
HAL Id: hal-01954762
https://hal.science/hal-01954762v1

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The cubic Schrödinger regime of the Landau-Lifshitz
equation with a strong easy-axis anisotropy

André de Laire, Philippe Gravejat

To cite this version:
André de Laire, Philippe Gravejat. The cubic Schrödinger regime of the Landau-Lifshitz equation
with a strong easy-axis anisotropy. Revista Matemática Iberoamericana, 2021, 37 (1), pp.95-128.
�10.4171/rmi/1202�. �hal-01954762�

https://hal.science/hal-01954762v1
https://hal.archives-ouvertes.fr


The cubic Schrödinger regime of the Landau-Lifshitz equation
with a strong easy-axis anisotropy

André de Laire1 and Philippe Gravejat2

December 13, 2018

Abstract

We pursue our work on the asymptotic regimes of the Landau-Lifshitz equation for bi-
axial ferromagnets. We put the focus on the cubic Schrödinger equation, which is known
to describe the dynamics in a regime of strong easy-axis anisotropy. In any dimension, we
rigorously prove this claim for solutions with sufficient regularity. In this regime, we addi-
tionally classify the one-dimensional solitons of the Landau-Lifshitz equation and quantify
their convergence towards the solitons of the one-dimensional cubic Schrödinger equation.

Keywords and phrases. Landau-Lifshitz equation, nonlinear Schrödinger equation, asymp-
totic regimes.
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1 Introduction

Introduced by Landau and Lifshitz in [20], the Landau-Lifshitz equation

∂tm+m×
(
∆m− J(m)

)
= 0, (LL)

describes the macroscopical dynamics of the magnetization m = (m1,m2,m3) : RN ×R → S2 in
a ferromagnetic material. The possible anisotropy of the material is taken into account by the
diagonal matrix J := diag(J1, J2, J3), but dissipation is neglected (see e.g. [19]). The dynamics
is Hamiltonian and the corresponding Hamiltonian is the Landau-Lifshitz energy

ELL(m) :=
1

2

∫
RN

(
|∇m|2 + λ1m

2
1 + λ3m

2
3

)
.

The characteristic numbers λ1 := J2 − J1 and λ3 := J2 − J3 give account of the anisotropy since
they determine the preferential orientations of the magnetization with respect to the canonical
axes. For biaxial ferromagnets, all the numbers J1, J2 and J3 are different, so that λ1 ̸= λ3 and
λ1λ3 ̸= 0. Uniaxial ferromagnets are characterized by the property that only two of the numbers
J1, J2 and J3 are equal. For instance, let us fix J1 = J2, which corresponds to λ1 = 0 and λ3 ̸= 0,
so that the material has a uniaxial anisotropy in the direction corresponding to the unit vector
e3 = (0, 0, 1). In this case, the ferromagnet owns an easy-axis anisotropy along the vector e3 if
λ3 < 0, while the anisotropy is easy-plane along the plane x3 = 0 if λ3 > 0. In the isotropic case
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λ1 = λ3 = 0, the Landau-Lifshitz equation reduces to the well-known Schrödinger map equation
(see e.g. [13, 26, 8, 1] and the references therein).

In dimension one, the Landau-Lifshitz equation is completely integrable by means of the
inverse scattering method (see e.g. [14]). In this setting, it is considered as a universal model from
which it is possible to derive other completely integrable equations. Sklyanin highlighted this
property in [24] by deriving two asymptotic regimes corresponding to the Sine-Gordon equation
and the cubic Schrödinger equation.

In a previous work [12], we provided a rigorous derivation of the Sine-Gordon regime in any
dimension N ≥ 1. This equation appears in a regime of a biaxial material with strong easy-plane
anisotropy, where the anisotropy parameters are given by

λ1 = σε, and λ3 =
1

ε
.

Here and in the sequel, ε refers as usual to a small positive number, and σ is a fixed positive
constant. More precisely, we introduced a hydrodynamic formulation of the Landau-Lifshitz
equation for which the solutions m write as

m =
(
(1− u2)

1
2 sin(ϕ), (1− u2)

1
2 cos(ϕ), u

)
,

and we established that the rescaled functions (Uε,Φε) given by

u(x, t) = εUε(ε
1
2 x, t), and ϕ(x, t) = Φε(ε

1
2 x, t),

satisfy the Sine-Gordon system {
∂tU = ∆Φ− σ

2 sin(2Φ),

∂tΦ = U,

in the limit ε → 0 (under suitable smoothness assumptions on the initial datum). We refer to [12]
for more details.

