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Abstract. The diversity and complexity of Digital Musical Instruments
often lead to a reduced appreciation of live performances by the audi-
ence. This can be linked to the lack of familiarity they have with the
instruments. We propose to increase this familiarity thanks to a trans-
disciplinary approach in which signals from both the musician and the
audience are extracted, familiarity analyzed, and augmentations dynam-
ically added to the instruments. We introduce a new decomposition of
familiarity and the concept of correspondences between musical gestures
and results. This paper is both a review of research that paves the way
for the realization of a pipeline for augmented familiarity, and a call for
future research on the identified challenges that remain before it can be
implemented.
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1 Introduction

Whether as a musician or as a spectator, the experience of live music has very
particular characteristics. It is often immersive, as intimate as collective and im-
plies different modalities with both low and high level cognitive engagements.
Moreover, a musical experience is often a corporeal, aesthetic as well as emo-
tional commitment and is therefore difficult to define. Despite their great di-
versity and the parallel treatments they require, we assimilate all these aspects
without any apparent effort. We naturally build this intense feeling that we all
have experienced by attending a concert. Beyond the unfathomable subjective
part of this musical experience (i.e. tastes and colors), we can identify objective
characteristics that influence how we perceive live music, and among these, the
way musicians interact with their instrument and how we perceive and integrate
these interactions.

On the one hand, in the production of music with acoustic instruments,
gestures and sounds are intrinsically linked by the laws of physics or at least by
intuitive connections that do not need any prior explanation. Beside the music
they produce, every interaction is visible. Thereby the expressive intentions, as
well as the intensity of emotions, are particularly vivid and underline the role of
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a multimodal integration [42]. Along this line, the degree of perceived control,
influenced by the additional information usually extracted from the musician’s
interactions, participates in the emergence of the liveness of the performance.

On the other hand, the experience of live music produced by digital musical
instruments (DMIs) may suffer from a deterioration of this intuitive link between
the behavior of the musician, the inner mechanisms of the instrument and the
sounds actually produced. When what we hear is not directly linked to what
we see or what we may infer from a given gestural behavior, when music is
not the direct and causal consequence of the specific gestures of the musician,
then we may loose the multimodal integration that contributes to the immersive
experience of live music.

These considerations have led to an increasing amount of recent researches on
measuring the audience experience [2, 26, 18, 19, 17, 12, 3, 10], sometimes used as
a way to evaluate the instruments themselves [44]. The less familiar we are with
an instrument, the less we are able to perceive the fine relationship musicians
build with their instrument. This lack of coherence in multimodal information
might downgrade the attributed agency [7], that is the perception of how much
the musician is controlling their performance. Thus the knowledge we have about
a DMI or its obvious behavior are crucial features to understand and integrate
the interactions and thus fully experience live music. How do we ensure famil-
iarity with DMIs ?

1.1 Improving familiarity with Digital Musical Instruments

Familiarity is the feeling of knowing about the behavior and the possibilities of an
instrument. It can be associated with other concepts in the literature as mental
model [18] or as an extension of transparency [16]. We believe that familiarity
is a strong component of the live music experience as it provides the spectator
the ability to detect the intentions and the virtuosity of the performance of the
musicians as well as their errors. Several attempts have been made at improving
the familiarity. In this section, we propose a quick review of these solutions and
their limitations.

Building a repertoire Quite naturally, a first way to increase the familiarity
of people with a particular instrument is to promote its use and dissemination
by building a repertoire of compositions around it. Once a majority of spectators
have seen the instrument played by many musicians in different contexts, or even
practiced it themselves, they are aware of its potential for musical expression and
of its behavior. Thereby, the familiarity issue does not exist anymore. This kind
of “natural familiarity” is definitely effective but requires a large amount of time
and energy to be achieved. Moreover, this method is not compatible with the
very idea behind DMIs and the exponential creativity they embed. Whether a
musician wants to evolve its instrument or let other musicians modify it, as soon
as the instrument changes, the whole process of natural familiarity needs to start
all over again.
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Explaining the instruments. When the problem of familiarity lies partially
in the understanding of the operations of an instrument, demonstrating the be-
havior of the instrument can be a valuable solution. Building the familiarity with
a pedagogical method is a simple way to make an audience understand what is
going on on stage. Before, after and even in breaks during the performance,
the musicians can explain how their instrument works. Prior hands-on demos,
where the audience can actually play the instrument, are also a good way to
increase the familiarity. However, both these methods trigger some reservations
as the technical understanding of an instrument is not necessarily linked to a
better appreciation of the performance. For example, Bin et al. [11] demonstrate
that explanations before the performance do improve the understanding of the
instruments and its mechanisms but do not increase either the appreciation or
interest. Besides these results, the audience may forget or unconsciously misre-
port important details from the performance [29] and the demos may not be
possible when dealing with a large audience.

