1⊗Kr)W−1,

R(Er ⊗ 1) = Er ⊗Kr, R(1⊗ F r) = K−r ⊗ F r,

R(1⊗ Er) = Kr ⊗ Er + Er ⊗ 1
(
1− (1⊗K2r)W−1

)
,

R(F r ⊗ 1) = F r ⊗K−r + 1⊗ F r
(
1− (K−2r ⊗ 1)W−1

)
.(32)

Recall the generic Lie group factorization associated to SL2(C) given in
Subsection 5.2: G = SL2(C), G = GL2(C) and

(33) G∗ =

{
M(κ, ε, ϕ) =

((
κ 0
ϕ 1

)
,

(
1 ε
0 κ

))
: ε, ϕ ∈ C, κ ∈ C∗

}
This factorization was used to define a generic biquandle factorization of
Q = Conj(SL2(C)) with a map B : G∗ × G∗ → G∗ × G∗. Next we show that
this map also arises from R and characters on Z0.

Given a character χ on Z0, let

ϕ+(χ) =

(
κ 0
ϕ 1

)
and ϕ−(χ) =

(
1 ε
0 κ

)
where κ = χ(Kr), ε = {1}rχ(Er), and ϕ = (−1)`{1}rχ(KrF r). Also, let
ψ(χ) = ϕ+(χ)ϕ−(χ)−1. We identify G∗ with characters on Z0 by

M(κ, ε, ϕ)(Kr) = κ, M(κ, ε, ϕ)(Er) = {1}−rε and

M(κ, ε, ϕ)(F r) = (−1)`{1}−rϕκ−1.

Let χ1 and χ2 be two characters on Z0 which we identify with M(κ1, ε1, ϕ1)
and M(κ2, ε2, ϕ2), respectively. One easily checks that χ1χ2 = χ1 ⊗ χ2 ◦∆.

The equalities in Equation (32) imply R acts invariantly on Z0 ⊗ Z0. So
the transpose of the map R−1 ◦ τ : Z0 ⊗ Z0 → Z0 ⊗ Z0 (after identification)
is a partial map B : G∗ × G∗ → G∗ × G∗.

Lemma 6.1. This partial map is equal to the partial map B given in Ex-
ample 5.2. Thus, it extends to the generic biquandle factorization given in
Theorem 5.5.
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Proof. To show that B is given by the generic Lie group factorization of
SL2(C) it is enough to see that B satisfy the system (9).

Let (χ4, χ3) = B(χ1, χ2) then

(34) χ3 ⊗ χ4 ◦R = χ1 ⊗ χ2 ∈ HomAlg(Z0 ⊗ Z0,C).

The first equation is easily checked:

χ4χ3 = χ4 ⊗ χ3 ◦∆ = χ3 ⊗ χ4 ◦R ◦∆ = χ1 ⊗ χ2 ◦∆ = χ1χ2.

To check the second equation of (9), using Equations (32) and (34) we com-
pute ϕ−(χ1) and ϕ+(χ2). From these computations we have

ϕ−(χ1)ϕ+(χ2) =

(
1 κ4ε3

0 κ3ω

)(
κ4ω

−1 0
ϕ4κ

−1
3 ω−1 1

)
=

(
κ4 κ4ε3

ϕ4 κ3 + ϕ4ε3

)
= ϕ+(χ4)ϕ−(χ3)

where ω = χ3⊗χ4(W ) = 1 + ε3ϕ4

κ3
. Thus, the partial maps are equal and the

lemma follows. �

Recall the generic biquandle factorization (Y`,G`, B`,Q`,⇁) of the quandle
Q` given in Theorem 5.6. The definition of Y` is motivated by the following
fact: Equation (27) implies the characters χ on Z with trace(ψ(χ|Z0)) 6= ±2
are in one to one correspondence with elements of Y` determined by the
assignment χ 7→ (χ|Z0 , χ(Ω)) ∈ Y` where G∗ is identified with characters on
Z0. Since Ω⊗ 1 and 1⊗Ω are fixed by R then we have that B extends to a
partial map B` : Y` ⊗ Y` → Y` ⊗ Y` defined by Equation (22).

For each character χ on Z that corresponds to an element of Y`, let Iχ ⊂
Uξ be the corresponding ideal and let Vχ be an irreducible Uξ-module with
this character. Then Uξ/Iχ is canonically isomorphic to EndC(Vχ) and Iχ is
the two side ideal of Uξ generated by the kernel of χ inside Z. We fix an
isomorphism φχ : Vχ → Cr. Thus, we get an isomorphism Uξ/Iχ → Matr(C).

Let A be the set of pairs (χ1, χ2) ∈ Y 2
` such that B`(χ1, χ2) is defined

(i.e. χ1 ⊗ χ2(W ) 6= 0). For (χ1, χ2) ∈ A, let (χ4, χ3) = B`(χ1, χ2) then, for
zi ∈ kerχi, one has (χ3 ⊗ χ4)R(z1 ⊗ 1) = 0 = (χ3 ⊗ χ4)R(1⊗ z2). Then the
map R : Uξ ⊗ Uξ → Uξ/Iχ3 ⊗ Uξ/Iχ4 vanishes on Iχ1 ⊗ Uξ + Uξ ⊗ Iχ2 and
induces an algebra isomorphism

R : Uξ/Iχ1 ⊗ Uξ/Iχ2 → Uξ/Iχ3 ⊗ Uξ/Iχ4 .

Using φχi , for i = 1 · · · 4, we can see this isomorphism as an automorphism
R̄ of Matr(C) ⊗ Matr(C). Then linear algebra implies there exists R̄ ∈
Matr(C)⊗2 such that R̄ = R̄ · R̄−1 where R̄ is determined up to a scalar. By
requiring that det(R̄) = 1 then this scalar becomes a r2-root of unity. For
each pair (χ1, χ2) ∈ A, choose such a matrix R̄ with det(R̄) = 1 and define

(35) R : Vχ1 ⊗ Vχ2 → Vχ3 ⊗ Vχ4



38 C. BLANCHET, N. GEER, B. PATUREAU-MIRAND, AND NICOLAI RESHETIKHIN

by v1 ⊗ v2 7→ (φ−1
χ3
⊗ φ−1

χ4
)R̄(φχ1 ⊗ φχ2)(v1 ⊗ v2). Then by definition, for any

u ∈ U⊗2
ξ and v ∈ Vχ1 ⊗ Vχ2 we have

(36) R(u.v) = R(u).R(v).