We now focus on the cubic Schrödinger equation, which is obtained in a regime of strong easy-
axis anisotropy. For this purpose, we consider a uniaxial material in the direction corresponding
to the vector e2 = (0, 1, 0) and we fix the anisotropy parameters as

λ1 = λ3 =
1

ε
.

For this choice, the complex map m̌ = m1+ im3 and the function m2 corresponding to a solution
m to the Landau-Lifshitz equation satisfy 1{

i∂tm̌+m2∆m̌− m̌∆m2 − 1
εm2m̌ = 0,

∂tm2 − ⟨im̌,∆m̌⟩C = 0.
(1)

Let us introduce the complex-valued function Ψε given by

Ψε(x, t) = ε−
1
2 m̌(x, t)e

it
ε . (2)

1Here as in the sequel, the notation ⟨z1, z2⟩C stands for the canonical real scalar product of the two complex
numbers z1 and z2, which is given by

⟨z1, z2⟩C = Re(z1)Re(z2) + Im(z1) Im(z2) = Re(z1z̄2).
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This function is of order 1 in the regime where the map m̌ is of order ε
1
2 . When ε is small

enough, the function m2 does not vanish in this regime, since the solution m is valued into the
sphere S2. Assuming that m2 is everywhere positive, it is given by the formula

m2 =
(
1− ε|Ψε|2|

) 1
2 ,

and the function Ψε is solution to the nonlinear Schrödinger equation

i∂tΨε +
(
1− ε|Ψε|2

) 1
2∆Ψε +

|Ψε|2

1 + (1− ε|Ψε|2)
1
2

Ψε + εdiv
( ⟨Ψε,∇Ψε⟩C
(1− ε|Ψε|2)

1
2

)
Ψε = 0. (NLSε)

As ε → 0, the formal limit equation is the focusing cubic Schrödinger equation

i∂tΨ+∆Ψ+
1

2
|Ψ|2Ψ = 0. (CS)

Our main goal in the sequel is to justify rigorously this cubic Schrödinger regime of the Landau-
Lifshitz equation.

We first recall some useful facts about the Cauchy problems for the Landau-Lifshitz and cubic
Schrödinger equations. Concerning this latter equation, we refer to [7] for an extended review
of the corresponding Cauchy problem. In the sequel, our derivation of the cubic Schrödinger
equation requires additional smoothness, so that we are mainly interested in smooth solutions
for which a fixed-point argument provides the following classical result.

Theorem ([7]). Let k ∈ N, with k > N/2. Given any function Ψ0 ∈ Hk(RN ), there exist a
positive number Tmax and a unique solution Ψ ∈ C0([0, Tmax),H

k(RN )) to the cubic Schrödinger
equation with initial datum Ψ0, which satisfies the following statements.

(i) If the maximal time of existence Tmax is finite, then

lim
t→Tmax

∥Ψ(·, t)∥Hk = ∞, and lim sup
t→Tmax

∥Ψ(·, t)∥L∞ = ∞.

(ii) The flow map Ψ0 7→ Ψ is well-defined and Lipschitz continuous from Hk(RN ) to C0([0, T ],
Hk(RN )) for any number 0 < T < Tmax.

(iii) When Ψ0 ∈ Hℓ(RN ), with ℓ > k, the solution Ψ lies in C0([0, T ],Hℓ(RN )) for any number
0 < T < Tmax.

(iv) The L2-mass M2 and the cubic Schrödinger energy ECS given by

M2(Ψ) =

∫
RN

|Ψ|2, and ECS(Ψ) =
1

2

∫
RN

|∇Ψ|2 − 1

4

∫
RN

|Ψ|4,

are conserved along the flow.

The Cauchy problem for the Landau-Lifshitz equation is much more involved. In view of the
definition of the Landau-Lifshitz energy, it is natural to solve it in the energy set defined as

E(RN ) :=
{
v ∈ L1

loc(RN , S2) : ∇v ∈ L2(RN ) and (v1, v3) ∈ L2(RN )2
}
.