Designing for transparency. Another strategy to increase the experience
of spectators watching a musician playing an instrument they have never seen
before lies in the design of the instrument itself. The idea is to expose a clear link
between the gestures and the sound modifications operated by these gestures,
what is called the mapping of an instrument. The fluency of perception of these
mappings is often called “transparency”, and is defined by Fels et al. [16] as
follows :

For the lay audience, this understanding is derived from cultural knowl-
edge, including percepts of physical causality relationships.

Aiming for transparency from the very first steps of the design of a musical de-
vice can lead to “easier to perceive” instruments [31]. Following that lead, an
interesting way to increase the transparency is the use of metaphors [16]. In that
case, the common background of inexperienced audience, their general knowl-
edge, are used as a mold to grow new knowledge about an instrument mapping.
For instance, the timbre of a sound can be modified as the shape of an associated
graphical representation that is getting sculpted. However, the instruments de-
signed according to these specifications tend to maintain the familiarity we have
with acoustic instruments and physical laws. Thus, despite the gain in trans-
parency, this method may narrow the design possibilities usually available for
DMIs.

Visually augmenting the instruments. Berthaut et al. [7, 8] proposed to
increase the familiarity by recreating a link of causality through visual augmen-
tations of the instruments. Based on the attribution of causality by spectators
(attributed agency) to a music performance, the visual augmentations provide
insights on the musician’s interactions with its instrument. Animated 3D ob-
jects overlapping the device reveal the relationship between the gestures and the
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musical result to the audience. These augmentations are based on Wegner’s cri-
teria of apparent mental causation [43] (See 2.1). By exposing the details of the
interactions, the setup contributes to re-link the gestures of the artist to their
intentions and expressiveness. Besides, the augmentations enable the distinction
between automated part and actual live music production. Such a discrimination
between live and pre-recorded music appears to be crucial in the experience of
live music precisely because it is supposed to be a live performance. However,
these augmentations do not take into account the audience reaction or their ex-
pertise. Indeed, the familiarity with an instrument is a personal characteristic
that cannot be generalized. A concert in front of specialists or naive people does
not imply the same requirement of explanations or augmentations.

Fig. 1. Visual augmentations of DMIS for the increase of familiarity. The inner mech-
anisms of the instrument are dynamically revealed to the audience. (From Berthaut et
al. 2013 [8])

Toward a new method. These different methods offer a rather effective way
to increase the understanding of the behavior of DMIs. However they don’t fully
cover a major aspect of the music experience which is the real time multimodal
integration of visual and auditory cues. Furthermore, while the visual augmen-
tations gave good results they do not take into account the audience expertise
that may appeal for specific levels of details in the augmentations. Moreover, in
some cases, non-visual augmentations may be more relevant. Thereby, we pro-
pose new insights to improve the familiarity in a more adaptable and reliable
way.
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1.2 Contribution

Our contribution is two-fold. First, we propose a conceptual pipeline to improve
the familiarity of the audience with DMIs in real-time by analyzing spectators’
reactions, musicians’ actions, musical outputs and by augmenting the instru-
ment. To do so, we introduce the concept of correspondences. Second, for each
module of this pipeline, we briefly review relevant knowledge in computer and
cognitive sciences. We also identify interdisciplinary challenges that need to be
solved to reach a functional software implementation of the pipeline.

2 Toward augmented familiarity

In this section we propose a novel approach for improving familiarity, formalized
by a software pipeline. While it remains conceptual, it was designed so that it
could be implemented by addressing the challenges described in Section 2.2.