Theorem 6.2. Let τ : Vχ3 ⊗ Vχ4 → Vχ4 ⊗ Vχ3 be the flip map. The family of
isomorphisms

{cχ1,χ2 = τ ◦R : Vχ1 ⊗ Vχ2 → Vχ4 ⊗ Vχ3}(χ1,χ2)∈A

satisfies the colored braid relation up to a r2-root of unity. In particular, it
satisfies Y`-colored positive Reidemeister moves RII++ and RIII+++ up to
a r2-root of unity.

The proof of Theorem 6.2 is given in Appendix D. The following lemma
implies that if χ ∈ Y` then the Uξ-module Vχ is simple.

Lemma 6.3. Let χ be a Z0-character, then the following are equivalent

(1) Cχ is semi simple,
(2) all the simple of Cχ are r-dimensional projective modules,
(3) Cχ has r isomorphism classes of simple modules on which Ω takes

distinct values,

(4)

{
trace(ψ(χ)) 6= ±2 if ` 6= 4,
trace(ψ(χ)) 6= 2 if ` = 4.

Proof. Lemma 3 of [18] says that if trace(ψ(χ)) 6= ±2 then Cχ is semi simple.
So (4) implies (1). In the proof of Lemma 3 of [18] it is shown that (1)
implies (2) and (2) implies (3). To see (3) implies (4): Let ξ±ra be the
eigenvalues of (−1)`+1ψ(χ). Then the minimum polynomial of Ω in Uξ ⊗g C
is Cbr(Ω) = ξra + ξ−ra whose roots are ξa+2k + ξ−a−2k for k = 0 · · · r − 1.
Now

ξa+2k + ξ−a−2k = ξa+2j + ξ−a−2j ⇐⇒ (ξ2k − ξ2j)(ξ2a+2j+2k − 1) = 0

⇐⇒ ξra = ±1

which implies the lemma. �

6.3. The modified trace on the algebra Uξ. Let Proj be the ideal of pro-
jective Uξ-modules in C . Lemma 6.3 implies that each module Vχ in {Vχ}χ∈Y`
is simple and projective. From Corollaries 4 and 5 of [18] it admits a unique
(up to global scalar) nontrivial modified trace {tV }V ∈Proj such that for any
χ ∈ Y`, then there exists α ∈ (C \Z)∪ rZ such that χ(Ω) = (−1)r(qα + q−α)
and

d(χ) = tVχ(IdVχ) = (−1)r−1

r−1∏
j=1

{j}
{α + r − j}

= (−1)r−1 r {α}
{rα}

=
(−1)r−1r

q(1−r)α + · · ·+ q(r−3)α + q(r−1)α
.(37)

Moreover, tVχ(IdVχ) = tV ∗χ (IdV ∗χ ). Remark that d(χ)−1 is the degree r − 1
renormalized second kind Chebyshev polynomial in χ(Ω).
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Lemma 6.4. The modified dimension d is gauge invariant, i.e. if B±1 (χ′, χ)
is defined for χ, χ′ ∈ Y` then d(χ) = d(B±1 (χ′, χ)).

Proof. In the notation of Subsection 5.2, if (y, z) ∈ Y` ⊂ Y ×(f,Cbr) C then
z = χ(Ω) where χ is the corresponding Z-character. Thus, the lemma follows
from the definition of the partial map B` given in Equation (22) and the above
formula which implies the value of Ω determines d. �

6.4. The negative Reidemeister II move. In this subsection we show
that the morphism c generically satisfies the negative Reidemeister moves
RII−+ and RII+−, this implies that {Vχ, c} is sideways invertible. We do this
in two major steps. First, we show that the negative Reidemeister II moves
holds up to a scalar. Then in the second step we use positive Reidemeister
moves and the properties about the modified dimension to show that this
scalar is a root of unity.

Lemma 6.5. For i = 1 (resp. i = 2), suppose Vi,Wi, Ui, V
′
i and U ′i are simple

Uξ-modules corresponding to elements of Y` which give a coherent coloring
of the following diagrams where the coupons are colored with isomorphisms.
Then the diagrams are proportional under F , in other words:

V1 W1 U1

U ′1
λ
=

V1 W1 U1

V ′1

resp.

V2 W2 U2

U ′2
λ
=

V2 W2 U2

V ′2

where
λ
= means the two sides are proportional under F and the coupons are

filled with any isomorphism.

Lemma 6.5 is proved in Appendix E and used in the next proposition.

Proposition 6.6. The two negative Reidemeister moves RII−+ and RII+−
holds up to a scalar.

Proof. From Lemma 6.5 and isotopies of the plane we have:

λ
=

λ
=

λ
=

λ
=

where the last step uses the RII++ move. The other negative RII move is
similar. �
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Theorem 6.7. The braiding satisfies the two negative Reidemeister moves
RII−+ and RII+− holds up to a r2 root of one. In particular,

(38)
r2
=

where
r2
= means that for any Y`-coloring the values of diagrams under F are

equal up to a r2 root of one.

Proof. We show RII+− holds up to a r2 root of one. The proof of RII−+ is
similar. Recall the map F ′ defined in Equation (17) from the ambi pair com-
ing from the modified trace {tV }V ∈Proj defined in Subsection 6.3. Proposition
6.6 implies the RII+− holds up to a scalar.

We will use the map F ′ to compute this scalar. However, applying F ′ to
the closure of either of the morphisms in Equation (38) is zero because their
closures are both isotopic to split links. To deal with this problem, we use
a trick to link the two strands with a closed component colored with the
Steinberg module, as follows.