This set appears as a subset of the vector space

Z1(RN ) :=
{
v ∈ L1

loc(RN ,R3) : ∇v ∈ L2(RN ), v2 ∈ L∞(RN ) and (v1, v3) ∈ L2(RN )2
}
,

which is naturally endowed with the norm

∥v∥Z1 :=
(
∥v1∥2H1 + ∥v2∥2L∞ + ∥∇v2∥2L2 + ∥v3∥2H1

) 1
2 .
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To our knowledge, the well-posedness of the Landau-Lifshitz equation for general initial data in
E(RN ) remains an open question. This difficulty is related to the fact that the Landau-Lifshitz
equation is an anisotropic perturbation of the Schrödinger map equation, and the Cauchy problem
for this class of equations is well-known to be intrinsically difficult due to their geometric nature
(see e.g. [1] and the references therein).

On the other hand, our derivation of the cubic Schrödinger equation requires additional
smoothness, so that in the sequel, we do not address the Cauchy problem for the Landau-
Lifshitz equation in E(RN ). Instead, we focus on the well-posedness for smooth solutions. Given
an integer k ≥ 1, we set

Ek(RN ) :=
{
v ∈ E(RN ) : ∇v ∈ Hk−1(RN )

}
,

and we endow this set with the metric structure provided by the norm

∥v∥Zk :=
(
∥v1∥2Hk + ∥v2∥2L∞ + ∥∇v2∥2Hk−1 + ∥v3∥2Hk

) 1
2 ,

of the vector space

Zk(RN ) :=
{
v ∈ L1

loc(RN ,R3) : (v1, v3) ∈ L2(RN )2, v2 ∈ L∞(RN ) and ∇v ∈ Hk−1(RN )
}
. (3)

Observe that the energy set E(RN ) then identifies with E1(RN ).

When k is large enough, local well-posedness of the Landau-Lifshitz equation in the set
Ek(RN ) follows from the next statement of [12].

Theorem 1 ([12]). Let λ1 and λ3 be non-negative numbers, and k ∈ N, with k > N/2 + 1.
Given any function m0 ∈ Ek(RN ), there exist a positive number Tmax and a unique solution
m : RN × [0, Tmax) → S2 to the Landau-Lifshitz equation with initial datum m0, which satisfies
the following statements.

(i) The solution m is in the space L∞([0, T ], Ek(RN )), while its time derivative ∂tm is in
L∞([0, T ],Hk−2(RN )), for any number 0 < T < Tmax.

(ii) If the maximal time of existence Tmax is finite, then∫ Tmax

0
∥∇m(·, t)∥2L∞ dt = ∞. (4)

(iii) The flow map m0 7→ m is locally well-defined and Lipschitz continuous from Ek(RN ) to
C0([0, T ], Ek−1(RN )) for any number 0 < T < Tmax.

(iv) When m0 ∈ Eℓ(RN ), with ℓ > k, the solution m lies in L∞([0, T ], Eℓ(RN )), with ∂tm ∈
L∞([0, T ],Hℓ−2(RN )) for any number 0 < T < Tmax.

(v) The Landau-Lifshitz energy is conserved along the flow.

In other words, there exists a unique local continuous flow corresponding to smooth solutions
of the Landau-Lifshitz equation. The proof of this property is based on combining a priori energy
estimates with a compactness argument. For the Schrödinger map equation, the same result was
first proved in [8] when N = 1, and in [21] for N ≥ 2 (see also [28, 26, 13] for the construction of
smooth solutions). In the more general context of hyperbolic systems, a similar result is expected
when k > N/2 + 1 due to the fact that the critical regularity of the equation is given by the
condition k = N/2 (see e.g. [27, Theorem 1.2]).

Going on with our rigorous derivation of the cubic Schrödinger regime, we now express
the previous statements in terms of the nonlinear Schrödinger equation (NLSε) satisfied by the
rescaled function Ψε.
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Corollary 2. Let ε be a fixed positive number, and k ∈ N, with k > N/2+1. Consider a function
Ψ0

ε ∈ Hk(RN ) such that
ε

1
2

∥∥Ψ0
ε

∥∥
L∞ < 1. (5)

Then, there exist a positive number Tε and a unique solution Ψε : RN × [0, Tε) → C to (NLSε)
with initial datum Ψ0

ε, which satisfies the following statements.

(i) The solution Ψε is in the space L∞([0, T ],Hk(RN )), while its time derivative ∂tΨε is in
L∞([0, T ],Hk−2(RN )), for any number 0 < T < Tε.

(ii) If the maximal time of existence Tε is finite, then∫ Tε

0

∥∥∇Ψε(·, t)
∥∥2
L∞ dt = ∞, or ε

1
2 lim

t→Tε

∥∥Ψε(·, t)
∥∥
L∞ = 1. (6)

(iii) The flow map Ψ0
ε 7→ Ψε is locally well-defined and Lipschitz continuous from Hk(RN ) to

C0([0, T ],Hk−1(RN )) for any number 0 < T < Tε.