Here is a scenario that we envision with our pipeline :
Patricia attends an electronic music concert. At the entrance, she is given a
small device equipped with physiological sensors (a choice of either a bracelet or
a special glass that she holds). During the concert, she has trouble understanding
what is happening, in particular what the musician’s action on the sound is. The
device senses a change in a set of physiological signals, that corresponds to a loss
in familiarity, and sends the data to a server. Patricia may also directly indicate
her loss in familiarity with a graphical slider on an app on her smartphone. Si-
multaneously, this server has been analyzing the musician’s gestures, the flow of
data inside the instrument and the musical output. When it receives Patricia’s
familiarity signals, the server, with settings defined by the musician, selects the
adequate augmentations to be displayed. They aim at compensating for the famil-
iarity disruption caused by the musical interaction context. Consequently, visual
augmentations are displayed around the musician either for Patricia alone when
she watches the performance through her smartphone (e.g. with video augmented-
reality), or for the group of people around her using a mixed-reality display. They
provide information that improve her degree of familiarity, allowing her for ex-
ample to perceive the link between the musician’s gesture and the resulting sound,
and to enjoy the performance to a larger extent.

2.1 General approach

To improve the liveness of music performances with DMIs, we suggest increasing
the familiarity thanks to a trans-disciplinary approach in which both human
and technological signals are analyzed. To achieve this goal, we first clarify the
notion of familiarity. We then propose the concept of correspondences, which
describes musical interactions and the way they are perceived. Finally we present
a potential pipeline that would extract and process signals from the musician
and from the audience to compose augmentations.
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Familiarity dimensions. As other high-level cognitive abilities, familiarity is
not a unitary notion. It can be decomposed into components that differ by their
nature, their inner rules as well as the type of information they convey. Besides,
familiarity relates to expertise or attention and thus impacts on brain and mo-
tor system activities. We will describe in Section 2.2 how previous research show
that these activities can be detected in more detail. Familiarity may also relates
to various parts of the musical interaction that is perceived. Spectators can be
more or less familiar with : musical gestures, relations between gestures and
sound, instruments capabilities or musical genres. All these factors contribute to
the general familiarity one has with an instrument. Following research by Fyans
et al. [18, 19] and Belloti et al. [5], Barbosa et al. [2] evaluate the audience experi-
ence through their comprehension of cause, effect, error, intention and mapping.
However, measuring the familiarity might not be sufficient to inform the design
of instruments or to augment performances if the origin of this familiarity is
not understood correctly. For example, the perception of expertise, skill, error
or intention of the performer, are consequences of the familiarity one has with a
musical interaction rather than dimensions of the familiarity itself. For instance,
the more familiar we are with an instrument, with the way the sound is produced
and with the context of the performance, the better we can assess the quality
of the performance and perceive the errors and the intention of the musician.
Therefore while they can help measure the familiarity, to which they are corre-
lated, these features do not provide insights on the reasons for this familiarity.
One must therefore investigate the features which, when changed, have an im-
pact on the overall familiarity, and in turn on the perception of expertise, skill,
error or intention.

Taking this into account, our approach is to decompose familiarity into di-
mensions that we can both evaluate and improve. Based on results in HCI,
NIME, and cognitive sciences that have explored various aspects of familiarity,
we propose to decompose it into five components : Causality, Instrumentality,
Instrument expertise, Musical culture and Musical genre expertise.

These in turn contain dimensions that can be evaluated independently :

Causality relates to the apparent mental causation, e.g. the judgment of
causality of one’s action, defined by Wegner et al [43], where each of the three
following dimensions are required to establish a judgment of causality of one’s
action:

– Priority - The thought should precede the action at a proper interval

– Consistency - The thought should be compatible with the action

– Exclusivity - The thought should be the only apparent cause of action

The consistency aspect is also closely related to the notion of naive physics,
that is a set of innate or common knowledge about the physical world like gravity
or friction that can also be used in digital interfaces as physical metaphors [21].