Let χ0 be the Z character determined by χ0(Kr) = (−1)r−1, χ0(Er) =
χ0(F r) = 0 and χ0(Ω) = 2(−1)`−1. The Uξ-module corresponding to χ0 is
the Steinberg module V0 which is a highest weight module with a highest
weight vector v0 such that Kv0 = qr−1v0 and Ev0 = 0. This module has two
nice properties related with the braiding:

First, in Section 4.2 of [18] it is shown that there is a truncated R-matrix
in the h-adic completion which can be specialized at the root of unity ξ to
an element Ř< ∈ Uξ⊗Uξ. Since R comes from the conjugation of the h-adic
R-matrix and since F r and Er act by zero on V0 it follows that for any χ ∈ Y`
we can choose R̄ in the definition of the braiding so that both cχ0,χ and cχ,χ0

are given by the action of Ř<. This is the same braiding used in [18] to
compute the open Hopf link. In particular, from Lemma 1 of [18] we have
that

(39) (
−→
evVχ ⊗ IdVχ0 )(Id⊗c�,� ◦ cχ,χ0)(

←−
coevVχ ⊗ IdVχ0 ) = r IdVχ0 .

Second, given χ = (M(κ, ε, ϕ), z) ∈ Y` (for notation see Equation (33)), a
direct computation using Equation (20) shows

B(χ0, χ) = (χ−, χ0) and B(χ, χ0) = (χ0, χ
−)

where χ− = (M(κ, (−1)r−1ε, (−1)r−1ϕ), z) ∈ Y`. In particular,

B ◦B(χ0, χ) = (χ0, χ) and B ◦B(χ, χ0) = (χ, χ0).

Therefore, we can add a strand colored with V0 to a link and control the
new induced colors. In particular, a strand colored with V0 does not change
when it is braided with any other strand. With this in mind, we close the
first tangle in Equation (38) with two parallel strands encircled by a closed
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component colored with V0 (in red) to obtain the first tangle in Equation (40).
Now we compute the value of this tangle under F ′ in two ways.

In the following diagrams, the coloring of the red strand is always V0 and
from above does not change in any move. However, the colorings of the blue
and black strands can change but as we will see it is not important to know
the exact coloring. Let us compute:
(40)

F ′



 = λF ′



 r2
= λ

〈 〉〈 〉
d(V0)

where λ is the scalar coming from Proposition 6.6 and 〈 〉 is defined in Sub-
section 4.4. On the other hand, we have

F ′



 r2
= F ′



 r2
=

〈 〉〈 〉
d(V0)

where the first equality (modulo a r2 root of unity) comes from doing positive
RII and RIII moves. But it follows from Equation (39) that for any coloring
of the closed blue and black stands we have〈 〉

r2
=

〈 〉
r2
= r.

Thus, we have λ is a r2 root of unity. �

6.5. Left and right twist are equal up to a r2 root of unity. We now
show that the left and right twists coincide.

Theorem 6.8. The family ({Vχ}χ∈Y` , c) induces a twist, up to a r2 root of
unity.

Proof. Let α be the partial map defined for x ∈ Y` by B±1(x, α(x)) =
(x, α(x)) and α−1 its partial inverse. For x ∈ Y`, if there exists y = α(x) and
z = α−1(x), we can define the right and the left twist:

θRx =

〈
x

y

〉
and θLx =

〈
x

z

〉

We will show that θRx
r2
= θLx .
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Lemma 6.4 implies the modified dimensions of Vx, Vy and Vz are equal.
Then using the left and right partial trace property of the modified trace, we
can compute t(cx,y) in two different ways:

d(x)θRx
r2
= F ′

(
x y

)
r2
= d(y)θLy .

This implies that θRx = θLy . On the other side, we have

θLx
r2
=

〈
F


x

x

z


〉

r2
=

〈
F


x

xx

y
y


〉

r2
= θLy

〈
F


x

x

y


〉

r2
= θLy

where the second and fourth equalities hold because the diagrams are related
by Reidemeister moves colored by x, y and z. �

6.6. Conclusion of main example. Let C/r2 be the pivotal category with
the same objects as C and whose morphisms are the orbits of morphisms
of C for the action of Z/r2Z given by multiplication by an r2-root of unity.
Then

k = EndC/r2
(1)

is the set of complex numbers up to a r2-root of unity (in bijection with C
through z 7→ zr

2
).

Proposition 6.9. The family ({Vχ}χ∈Y` , c) is a simple regular representation
in C/r2 of the generic biquandle factorization (Y`,G`, B`,Q`,⇁).

Proof. Since each morphism in C has an image in C/r2 , the proof is a conse-
quence of the above results about C : If χ ∈ Y` then Vχ is simple and regular
in C and it follows that it is simple and regular in C/r2 . Theorems 6.2 implies
the model ({Vχ}, c) satisfies the colored braid relation in C/r2 . Theorem 6.7
implies it is sideways invertible (see Equation (14)). Finally, Theorem 6.8
give the twist. �

Let d : Y` → k be the function defined in Equation (37).

Proposition 6.10. The pair ({Vχ}χ∈Y` , d) is an ambi pair in C/r2 and d is
gauge invariant.

Proof. Since d comes from the modified trace in C given in Subsection 6.3 we
have ({Vχ}χ∈Y` , d) is an ambi pair in C . Then the natural map DC → DC/r2

implies the proposition (for notation of DC see Subsection 4.5). �

The last two propositions immediately imply:
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Corollary 6.11. The family of cyclic modules and holonomy braidings ({Vχ}χ∈Y` , c)
is a representation in C/r2 of the generic biquandle factorization (Y`,G`, B`,Q`,⇁)
of the quandle Q` which is a sub-quandle of Conj(SL2(C))×Cbr C. Moreover,
Theorem 5.11 gives a gauge invariant map

F̃ ′ := F ′ ◦ Q̃−1
` : LQ` → k.

Remark 6.12. In Subsection 5.12 we summarized how to compute F̃ ′. Also,
let us give the following interpretation of the invariant in Corollary 6.11.
An element of LQ` modulo gauge equivalence can be interpreted as 1) a link
L ⊂ S3, 2) an equivalence class of flat SL2(C)-bundle on the complement of
L and 3) a choice for each component Li of L of a rth root of the monodromy
gi around Li (conjugacy class in SL2(C)). The flat bundles with projective
parabolic monodromy are excluded (i.e. no gi with trace(gi) = ±2).