(iv) When Ψ0
ε ∈ Hℓ(RN ), with ℓ > k, the solution Ψε lies in L∞([0, T ],Hℓ(RN )), with ∂tΨε ∈

L∞([0, T ],Hℓ−2(RN )) for any number 0 < T < Tε.

(v) The nonlinear Schrödinger energy Eε given by

Eε(Ψε) =
1

2

∫
RN

(
|Ψε|2 + ε|∇Ψε|2 +

ε2⟨Ψε,∇Ψε⟩2C
1− ε|Ψε|2

)
,

is conserved along the flow.

(vi) Set
m0 =

(
ε

1
2 Re

(
Ψ0

ε

)
,
(
1− ε|Ψ0

ε|2
) 1

2 , ε
1
2 Im

(
Ψ0

ε

))
.

The function m : RN × [0, Tε] → S2 given by

m(x, t) =
(
ε

1
2 Re

(
e−

it
ε Ψε(x, t)

)
,
(
1− ε|Ψε(x, t)|2

) 1
2 , ε

1
2 Im

(
e−

it
ε Ψε(x, t)

))
, (7)

for any (x, t) ∈ RN × [0, Tε], is the unique solution to (LL) with initial datum m0 of Theorem 1.

Remark 3. Coming back to the proof of Theorem 1 in [12] and using standard interpolation
theory, one can check that the flow map Ψ0

ε 7→ Ψε is locally well-defined and continuous from
Hk(RN ) to C0([0, T ],Hs(RN )) for any number 0 < T < Tε and any number s < k.

Corollary 2 also provides the existence of a unique local continuous flow corresponding to
smooth solutions to (NLSε). Its proof relies on the equivalence between the Landau-Lifshitz
equation and the nonlinear Schrödinger equation (NLSε), when condition (5) is satisfied (see
statement (vi) above). We refer to Subsection 3.1 for a detailed proof of this result.

With Corollary 2 at hand, we are now in position to state our main result concerning the
rigorous derivation of the cubic Schrödinger regime of the Landau-Lifshitz equation.

Theorem 4. Let 0 < ε < 1 be a positive number, and k ∈ N, with k > N/2 + 2. Consider two
initial conditions Ψ0 ∈ Hk(RN ) and Ψ0

ε ∈ Hk+3(RN ), and set

K0
ε :=

∥∥Ψ0
∥∥
Hk +

∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk .

Then, there exists a positive number A, depending only on k, such that, if the initial data Ψ0 and
Ψ0

ε satisfy the condition
Aε

1
2 K0

ε ≤ 1, (8)

5



we have the following statements.

(i) There exists a positive number

Tε ≥
1

A(K0
ε)

2
, (9)

such that both the unique solution Ψε to (NLSε) with initial datum Ψ0
ε, and the unique solution

Ψ to (CS) with initial datum Ψ0 are well-defined on the time interval [0, Tε].

(ii) We have the error estimate∥∥Ψε(·, t)−Ψ(·, t)
∥∥
Hk−2 ≤

(∥∥Ψ0
ε −Ψ0

∥∥
Hk−2 +AεK0

ε

(
1 + (K0

ε)
3
))

eA(K0
ε)

2t, (10)

for any 0 ≤ t ≤ Tε.

Theorem 4 does not only rigorously state the convergence of the Landau-Lifshitz equation
towards the cubic Schrödinger equation in any dimension. It also quantifies this convergence in
the spirit of what we already proved for the Sine-Gordon regime in [12] (see statement (iv) of [12,
Theorem 1]). The assumptions k > N/2 + 2 in Theorem 4 originates in our choice to quantify
this convergence. They are taylored in order to obtain the ε factor in the right-hand side of the
error estimate (10) since we expect this order of convergence to be sharp.

This claim relies on the study of the solitons of the one-dimensional Landau-Lifshitz and
cubic Schrödinger equations. In Appendix A, we classify the solitons mc,ω with speed c and
angular velocity ω of the Landau-Lifshitz equation when λ = λ1 = λ3 (see Theorem A.1). We
then prove that their difference with respect to the corresponding bright solitons Ψc,ω of the
cubic Schrödinger equation is of exact order ε as the error factor in (10) (see Proposition A.3).