As proposed in [7], we transpose this model from the perception of one’s own
intentions/actions to the perception of others’ actions. By doing so, we extend
the concept of agency to the rather recent concept of attributed agency.
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Instrumentality relates to common knowledge that allows one to predict the
range of sound possibilities of a musical instrument from its appearance. It is
composed of two dimensions : the composition, i.e. shape and material, and
behavior, i.e. mechanisms and degree of autonomy from the musician’s actions.

Instrument expertise relates to the exposure the spectator has had to the
instrument, from a first-time observer to an expert player.

Musical culture corresponds to a basic knowledge of musical theory, that can
for example be used to represent pitch as vertical position of a graphical element,
i.e. mimicking a staff.

Musical genre expertise is composed of dimensions that correspond to the
familiarity with the specifics of a genre, such as of structure and constraints.
The effect of this category is obvious in the study by Bin et al. [11], where the
same instrument played in two genres has a different impact on familiarity.

Notice that each component has a specific weight on the overall process. Fur-
thermore, this model is consistent with the partial results that previous strate-
gies have achieved. Culture and expertise for the “building a repertoire” and
the “prior explanations” strategies, Instrumentality and Culture for “the design
for transparency” and Causality for the augmentation strategy. This decompo-
sition might evolve according to findings from the implementation phase. Some
dimensions could prove harder to evaluate or others may emerge.

Finally, the complete decomposition of familiarity that we propose includes
the following dimensions :

Familiarity = Cexclusivity + Cpriority + Cconsistency

+ Icomposition + Ibehavior

+ Eexpertise

+ Mculture

+ Gstructure + Grules

(1)

Correspondences. In order to handle the heterogeneous data (physiological,
behavioral, musical, visual, mechanical) associated with the dimensions of fa-
miliarity, we introduce the notion of correspondence : a conceptual object that
stands as a digital multidimensional representation of a musical interaction. This
object associates several properties : musical output (audio), gesture data (time
series of 3D coordinates), visual data (video of the movement), control data
(time series of sensor values) and the source of the interaction. This last prop-
erty specifies the author of the interaction. Indeed, interactions are not only
produced by one musician but can be triggered and mastered by another one
in a collaborative performance or, more usually, by autonomous prepared pro-
cesses, e.g. automations or playlists.
Each property is subdivided in three elements : a raw format element, a semantic
element, and a classification element.
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The raw format element is a pointer to a collection of related files. For in-
stance, the raw element of the visual property of a clap correspondence is a
pointer to a collection of short videos showing a clap from different angles and
velocities and the raw element of the audio property a pointer to a collection of
short audio recordings of a clap.

The semantic element is composed of annotated descriptors of the property.
For our clap example, the semantic element of the visual property could list
obvious descriptors as ”hands”, ”clap”, ”applause”, ”brief” but also more precise
descriptors relative to specific taxonomies developed in the different analysis of
gesture and sound.

The descriptors can be freely provided by the audience or taken from refined
existing models such as [13] or [22]. For instance, ”excitation gesture” or ”ef-
fective gesture” could be used to populate the semantic element of the gesture
property of a correspondence. Interestingly, by holding descriptors for each prop-
erty of a unique interaction (aka correspondence), the semantic element offers the
possibility to analyze the links between descriptors from different properties by
the analysis of their co-occurrence. Finally, looking forward to the implementa-
tion, the processing of meaningful descriptors can rely on the strong foundation
of web semantics [6].

The classification element is dedicated to the classification of the raw ele-
ments through machine learning methods and thus allows for the pairing of close
correspondences with respect to their different properties. To compute such a dis-
tance between correspondences, multidimensional vectors can be used alongside
more specific techniques as neural networks, informed by an efficient semantic
analysis thanks to the semantic element of a given property.

In addition, correspondences hold a score for each of the familiarity dimen-
sions described earlier (causality, instrumentality, ...). For example, two corre-
spondences with the same musical result, e.g. the fade-in of an audio loop, can
have different gesture and control properties depending on the mapping chosen
for the DMI. While a continuous gesture on a fader would have a high score
(meaning, the most natural way to fade) for the consistency dimension, a dis-
crete tap on a pad would have a low one, since the effect would no be consistent
with the cause for a spectator, e.g. discrete input and continuous output. This
score of familiarity held by each correspondence plays a central role in our ap-
proach for an increase of familiarity as it allows for sorting correspondences from
obvious to abstruse for a given audience.