Appendix A. Proof related with generically define functor

In this appendix we prove Proposition 5.2 and Theorem 5.4.

Proof of Proposition 5.2. Assume the underlying diagrams of D and D′ are
related by a Reidemeister move. By functoriality (and injectivity) of Q it
suffices to assume D and D′ are diagrams of the form Idw1 ⊗E ⊗ Idw2 :
w1w3w2 → w1w4w2 and Idw′1 ⊗E

′ ⊗ Idw′2 : w′1w
′
3w
′
2 → w′1w

′
4w
′
2 where E and

E ′ are the diagrams of the Reidemeister move and wi, w
′
i are words in Y .

Since Q is injective on Y -colored diagrams, it is clear that the source and
target of D and D′ are equal if and only if the source and target of Q(D) and
Q(D′) are equal. Since Q is a quandle then in particular it is a biquandle
(where B1(a, b) = a B b and B2(a, b) = a for a, b ∈ Q). It follows that
the coloring of the incoming boundary of a braid extends uniquely to a Q-
coloring of the complete braid. Thus, the coloring Q(D′) exists, it has the
same shape as D′ and the same boundary colors as Q(D). But there is an
unique such Q-colored diagram and it is also obtained by doing a Q-colored
Reidemeister move to Q(D). Therefore, we obtain the if and only if stated
in the proposition. �

To prove Theorem 5.4 we first state and prove a key lemma. Recall the
(m,n)-cable of the positive and negative crossings given in Figure 7. Given
words, w,w′ ∈ WY one can try to use the generic biquandle structure to
color one of these diagrams (coloring may not exist because the biquandle
maps are not defined everywhere). If such a coloring exists we denote the
corresponding Y -colored diagram by χ+

w,w′ and χ−w,w′ , respectively. Suppose

χ−w,w′ and χ+
w′′,w′′′ exists and are “inverses,” i.e. χ+

w′′,w′′′ ◦χ
−
w,w′ and Idw⊗ Idw′

are related by a sequence of Y -colored Reidemeister moves. In this situation

we use a slight abuse of notation and denote χ+
w′′,w′′′ by

(
χ−w,w′

)−1
.

Lemma A.1. Let D : w → w′ ∈ DY , then for generic x ∈ Y the morphism

(41)
(
χ−x,w

)−1 ◦
[
Q−1 (x⇁Q(D))⊗ Id

]
◦ χ−x,w
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exists and is related to Id(x,+)⊗D by a sequence of Y -colored Reidemeister
moves.

Proof. The composition of generic bijections of Y is a generic bijection of Y .
Thus for any w ∈ WY , Axiom 2 of Definition 5.1 implies that for generic
x ∈ Y , there exists a (unique) Y -coloring of the diagrams χ−x,w and (χ−x,w)−1.
We conclude that the morphism in Equation (41) exist for generic x ∈ Y .

We prove the second statement in the lemma holds in two steps as follows.
Step 1: We will show that statement holds for D = Id⊗E ⊗ Id : w → w′

be where E is an elementary diagram made by a crossing or one cup or cap.
From Axiom 5 of Definition 5.1, for generic x ∈ Y there exist D′ ∈ DY such
that Q(D′) = x⇁Q(D). As explained in the previous paragraph, for generic
x ∈ Y there exists

χ−x,w : x⊗ w → wx ⊗ y and
(
χ−x,w

)−1
: wx ⊗ y → x⊗ w

where wx ∈ WY and y ∈ Y . The image of the morphism χ−x,w under Q is a
map with domain Q(x ⊗ w) = Q(x) ⊗ (x⇁Q(w)) and range Q(wx ⊗ y) =
Q(wx) ⊗ qy for some qy ∈ Q. Since χ−x,w comes from a negative crossing the
quandle color of the over-strand does not change and so we have Q(wx) =
x⇁Q(w). The last two sentences imply that the two Q-diagrams

Q(D′ ⊗ Idy) and (x⇁Q(D))⊗ Idqy

have the same incoming Q-colored boundaries. Now, since both of these
Q-diagrams have the same underlying diagram which is elementary and so
determined by its incoming Q-colored boundary, we conclude the diagrams
are equal in DQ. In particular, taking the preimage under Q we have

D′ ⊗ Idy = Q−1 (x⇁Q(D))⊗ Idy .

Finally, in DQ we have

Q
((
χ−x,w

)−1
)
Q(D′ ⊗ Idy)Q

(
χ−x,w

) 1≡ Q
((
χ−x,w

)−1
)
Q
(
χ−x,w′

)
Q(Idx⊗D)

where the Reidemeister equivalence
1≡ comes from the fact that underlying

diagrams differ by a single Reidemeister move which is Q-colored. Since
both the diagrams in the above equation are in the image of Q then Proposi-
tion 5.2 implies their preimage are related by a Y -colored Reidemeister move.
Thus, the last two equation combined with the facts that Q is a functor and(
χ−x,w′

)−1 ◦
(
χ−x,w′

)
is related by Y -colored Reidemeister moves to the identity

we can conclude the lemma is true when D = Id⊗E ⊗ Id.
Step 2: We will show, if the lemma is true for D1 : w1 → w2 and D2 :

w2 → w3 then it is true for D = D2 ◦D1. To simplify notation, for x ∈ Y ,
we let Hx : DY → DY be the partial map given by

Hx(D) = Q−1(x⇁Q(D)).

Definition 5.1 implies, for generic x ∈ Y all six diagrams χ−x,w1
, χ−x,w2

, (χ−x,w1
)−1,

(χ−x,w2
)−1, Hx(D1) and Hx(D2) exist. Also, for such x, we have the range of

(χ−x,w1
)−1 is x⊗w1 and the diagram χ−x,w2

◦ (χ−x,w1
)−1 is related to the identity
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by a sequence of Y -colored Reidemeister moves (since colorings of Reidemeis-
ter II moves reducing the number of crossing always exist). Therefore, we
have

Id(x,+)⊗D ≡
(
Id(x,+)⊗D2

)(
Id(x,+)⊗D1

)
≡
(
(χ−x,w2

)−1(Hx(D2)⊗ Id)χ−x,w2

)(
(χ−x,w1

)−1(Hx(D1)⊗ Id)χ−x,w1

)
≡ (χ−x,w2

)−1(Hx(D2)⊗ Id)
(
χ−x,w2

(χ−x,w2
)−1
)
(Hx(D1)⊗ Id)χ−x,w1

≡ (χ−x,w2
)−1((Hx(D2) ◦Hx(D1))⊗ Id)χ−x,w1

≡ (χ−x,w2
)−1(Hx(D)⊗ Id)χ−x,w1

.