It is certainly possible to show only convergence under weaker assumptions by using compact-
ness arguments as for the derivation of similar asymptotic regimes (see e.g. [23, 10, 15] concerning
Schrödinger-like equations).

Observe that smooth solutions for both the Landau-Lifshitz and the cubic Schrödinger equa-
tions are known to exist when the integer k satisfies the condition k > N/2 + 1. The additional
assumption k > N/2 + 2 in Theorem 4 is related to the fact that our proof of (10) requires a
uniform control of the difference Ψε −Ψ, which follows from the Sobolev embedding theorem of
Hk−2(RN ) into L∞(RN ).

Similarly, the fact that Ψ0
ε is taken in Hk+3(RN ) instead of Hk+2(RN ), which is enough to

define the quantity K0
ε , is related to the loss of one derivative for establishing the flow continuity

in statement (iii) of Corollary 2.

Finally, the loss of two derivatives in the error estimate (10) can be partially recovered by
combining standard interpolation theory with the estimates in Proposition 2.4 and Lemma 2.5.
Under the assumptions of Theorem 4, the solutions Ψε converge towards the solution Ψ in
C0([0, Tε],H

s(RN )) for any 0 ≤ s < k, when Ψ0
ε tends to Ψ0 in Hk+2(RN ) as ε → 0, but the

error term is not necessarily of order ε due to the interpolation process.

Note here that condition (8) is not really restrictive in order to analyze such a convergence.
At least when Ψ0

ε tends to Ψ0 in Hk+2(RN ) as ε → 0, the quantity K0
ε tends to twice the

norm ∥Ψ0∥Hk in the limit ε → 0, so that condition (8) is always fulfilled. Moreover, the error
estimate (10) is available on a time interval of order 1/∥Ψ0∥2

Hk , which is similar to the minimal
time of existence of the smooth solutions to the cubic Schrödinger equation (see Lemma 2.5
below).

Apart from the intrinsic interest of Theorem 4, it is well-known that deriving asymptotic
regimes is a powerful tool in order to tackle the analysis of intricate equations. In this direction,
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we expect that our rigorous derivation of the cubic Schrödinger regime will be a useful tool in
order to describe the dynamical properties of the Landau-Lifshitz equation, in particular the role
played by the solitons in this dynamics (see e.g. [6, 16] where this strategy was developed in
order to prove the asymptotic stability of the dark solitons of the Gross-Pitaevskii equation by
using its link with the Korteweg-de Vries equation [10, 4, 5]).

The rest of the paper is mainly devoted to the proof of Theorem 4. In Section 2, we explain our
strategy for this proof. Section 3 gathers the proof of Corollary 2, as well as the detailed proofs
of the main steps in the proof of Theorem 4. Finally, Appendix A deals with the classification
of the solitons of the Landau-Lifshitz equation when λ = λ1 = λ3, and with their convergence
towards the bright solitons of the cubic Schrödinger equation.

2 Strategy of the proof of Theorem 4

The proof relies on the consistency between the Schrödinger equations (NLSε) and (CS) in the
limit ε → 0. Indeed, we can recast (NLSε) as

i∂tΨε +∆Ψε +
1

2
|Ψε|2Ψε = εRε, (2.1)

where the remainder term Rε is given by

Rε :=
|Ψε|2

1 + (1− ε|Ψε|2)
1
2

∆Ψε −
|Ψε|4

2(1 + (1− ε|Ψε|2)
1
2 )2

Ψε − div
( ⟨Ψε,∇Ψε⟩C
(1− ε|Ψε|2)

1
2

)
Ψε. (2.2)

In order to establish the convergence towards the cubic Schrödinger equation, our main goal is
to control the remainder term Rε on a time interval [0, Tε] as long as possible. In particular, we
have to show that the maximal time Tε for this control does not vanish in the limit ε → 0.

The strategy for reaching this goal is reminiscent from a series of papers concerning the
rigorous derivation of long-wave regimes for various Schrödinger-like equations (see [23, 3, 4,
10, 5, 2, 9, 15, 12] and the references therein). The main argument is to perform suitable
energy estimates on the solutions Ψε to (NLSε). These estimates provide Sobolev bounds for the
remainder term Rε, which are used to control the differences uε := Ψε − Ψ with respect to the
solutions Ψ to (CS). This further control is also derived from energy estimates.