Finally, as an interaction may be more complex and decomposed in a sequence
of more basic interactions, a correspondence can also be linked to other, simpler
correspondences.

Pipeline. Our envisioned pipeline (Fig 2) is composed of five modules that han-
dle the extraction of the data from the musician and their instrument (EXT M )
, the extraction of physiological and subjective data from the audience (EXT A),
the processing of the data (IA) and the selection of fitting augmentations (AUG)
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Fig. 2. The proposed pipeline with its main modules and data flows

based on a database of correspondences (DB C ). The pipeline is used at three
different moments : before, during and after a performance.

Before the performance, correspondences, coming from a shared online database,
or recorded specifically for the instrument, are saved in the DB C module.
1 During the performance, IA receives musical interaction data extracted by

EXT M . This data consists of both dynamic values such as gestural parame-
ters, audio features and control values which will be used directly by IA, and
of physical (position of gestures and sensors), logical (tracks, effects, synthesiz-
ers, ...) and structural information about the musical interaction, which will be
used by AUG . 2 IA builds and manages a set of ongoing correspondences from
these signals. 3 Simultaneously, IA receives the familiarity evaluation (with
the identification of the sensed individual or group) from EXT A. If the famil-
iarity evaluation is low, 4 IA finds in DB C correspondences similar to the
ongoing one, and select the familiarity dimensions that need to be compensated
depending on their scores in these. IA then sends AUG the data required for
the augmentation : live correspondences, associated signals from EXT M with
dynamic and structural data and identification of the source of the familiarity
evaluation (in order to display the augmentations only to the correct person or
group). 5 AUG creates (or selects if it already exists) the augmentation that
matches the received structural data, for example a visual augmented-reality
link between the physical position of a sensor and a virtual representation of an
audio track. 6 Augmentations are then connected to EXT M and listen to the
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signals required to update the augmentation, e.g. control values for the sensor,
loudness of the track. After the performance, the familiarity extracted from the
audience can be reused to refine the scores for the familiarity dimensions in each
detected correspondence of DB C .

2.2 Modules

Database of correspondences (DB C ). DB C manages all pre-existing cor-
respondences. These can be generic, or specific to an instrument or performance.
It receives queries from IA to select correspondences matching the ones detected
during the performance. A very promising approach in dealing with heteroge-
neous data is the use of databases. Even if the efficiency of machine learning
and analysis tools is still evolving, a numerous amount of initiatives, especially
in analysis of emotion (DEAP[24], RECOLA[35], EATMINT [15]) but also in
music-related actions [20], contribute to shared databases that compile multi-
modal and synchronized experimental data. The main goal of these databases is
to predict complex and abstract states, e.g. the emotional state of an individual,
thanks to the analysis of their physiological and behavioral signals such as face
expression, electrodermal activity or heart rate variation. Most of the existing
databases are composed of 15 to 30 entries referencing data of diversified nature.
To allow the gathering of a more relevant amount of cross data, we first need to
facilitate the indexing thanks to the more and more intuitive and effective front-
end technologies of the web. We propose to develop a web interface that could
provide the specific tools to aggregate the data required to constitute the prop-
erties of a correspondence. A typical correspondence would require a short video
footage of a gesture, the motion capture of this gesture, sensor value and audio
output of the instrument. Tags could also be manually added for each of these
properties. The interface could be accessible from an open web platform where
artists as well as researchers could populate the database, to constitute their
own correspondences and therefore optimize their pipeline with more personal
choices of gestures, mappings or sound processes. The same online platform can
then be used for crowdsourced online evaluation sessions in which correspon-
dences are exposed to participants with different levels of expertise. Their task
is to indicate their understanding, using a questionnaire along the familiarity
dimensions, and tag the correspondences.