�

Proof of Theorem 5.4. Since Q(D) and Q(D′) represent isotopic Q-tangles
there exists a sequence of Q-colored Reidemeister moves

Q(D) = DQ
0

1≡ DQ
1

1≡ · · · 1≡ DQ
n = Q(D′).

It is possible that Q−1(DQ
i ) does not exist for some i ∈ {1, ..., n − 1}. To

address this we use a gauge transformation by a generic x ∈ Y . Axiom 5 of
Definition 5.1, implies that for generic x ∈ Y , the diagrams

Di = Q−1
(
x⇁DQ

i

)
∈ DY

exists for all i ∈ {0, · · · , n}. Since the diagrams underlying Q(Di) = x⇁DQ
i

andQ(Di+1) = x⇁DQ
i+1 are related by a single Reidemeister move, it extends

to a Q-colored move. Then Proposition 5.2 ensures that D0
1≡ D1

1≡ · · · 1≡ Dn

is a sequence of Y -colored Reidemeister moves, so the same is true for

(χ−x,�)
−1(D0 ⊗ Id�)χ

−
x,�

1≡ · · · 1≡ (χ−x,�)
−1(Dn ⊗ Id�)χ

−
x,�

where � represents the appropriate word in WY . Lemma A.1 implies that

Id(x,+)⊗D ≡ (χ−x,�)
−1(D0 ⊗ Id�)χ

−
x,� , Id(x,+)⊗D′ ≡ (χ−x,�)

−1(Dn ⊗ Id�)χ
−
x,�.

Combining the above equivalence we have

Id(x,+)⊗D ≡ Id(x,+)⊗D′

for generic x ∈ Y . �

Appendix B. Proof of Theorem 5.5

Here we prove Theorem 5.5. We need to show (Y,G, B,Q,⇁) as defined
in Subsection 5.2 satisfy the axioms of Definition 5.1. The maps B,B−1, S
and S−1 defined in Subsection 5.2 by construction satisfy Axiom 1.

For x ∈ Y , the maps

B±1 (x, �), S±1 (x, �), B±2 (�, x), S±2 (�, x)

are all rational maps (as ψ±1, ϕ± and matrix inversion are rational maps).
In fact these maps are pairwise inverse and so they send Zariski open dense
sets to Zariski open dense sets. Thus, Axiom 2 of Definition 5.1 is satisfied.
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Next we recall the definition of the functor Q, see [24] and [17]. Let T be
a standard tangle in (0,+∞)× R× [0, 1]. Let D be a Y -colored diagram in
(0,+∞)×{0}×[0, 1] which we assume is a projection of T in the y-coordinate
direction. We assume T is close to D. To define the functor we consider two
kinds of paths: (1) positive paths which are in (0,+∞) × [0,+∞) × [0, 1]
and to the right of T and (2) negative paths in (0,+∞) × (−∞, 0] × [0, 1]
and to the left of T . Let M+ (resp. M−) be the set of points traced out by
all positive (resp. negative) paths. Then M+ ∩M− is a subset of (0,+∞)×
{0} × [0, 1] whose connected components ri are delimited by the diagram
D. The closure of one of these components contains {0} × {0} × [0, 1], we
denote this component by r0. We fix a point Pi in each region ri. Recall
that a quandle G-coloring of D is equivalent to the data of a representation
ρ : π1(MT , P0)→ G, see Remark 2.5 and Theorem 2.8.

Let (
−−→
PiPj)± be a path in M± from Pi to Pj. The space M± is contractible

so a path (
−−→
PiPj)± in the groupoid π1(M±, {Pi}) is uniquely determined by

its end points. The positive and negative paths to and from adjacent regions
generate the groupoid π1(M, {Pi}) (for relations see Lemma 3.4 of [17]) so a
representation of the groupoid in G is determined by their image. If an edge
e of D with Y -color x has region ri on the left and rj on the right, we assign

to the path (
−−→
PiPj)± the element ϕ±(x). The properties of the Y -coloring

imply that this assignment satisfies the defining relations of the groupoid
π1(MT , {Pi}) given in Lemma 3.4 of [17]. Thus, this assignment extends
(uniquely) to a representation ρ of π1(MT , {Pi}) in G. The meridian of the

edge e, as above, is the loop (
−−→
PiPj)+.(

−−→
PiPj)− and its image by ρ is ψ(x) =

ϕ+(x)ϕ−(x)−1 ∈ G. As the fundamental group π1(MT , P0) is generated by
the meridians of the edges we have the restriction of ρ to π1(MT , P0) takes
values in G and thus is a G-tangle structure ρ on T .

The partially defined inverse map is constructed as follows: we want to
extend a representation

ρ ∈ Homquandle(Q(T, P0),Conj(G)) ∼= Homgroup(π1(MT , P0),G)

to a representation ρ ∈ Homgroupoid(π1(MT , {Pi}),G) that will send (
−−→
PiPj)±

to ϕ±(x). This can be done if and only if

(42) ρ
(

(
−−→
P0Pi)+.(

−−→
PiP0)−

)
∈ ψ(G∗)

for all points Pi. Assuming that this is true, let

gi = ψ−1
(
ρ
(

(
−−→
P0Pi)+.(

−−→
PiP0)−

))
then by defining ρ((

−−→
PiPj)±) = ϕ±(g−1

i gj) we obtain the desired representa-
tion. If an edge e of D has region ri on the left and rj on the right, the
Y -coloring associated to ρ assign to e the color g−1