Concerning the estimates of the solutions Ψε, we rely on the equivalence with the solutions m
to (LL) in Corollary 2. Using this equivalence, we can go back to the computations made in [12]
for the derivation of the Sine-Gordon regime of the Landau-Lifshitz equation. More precisely,
given a positive number T and a sufficiently smooth solution m : RN × [0, T ] → S2 to (LL), we
define the energy Ek

LL of order k ≥ 2 as

Ek
LL(t) :=

1

2

(
∥∂tm(·, t)∥2

Ḣk−2 + ∥∆m(·, t)∥2
Ḣk−2 + (λ1 + λ3)

(
∥∇m1(·, t)∥2Ḣk−2

+ ∥∇m3(·, t)∥2Ḣk−2

)
+ λ1λ3

(
∥m1(·, t)∥2Ḣk−2 + ∥m3(·, t)∥2Ḣk−2

))
,

(2.3)

for any t ∈ [0, T ]. In the regime λ1 = λ3 = 1/ε, we can prove the following improvement of the
computations made in [12, Proposition 1].

Proposition 2.1. Let 0 < ε < 1, and k ∈ N, with k > N/2 + 1. Assume that

λ1 = λ3 =
1

ε
, (2.4)

7



and that m is a solution to (LL) in C0([0, T ], Ek+4(RN )), with ∂tm ∈ C0([0, T ],Hk+2(RN )).
Given any integer 2 ≤ ℓ ≤ k + 2, the energies Eℓ

LL are of class C1 on [0, T ], and there exists a
positive number Ck, depending possibly on k, but not on ε, such that their derivatives satisfy[

Eℓ
LL

]′
(t) ≤ Ck

ε

(
∥m1(·, t)∥2L∞ + ∥m3(·, t)∥2L∞ + ∥∇m(·, t)∥2L∞

)(
Eℓ

LL(t) + Eℓ−1
LL (t)

)
, (2.5)

for any t ∈ [0, T ]. For ℓ − 1 = 1, the quantity E1
LL(t) in this expression is equal to the Landau-

Lifshitz energy ELL(m(·, t)).

As for the proof of [12, Proposition 1], the estimates in Proposition 2.1 rely on the following
identity. Under assumption (2.4), we derive from (LL) the second-order equation

∂ttm+∆2m− 2

ε

(
∆m1e1 +∆m3e3

)
+

1

ε2

(
m1e1 +m3e3

)
= Fε(m), (2.6)

where

Fε(m) :=
∑

1≤i,j≤N

(
∂i
(
2⟨∂im,∂jm⟩R3∂jm− |∂jm|2∂im

)
− 2∂ij

(
⟨∂im,∂jm⟩R3m

))
−1

ε

(
(m2

1 + 3m2
3)∆m1e1 + (3m2

1 +m2
3)∆m3e3 − 2m1m3(∆m1e3 +∆m3e1)

+ (m2
1 +m2

3)∆m2e2 − |∇m|2(m1e1 +m3e3) +∇
(
m2

1 +m2
3

)
· ∇m

)
+

1

ε2

(
(m2

1 +m2
3)(m1e1 +m3e3)

)
.

(2.7)

Note here that the computation of this formula uses the pointwise identities

⟨m,∂im⟩R3 = ⟨m,∂iim⟩R3 + |∂im|2 = ⟨m,∂iijm⟩R3 + 2⟨∂im,∂ijm⟩R3 + ⟨∂jm,∂iim⟩R3 = 0,

which hold for any 1 ≤ i, j ≤ N , due to the property that m is valued into the sphere S2.
Since λ1 = λ3, the expression of the function Fε(m) in (2.7) is simpler than the one that was

computed in [12]. In contrast with the formula in [12, Proposition 1], the multiplicative factor in
the right-hand side of (2.5) now only depends on the uniform norms of the functions m1, m3 and
∇m. This property is crucial in order to use these estimates in the cubic Schrödinger regime.

The next step of the proof is indeed to express the quantities Ek
LL in terms of the functions

Ψε. Assume that these functions Ψε : RN × [0, T ] → C are smooth enough. In view of (2)
and (NLSε), it is natural to set

Ek
ε(t) :=

1

2

(∥∥Ψε(·, t)
∥∥2
Ḣk−2 +

∥∥ε∂tΨε(·, t)− iΨε(·, t)
∥∥2
Ḣk−2 + ε2

∥∥∆Ψε(·, t)
∥∥2
Ḣk−2

+ε
(∥∥∂t(1− ε|Ψε(·, t)|2)