Extraction of the musician’s interactions (EXT M ). As explained in
Section 2.1, EXT M extracts data from the instrument and musician’s gesture
which is then sent to IA in order to be aggregated into live correspondences.
At the instrument level, EXT M extracts sensors states, mapping values as well
as musical result of the musician interactions. At the musician level, EXT M
extracts the control gestures, the body movements and physiological signals. In
addition to these signals, structural information needs to be provided for further
use in the augmentations, such as the position of the physical sensors of the
DMI and the position of the musician’s hands, the list of tracks, effects or other
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sound processes with their names, or the mappings between sensors and sound
parameters. While some of these obviously need to be defined by the musician
manually, or sensed by devices external to the instrument, others can be ex-
tracted through a trans-disciplinary approach. Regarding the instrument input,
research on gesture recognition, especially concerning hand gestures as demon-
strated by Rautaray & Agrawal [34], can be used to identify the performed
musical gestures. Regarding the instrument output, research in music informa-
tion retrieval (MIR) provides tools for segmenting music from the audio signal
only [32] using spectral, tonal, rhythmical descriptors and methods. Finally, the
extraction can be facilitated by a multimodal approach, similarly to techniques
developed for video indexing [40], as some events might appear clearer on one
channel than on others. For example, control data might inform on the temporal
boundaries of a change in the sound that can then be analysed

We identify two main challenges for the implementation of this module. The
first is the access to the data from the DMIs. In fact, while extraction from the
audio signal provides many features that can be used to detect correspondences,
it might not be enough for precise analysis. In order to access pre-mappings and
post-mappings data, to differentiate between manual and automated changes
and to analyze the output of individual tracks or other sound processes, one
can not rely solely on the DMIs inputs and outputs, i.e. additional software
components will need to be integrated. In most DMIs, plug-ins can be added at
various stages of the instrument. However, the API might not provide enough
information on the instrument to a single plugin. For example, one plugin per
track might be needed to access and send the audio output features for each
separately. The integration of EXT M will be simpler if DMIs are built using
patching environments such as PureData or Max/MSP, where the musician has
more control over the architecture of the instruments. The second challenge is
to combine detailed but costly and slow analysis of features for the detection of
correspondences with maximum accuracy, and fast but less accurate analysis of
features for the update of augmentations in AUG .

Extraction of the audience familiarity (EXT A). The role of this module
is to extract the audience subjective and objective information in order to inform
IA.

It is now commonly accepted that the live music experience engages multi-
ple complementary processes of low level perception, en-action and embodiment
([17], see Leman & Maes for a review [28]), processing of hierarchical and se-
quential information [30, 25], as well as strong affective and social aspects. This
perspective of complementarity is also included in recent studies relative to music
produced with DMIs [37] The evaluation of such a rich experience triggers mul-
tiple methodological difficulties. Subjective assessment is therefore a common
method that can be conducted through post-performance questionnaires [27, 44,
12], emotion rating during the concerts [38, 12] or when viewing an audio-video
recording of a performance [4].
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Post-performance questionnaires are a good source of information but may
be less precise than live subjective reports. In addition, there are initiatives
that do not require the participants to directly communicate their introspective
evaluation. These more objective measurements require very specific equipment
as eye trackers [4] and, to date, suffer from a lack of out-of-the-lab physiological
measurements. Familiarity is one of the key aspects of the experience of live
music and, as its other dimensions, relies on multiple underlying mechanisms.
Therefore, as the mentioned studies above, and to initiate ecological (i.e. out
of the lab, in “real life”) measurements of physiological signals, we propose a
dual methodology to extract the familiarity of the audience. First, we base the
subjective assessment on a familiarity application for mobile phone. Its main
purpose is to supply IA with data about the ongoing familiarity of the audience,
from a graphical familiarity slider that spectators activate.

As other authors [3][12], we believe this continuous survey could be a good
methodological answer to the reservations we exposed about questionnaires af-
ter the performance. The second part of the extraction relies on physiological
signals. Neuroscience studies show that the expertise, a key component of famil-
iarity, influences the perception of action [14]. Those findings, applied to music
expertise, may lead to a better understanding of its role in the live music ex-
perience. By measuring the peripheral signals, we aim at discovering potential
patterns that could correlate with the subjective data we extract. Widely used
in the emotion studies, and rather suitable to extract in natural condition, four
signals are particularly interesting in our musical context : Heart rate variability
[36], electrodermal activity [39] and oculometry (eye tracking + pupillometry).
The complementary analysis of extracted features of these signals already gave
interesting result in the emotion classification by machine learning algorithms
[23] and need to be further extended in music experience studies. Moreover,
these signals can already be acquired by wearable devices and the quantified self
movement [41] will surely provide more accurate and affordable devices in the
near future.