i gj.
Hence we obtain an injective functor Q whose image is formed by G-

colorings whose underlying quandle map ρ satisfy Equation (42). Next we
check that this functor satisfies Equation (18). Let x ∈ Y and w ∈ WY .
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As above let T1 and T2 be two standard tangles close the trivial Y -colored
diagrams Idw and Idx⊗w, respectively. Let ρi : π1(MTi , P0)→ G be their rep-
resentation constructed above. Let e be a strand corresponding to a letter in
the word w (we think of e in both T1 and T2). Since T2 is just T1 with and ex-

tra strand on the left we see that to ρ2(e) = ρ2((
−−→
P0P1)+)ρ1(e)ρ2((

−−→
P0P1)+)−1

where the conjugation of ρ2((
−−→
P0P1)+) come from passing over first strand of

T2 and back. But by definition ρ2((
−−→
P0P1)+) = ϕ+(x). Thus, ρ2(e) = x⇁ρ1(e)

and the functor satisfies Equation (18).
Finally, for fixed g ∈ G, the set of h in ϕ+(G∗) such that hgh−1 ∈ ψ(G∗)

is the complement of an algebraic hypersurface. The preimage by ϕ+ of this
set is an open set Zg ∈ G. Then the set of x ∈ G∗ such that Q−1(x⇁D)

exists is
⋂{

Zg : g ∈ {ρ
(−−−→
P∞Pi+.

−−−→
PiP∞−

)
}
}
∈ G. This proves Axiom (5) and

completes the proof of Theorem 5.5.

Appendix C. Proof of Theorem 5.9

To prove the theorem it is convenient to prove a more general proposition
about the disjoint union of diagrams of links and 1-1 tangles. With this in
mind, consider the disjoint union of Q-colored diagram tiDi where Di is a
diagram representing a Q-link or a 1-1 Q-tangle; let Dk be the set of all such
unions. Also, let DQ be the set of all Q-colored diagram that are in the image
of Q. For D ∈ DQ ∩Dk, let

FDk(D) =
〈
F
(
Q−1(D)

)〉
∈ k,

where the bracket is defined as the scalar corresponding to the scalar endo-
morphism F (Q−1(D)). Remark that tensoring on the right by any identity
does not affect FDk , i.e. FDk(D ⊗ Id) = FDk(D). Remark also that for a
Y -colored diagram D with Q(D) ∈ Dk then FDk(Q(D)) = 〈F (D)〉. In par-
ticular, if D is a Y -colored diagram of a link then FDk(Q(D)) = F (D). Thus,
Theorem 5.9. is a corollary of the following proposition:

Proposition C.1. The partial map FDk : Dk → k is B-gauge invariant, i.e.
invariant under the equivalence generated by (x⇁�)x∈Y and (aB �)a∈Q.

Proof. We prove the following five claims:

(1) If D ∈ DQ ∩Dk then for generic x ∈ Y , FDk(D) = FDk(x⇁D).
(2) Let D1, D2 ∈ DQ ∩Dk and D′1, D

′
2 be two Q-colored diagrams of the

form D′i = Q(Id⊗Q−1(Di)) ⊗ Id. Suppose that there exists a Q-
colored braid diagram σ such that D′2 ◦ σ ≡ σ ◦D′1, then FDk(D1) =
FDk(D2).

(3) For any x, y ∈ Y and any D ∈ Dk, if x⇁D, y⇁D ∈ DQ then
FDk(x⇁D) = FDk(y⇁D).

(4) The partial map FDk on Dk is invariant for the equivalence relation
generated by (x⇁�)x∈Y .

(5) The partial map FDk on Dk is invariant for the equivalence relation
generated by (aB �)a∈Q.
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• To prove Claim (1) we see that Lemma A.1 implies: If D = Q(D′) with
D′ : w → w then

IdVx ⊗FDk(D). IdF (w) = F
(
χ−x,w

)−1 ◦
(
FDk(x⇁D). IdVx′ ⊗ IdF (w′)

)
◦ F
(
χ−x,w)

)
.

The claim then follows because Vx ⊗ F (w) is regular.

• For Claim (2), let DY
i = Q−1(Di) for i=1,2. We have that for generic

x ∈ Y , the diagrams x⇁(D′2 ◦ σ) and x⇁(σ ◦ D′1) are in DQ and they
represent isotopic tangles so F ◦ Q−1(x⇁(D′2 ◦ σ)) = F ◦ Q−1(x⇁(σ ◦D′1)).
Thus,

FDk(x⇁D′2).F ◦ Q−1(x⇁σ) = FDk(x⇁D′1).F ◦ Q−1(x⇁σ)

and as F◦Q−1(x⇁σ) is invertible and objects are regular, we get FDk(x⇁D′1) =
FDk(x⇁D′2). Next

FDk(x⇁D′i) = FDk(x⇁[Q(Id⊗DY
i )⊗ Id]) = FDk(x⇁[Q(Id⊗DY

i )]),

then as Q(Id⊗DY
i ) ∈ DQ∩Dk we can apply Claim (1) twice and we get that

for generic x,

FDk(Q(Id⊗DY
1 )) = FDk(x⇁[Q(Id⊗DY

1 )]) = FDk(x⇁[Q(Id⊗DY
2 )])

= FDk(Q(Id⊗DY
2 )).

Finally, we see Claim (2) follows from FDk(Q(Id⊗DY
i )) = FDk(Di).

•We are now ready to prove Claim (3): Let D : w → w with D ∈ Dk. Define
qx, qy ∈ Q by

Q(Id(x,−)⊗Q−1(x⇁D)) = Id(qx,−)⊗D
and

Q(Id(y,−)⊗Q−1(y⇁D)) = Id(qy ,−)⊗D.
Let σ be the Q-colored braid

σ =

qx

qy

w

w

then (Id⊗D ⊗ Id) ◦ σ ≡ σ ◦ (Id⊗D ⊗ Id) and Claim (2) implies that
FDk(x⇁D) = FDk(y⇁D).