1
2

∥∥2
Ḣk−2 +

∥∥∆(1− ε|Ψε(·, t)|2)
1
2

∥∥2
Ḣk−2 + 2

∥∥∇Ψε(·, t)
∥∥2
Ḣk−2

))
,

(2.8)

for any k ≥ 2 and any t ∈ [0, T ]. Combining the local well-posedness result of Corollary 2 and
the computations in Proposition 2.1, we obtain

Corollary 2.2. Let 0 < ε < 1, and k ∈ N, with k > N/2 + 1. Consider a function Ψ0
ε ∈

Hk+5(RN ) satisfying condition (5), and let Ψε : RN × [0, Tε) → C be the corresponding solution
to (NLSε) given by Corollary 2. Given any integer 2 ≤ ℓ ≤ k + 2 and any number 0 ≤ T < Tε,
the energies Eℓ

ε are of class C1 on [0, T ], and there exists a positive number Ck, depending possibly
on k, but not on ε, such that their derivatives satisfy[
Eℓ
ε

]′
(t) ≤ Ck

(
∥Ψε(·, t)∥2L∞+∥∇Ψε(·, t)∥2L∞+ε

∥∥∥⟨Ψε(·, t),∇Ψε(·, t)⟩C
(1− ε|Ψε(·, t)|2)

1
2

∥∥∥2
L∞

)(
Eℓ
ε(t)+εδℓ,2Eℓ−1

ε (t)
)
,

(2.9)
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for any t ∈ [0, T ]. For ℓ − 1 = 1, the quantity E1
ε(t) in this expression is equal to the nonlinear

Schrödinger energy Eε(Ψε(·, t)).

In order to gain a control on the solutions Ψε to (NLSε) from inequality (2.9), we now have
to characterize the Sobolev norms, which are controlled by the energies Ek

ε . In this direction, we
show

Lemma 2.3. Let 0 < ε < 1, T > 0 and k ∈ N, with k > N/2 + 1. Consider a solution
Ψε ∈ C0([0, T ],Hk+4(RN )) to (NLSε) such that

σT := ε
1
2 max
t∈[0,T ]

∥∥Ψε(·, t)
∥∥
L∞ < 1. (2.10)

There exists a positive number C, depending possibly on σT and k, but not on ε, such that

1

2

(∥∥Ψε(·, t)
∥∥2
Ḣℓ−2 + ε

∥∥∇Ψε(·, t)
∥∥2
Ḣℓ−2 + ε2

∥∥∆Ψε(·, t)
∥∥2
Ḣℓ−2

)
≤ Eℓ

ε(t) ≤ C
(∥∥Ψε(·, t)

∥∥2
Ḣℓ−2 + ε

∥∥∇Ψε(·, t)
∥∥2
Ḣℓ−2 + ε2

∥∥∆Ψε(·, t)
∥∥2
Ḣℓ−2

)
,

(2.11)

for any 2 ≤ ℓ ≤ k + 2 and any t ∈ [0, T ]. Moreover, we also have

1

2

(∥∥Ψε(·, t)
∥∥2
L2 + ε

∥∥∇Ψε(·, t)
∥∥2
L2

)
≤ E1

ε(t) ≤ C
(∥∥Ψε(·, t)

∥∥2
L2 + ε

∥∥∇Ψε(·, t)
∥∥2
L2

)
, (2.12)

for any t ∈ [0, T ].

With Corollary 2.2 and Lemma 2.3 at hand, we are now in position to provide the following
control on the solutions Ψε to (NLSε).

Proposition 2.4. Let 0 < ε < 1, 0 < σ < 1 and k ∈ N, with k > N/2 + 1. There exists a
positive number C∗, depending possibly on σ and k, but not on ε, such that if an initial datum
Ψ0

ε ∈ Hk+3(RN ) satisfies

C∗ε
1
2

(∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)
≤ 1, (2.13)

then there exists a positive time

Tε ≥
1

C∗
(∥∥Ψ0

ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)2 ,
such that the unique solution Ψε to (NLSε) with initial condition Ψ0

ε satisfies the uniform bound

ε
1
2

∥∥Ψε(·, t)
∥∥
L∞ ≤ σ,

as well as the energy estimate∥∥Ψε(·, t)
∥∥
Hk + ε

1
2

∥∥∇Ψε(·, t)
∥∥
Ḣk + ε

∥∥∆Ψε(·, t)
∥∥
Ḣk

≤ C∗

(∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)
,

(2.14)

for any 0 ≤ t ≤ Tε.
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An important feature of Proposition 2.4 lies in the fact that the solutions Ψε are controlled
uniformly with respect to the small parameter ε up to a loss of three derivatives. This loss is
usual in the context of asymptotic regimes for Schrödinger-like equations (see e.g [4, 5] and the
references therein). It is related to the property that the energies Ek

LL naturally scale according
to the right-hand side of (2.14) in the limit ε → 0. This property is the origin of a loss of two
derivatives. The extra loss is due to the requirement to use the continuity of the (NLSε) flow
with respect to the initial datum in order to prove Proposition 2.4, and this continuity holds
with a loss of one derivative 2 in view of statement (iii) in Corollary 2.