Integration and Analysis (IA). IA is the central hub that connects to all
the other modules. Its role is to : 1) compute the live correspondences with the
data extracted from the musician and their instrument; 2) match the computed
live correspondence with a correspondence from the database to calculate the
familiarity dimensions that need to be augmented; 3) supply the AUG module
with the information needed for the relevant augmentation selection. To fulfill
these tasks, the module can rely on the classification element of each property
of correspondences. Alongside the raw and the semantic parts, the classification
element is a machine learning model dedicated to the classification of raw data.
This model is pre-computed with the raw files registered in the correspondence.
Its goal is to discriminate new stimuli and detect those who match with the
recorded one. Considering the heterogeneity of the modalities, each property
might require a specific machine learning model and specific extracted features.
For example, MIR descriptors for a sound element and a deep convolutional
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network for picture classification. The main idea is to use the set of models as a
global digital representation of the correspondence that can either be projected,
depending of the context, on a single and more easy to handle property or
be represented as a multidimensional vector that allows similarity comparison
of whole correspondences (the matching process). Considering the variety of
data and processes it has to handle, this module needs to be regularly updated
with recent findings in signal processing, machine learning or movement models.
Without a strongly modular structure of the available tools that the pipeline
has at its disposal, the framework may not be able to evolve and thereby join a
long list of deprecated initiatives.

Augmentation (AUG). This module manages both a database of available
augmentations and a set of active ones. When a correspondence needs to be
augmented, AUG receives the data required to create a new or select an exist-
ing augmentation, such as the physical position of the gesture and sensors and
logical components of the instruments, the familiarity dimensions that need to
be compensated, the destination of the augmentation (individual or group) and
the data from EXT M that the augmentation should listen to. The augmenta-
tions are selected from a database of augmentations designed to compensate the
various dimensions of familiarity.

A number of research have shown the opportunities opened by augmentations
to provide information on DMIs to the audience. For example, Perrotin et al. [33]
used visualizations, projected on a screen behind an ensemble of DMIs, to help
the audience understand better the contribution of each musician. In previous
work, we proposed an augmented-reality (AR) approach where the visualiza-
tions are perceptually consistent with the physical instrument, e.g. visual links
attached to the physical sensors. We designed a display where multiple specta-
tors can reveal the augmentations [9] and all perceive them consistently. Finally,
we proved the effect of 3D visual augmentations on the causality aspect of fa-
miliarity [7], i.e. the degree of control perceived by the audience. On the haptic
side Armitage [1] has experimented with using haptic feedback to provide infor-
mation on musician’s interaction during a live-coding performance. We believe
that the first challenge is the creation of a framework that allows one to design
augmentations according to the specific dimensions of familiarity that they com-
pensate. Rules will need to be defined so that one can adapt an augmentation
to the artistic specificity of a particular performance. A second challenge is the
design of augmentations that provide just enough content to fill the multimodal
gap without distracting the audience from the musical performance because of
a too heavy cognitive load.

3 Conclusion

In this paper, we presented a novel approach for augmenting familiarity of the
audience with Digital Musical Instruments and reviewed associated research re-
sults and challenges.
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Among the perspectives, our first future work will be the construction of
the initial database of correspondences that will help refining our familiarity
decomposition.

The first ones will therefore be generated through a systematical process, i.e.
by recording unitary interactions (e.g. one gesture one change in the sound) with
variations on each dimension perceived by the audience, e.g. gesture type and
amplitude, mapping, sound parameter, point of view, and so on.

In addition, we plan on investigating the impact of familiarity variations on
electrophysiological signals from the audience, with the aim of finding realtime
measurements that could be used to assess familiarity during performances and
guide the choice of augmentations. This transdisciplinary approach could reveal
significant research avenues especially with the democratization of wearable de-
vices. We hope that this paper will trigger exciting new research in NIMEs, and
both cognitive and computer sciences.
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