• To prove Claim (4) let us first extend the partial map FDk to a total map F̂

on Dk by F̂ (D) := FDk(x⇁D) for any x ∈ Y such that x⇁D ∈ DQ. Claim
(3) implies that this extension is well defined and Claim (1) implies that FDk

is indeed the restriction of F̂ on DQ ∩Dk. Now Claim (4) is equivalent to

(43) F̂ (x⇁D) = F̂ (D), ∀(x,D) ∈ Y ×Dk.
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If x⇁D ∈ DQ, this follows from the definition of F̂ . Else, we have

F̂ (x⇁D) = FDk(z⇁(x⇁D))

for generic z ∈ Y . But for generic z, (z⇁�) ◦ (x⇁�) = (x′⇁�) ◦ (z′⇁�)
where (x′, z′) = B−1(z, x) and in particular z′ is the image of z by the
generic bijection B−1

2 (�, x). Thus for generic z, z′⇁D ∈ DQ and then

FDk(z⇁(x⇁D)) = FDk(x
′⇁(z′⇁D)) = FDk(z

′⇁D) = F̂ (D).

• Finally we prove

F̂ (q BD) = F̂ (D), ∀(q,D) ∈ Q×Dk,

which is equivalent to Claim (5). By (43), we can replace q with x⇁q and
D with x⇁D because x⇁(qBD) = (x⇁q)B (x⇁D). Doing this for generic
x we are left with the case where D, q BD ∈ DQ. Then, if D : x → w, the
result follows by applying Claim (2) for D1 = D, D2 = q BD and

σ =

w

q B w q

.

This completes the proof of the proposition. �

Appendix D. Proof of colored braid relation

In this appendix we prove Theorem 6.2. Let R̄ be the matrix chosen
when defining cχ1,χ2 . Since R satisfies the YB equation then R̄ satisfies a
holonomy YB equation up to a scalar. Again, as all determinants are 1 then
the holonomy YB equation is true up to a r3-root of unity. The following
lemma shows that the this equation is actually true up to a r2-root of unity
(and thus implies Theorem 6.2).

Lemma D.1. The holonomy YB equation is true up to a r2-root of unity.

Proof. For n ∈ N, let Θn be the set of complex nth roots of unity which
acts by multiplication on complex vector spaces. If f is a bijection between
two n-dimension C-vector spaces equipped with volume forms then, up to
Θn, there is a unique normalization λ.f which send one volume form to the
other. The R-matrix is such a renormalization where the volume forms are
induced from the maps φχ. Hence, if two representations V, V ′ equipped with
volume forms have the same character then they are isomorphic by an unique
volume preserving isomorphism up to Θr. Furthermore, as the tensor product
of volume preserving isomorphisms is a volume preserving isomorphism, the
R-matrices constructed from V and those constructed from V ′ correspond
through these isomorphisms.
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• Consider now the subset A3 of Y 3
` formed by triplet (x, y, z) where the

set YB equation is defined

(44)
(IdVx ⊗cy,z)−1 ◦ (c�,� ⊗ Id�)

−1 ◦ (Id�⊗c�,�)−1◦ (c�,� ⊗ Id�)
◦(Id�⊗c�,�) ◦ (cx,y ⊗ IdVz) = λ(x, y, z) IdVx⊗Vy⊗Vz

where the � objects are completed with the biquandle structure B and where
λ : A3 → C is a function. The set A3 is a 9 dimensional complex variety ob-
tain from C9 by removing complex hyper-surfaces and taking finite coverings.
In particular, it is path connected. Moreover, the R-matrix has determinant
1, so we have that λr

3
= 1 and λ ∈ Θr3 has discrete values. Remark that the

previous paragraph implies that λ induces a partial map λ : A3 → Θr3/Θr2

which is independent of the representation (Vχ)χ∈Y` .
• We now construct a bundle of r-dimensional Uξ-module V → P ′ where

P ′ → Y` is onto and is a local homeomorphism.
Let P = {(y, k) ∈ Y` × C∗ : kr = (−1)r−1y(Kr)} be the r fold cover of Y`.

If an element (g, ω) ∈ Y` satisfies g(F r) = 0, then Cbr (ω) = −(−1)`g(Kr +
K−r) and there exists k ∈ C such that kr = (−1)r−1g(Kr) and ω = (−1)`−1(k + k−1).
We denote by P 0 the set of such (g, ω, k). Remark that if (g, ω, k) ∈ P 0,
then k 6= ±ξi for i = 1 · · · r − 1 else one would have Cbr (ω) = ±2 and
ω = 2(−1)`−1.

Let P ′ = P \ {(g, ω, k) : g(F r) = 0} ∪ P 0 and let ε : P ′ → C be defined on
p = (g, ω, k) by

ε(p) =


ω + (−1)`(k + k−1)

{1}2g(F r)
if p /∈ P 0

(−1)r−1{1}2rg(Er)∏r−1
i=1 {i}(kξ−i − k−1ξi)

if p ∈ P 0

.

One easily checks that ε is continuous on P ′. Let Z` ⊂ C0(P ′,C) be the
polynomial algebra Z` = C[ε, k±1, ϕ] where ϕ : (g, ω, k) 7→ g(F r). Following
[26, Section VI.5] we define a bundle of Uξ-module V = P ′×Cr by giving an
algebra map ρV : Uξ → Matr(Z`) as follows:

ρV(K)i,i = kξr+1−2i, ρV(F )i+1,i = 1, ρV(F )1,r = ϕ

ρV(E)i,i+1 = ϕε− (−1)`
(kξ−i − k−1ξi){i}

{1}2 , ρV(E)r,1 = ε

and other coefficients are 0.
The obvious map π : P ′ → Y` is surjective and it is locally an homeo-

morphism. For any (p1, p2, p3, p4) ∈ (P ′)4, if B(π(p1), π(p2)) = (π(p4), π(p3))
then the R-matrix is up to a scalar the unique solution in

HomC (Vp1 ⊗ Vp2 ,Vp4 ⊗ Vp3)

of the six linear equations{
ρVp3⊗Vp4 (R(X ⊗ 1))R = RρVp1⊗Vp2 (1⊗X)
ρVp3⊗Vp4 (R(1⊗X))R = RρVp1⊗Vp2 (X ⊗ 1)

, X ∈ {K,E, F}.
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Hence the R-matrix is continuous in the following way: there exists open
neighbors Ni of pi such that B is a bijection π(N1)×π(N2)→ π(N4)×π(N3)
which lift to a continuous isomorphism of bundle V|N1 ⊗V|N2 → V|N4 ⊗V|N3 .

This implies that the map λ defined above is continuous thus locally constant.
• Finally as λ is locally constant and A3 is connected, λ is constant and

this constant is λ(χ0, χ0, χ0) = 1 where χ0 is the character of the Steinberg
module.

This finishes the proof of Lemma D.1. �

Appendix E. Proof of Lemma 6.5

We need the following lemma which appears in [11].

Lemma E.1 (Cutting Coupon Lemma). Let H be a pivotal Hopf algebra over
a field k. Let C be the pivotal k-category of finite dimensional H-modules.
If f : V1 ⊗ V2 → V3 ⊗ V4 is a morphism in C such that

f(hx⊗ y) = (h⊗ 1)f(x⊗ y) or f(x⊗ hy) = (1⊗ h)f(x⊗ y)

for all h ∈ H and x ⊗ y ∈ V1 ⊗ V2 then there exists ai : V1 → V3 and
bi : V2 → V4 such that f =

∑
i ai ⊗ bi.

Let V and W be generic simple Uξ-modules. Recall the morphism R given
in Equation (35). Let V ′ be a simple Uξ-modules such that there exists an
C -isomorphism β : V ′ → V ∗. Consider the following morphisms

f1 := τ12R12τ23R23 = τ12τ23R13R23 : V ′ ⊗ V ⊗W → W ⊗ U ′1 ⊗ U1

and

f2 := τ23R23τ12R12 = τ23τ12R13R12 : W ⊗ V ′ ⊗ V → U ′2 ⊗ U2 ⊗W

where the colors Ui and U ′i are determined by the morphisms. There exists
isomorphisms αi : U ′i → U∗i for i = 1, 2. Consider the following morphisms:

g1 = (Id⊗ ←−evU1)(Id⊗α1 ⊗ Id)f1 : V ′ ⊗ V ⊗W → W

and

g2 = (
←−
evU2 ⊗ Id)(α2 ⊗ Id⊗ Id)f2 : W ⊗ V ′ ⊗ V → W.

Lemma E.2. There exist a scalar λ1, λ2 ∈ C such that

g1 = λ1(
←−
evV ⊗ Id)(β ⊗ Id⊗ Id) and g2 = λ2(Id⊗ ←−evV )(Id⊗β ⊗ Id).

Proof. We prove the theorem for g1 the case for g2 is similar. To do this we
need to derive several equations. Let v ∈ V ′ ⊗ V ⊗W and x, y ∈ Uξ. Then

f1

(
(∆(x)⊗ y).v

)
= τ12τ23R13R23

(
(∆(x)⊗ y).v

)
= τ12τ23R13R23

(
∆(x)⊗ y

)
R13R23(v)

= τ12τ23∆1

(
R(x⊗ y)

)
R13R23(v)

= ∆2

(
τ
(
R(x⊗ y)

))
.f1(v)(45)
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where the second equality comes Equation (36) and the third equality follows

from Equation (30). Consider the morphism α′ =
←−
evU1 (α1 ⊗ Id). We have

g1

(
(∆(x)⊗ y).v

)
= (Id⊗α′)

(
∆2

(
τ
(
R(x⊗ y)

))
.f1(v)

)
= ε2

(
τ
(
R(x⊗ y)

))
.
(
(Id⊗α′)f1

)
(v)

= ε1
(
R(x⊗ y)

)
.g1(v)

= ε(x)y.g1(v)

where the first equality comes from Equation (45), the second since α′ is an
invariant morphism and the fourth from Equation (31).

Thus, we have proved that C -morphism g : V ′⊗V ⊗W → C⊗W satisfies
the hypothesis of Lemma E.1 and so there exists C -morphisms ai : V ′⊗V →
C and bi : W → W so that g =

∑
i ai ⊗ bi. But

HomC (V ′ ⊗ V,C) ∼= EndC (V ) ∼= C

and EndC (W ) ∼= C since V and W are simple. Thus, for each i, ai and bi
are proportional to

←−
evV (β ⊗ IdV ) and IdW , respectively. �

Lemma E.2 is an algebraic version of Lemma 6.5.

Appendix F. Proof semi cyclic module give a representation

Here we discuss why the biquandle give in Subsection 4.6 has a representa-
tion coming from the semi cyclic modules. Let Uξsl(2) be quantum quantum
sl(2) where ξ is the 2rth-root of unity. Let C be the category of Uξsl(2) weight
modules has defined in Subsection 6.1.3 of [17]. Recall the set X given in
Subsection 4.6. For x ∈ X there exists a semi cyclic module Vx in C , see
Theorem 6.6 of [17]. Moreover, Equation (23) of [17] defines a Yang-Baxter
model for {Vx}x∈X : for all x, y ∈ X

(46) cx,y : Vx ⊗ Vy → B1(Vx, Vy)⊗B2(Vx, Vy)

which satisfies the colored braid relations. Remark that the semi cyclic mod-
ules are cyclic modules as in Subsection 6.1. The braiding given in Equation
(46) intertwines the actions of the generators K, E and F of Uξsl(2) and
their image by R. Thus, up to a scalar, this braiding is equal to the braiding
given in Theorem 6.2 when the modules are semi cyclic. Thus, the braiding
in Equation (46) is sideways invertible, up to a root of unity.

In Subsections 6.4 and 6.5 we showed the Yang-Baxter model associated
to the cyclic modules was sideways invertible and induced a twist. Since the
Yang-Baxter model of the cyclic modules was only defined up to a root of
unity we were only able to show the sideways invertibility and twist held up
to a root of unity. However, the proof works in the context of semi cyclic
modules and in this situation we have equalities independent of any root of
unity. We explain this now.
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As mentioned above the braiding is sideways invertible, up to a root of
unity. In other words, Yang-Baxter model satisfies the two negative Reide-
meister moves RII−+ and RII+− up to a scalar. Then the proof of Theorem
38 holds in for the semi cyclic. The only difference is that our braiding is
defined on the nose and not just up to a scalar. Thus, we get that {Vx, cx,y}
satisfies the RII−+ and RII+−. Also, the proof of Theorem 6.8 show that
{Vx, cx,y} induces a twist.
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