We now turn to our ultimate goal, which is to estimate the error between a solution Ψε

to (NLSε) and a solution Ψ to (CS). Going back to (2.1), we check that their difference uε :=
Ψε −Ψ satisfies the equation

i∂tuε +∆uε +
1

2

(
|uε +Ψ|2(uε +Ψ)− |Ψ|2Ψ

)
= εRε. (2.15)

In view of (2.2), we can invoke Proposition 2.4 in order to bound the remainder term Rε in
suitable Sobolev norms. On the other hand, we also have to provide a Sobolev control of the
solution Ψ to (CS) on a time interval as long as possible. In this direction, we can show the
following classical result (see e.g. [7]), by performing standard energy estimates on the Hk-norms
of the solution Ψ.

Lemma 2.5. Let k ∈ N, with k > N/2, and Ψ0 ∈ Hk(RN ). There exists a positive number Ck,
depending possibly on k, such that there exists a positive time

T∗ ≥
1

Ck∥Ψ0∥2
Hk

,

for which the unique solution Ψ to (CS) with initial condition Ψ0 satisfies the energy estimate∥∥Ψ(·, t)
∥∥
Hk ≤ Ck

∥∥Ψ0
∥∥
Hk ,

for any 0 ≤ t ≤ T∗.

Finally, we can perform standard energy estimates in order to control the difference uε ac-
cording to the following statement.

Proposition 2.6. Let 0 < ε < 1, 0 < σ < 1 and k ∈ N, with k > N/2 + 2. Given an initial
condition Ψ0

ε ∈ Hk+3(RN ), assume that the unique corresponding solution Ψε to (NLSε) is well-
defined on a time interval [0, T ] for some positive number T , and that it satisfies the uniform
bound

ε
1
2

∥∥Ψε(·, t)
∥∥
L∞ ≤ σ, (2.16)

for any t ∈ [0, T ]. Assume similarly that the solution Ψ to (CS) with initial datum Ψ0 ∈ Hk(RN )
is well-defined on [0, T ]. Set uε := Ψε −Ψ and

Kε(T ) :=
∥∥Ψ∥∥C0([0,T ],Hk)

+
∥∥Ψε

∥∥
C0([0,T ],Hk)

+ ε
1
2

∥∥∇Ψε

∥∥
C0([0,T ],Ḣk)

+ ε
∥∥∆Ψε

∥∥
C0([0,T ],Ḣk)

.

Then there exists a positive number C∗, depending possibly on σ and k, but not on ε, such that∥∥uε(·, t)∥∥Hk−2 ≤
(∥∥uε(·, 0)∥∥Hk−2 + εKε(T )

(
1 +Kε(T )

3
))

eC∗Kε(T )2t, (2.17)

for any t ∈ [0, T ].
2In view of Remark 3, continuity actually holds with any positive loss of fractional derivatives, which translates

by a loss of at least one classical derivative.
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We are now in position to conclude the proof of Theorem 4.

Proof of Theorem 4. Under the assumptions of Theorem 4, we can apply Proposition 2.4 (with
σ = 1/2 for instance) and Lemma 2.5. They provide the existence of a positive number C1,
depending only on k, and a corresponding number Tε, with

Tε ≥
1

C1(K0
ε)

2
,

such that, under assumption (8) (with A replaced by C1), the solution Ψε to (NLSε) with initial
datum Ψ0

ε, and the solution Ψ to (CS) with initial datum Ψ0 are well-defined on the time
interval [0, Tε]. Moreover, the function Ψε satisfies condition (2.16) with σ = 1/2 on [0, Tε], and
the quantity Kε(Tε) in Proposition 2.6 is controlled by

Kε(Tε) ≤ C1K0
ε . (2.18)

As a consequence, we can invoke Proposition 2.6 with σ = 1/2, which gives the existence of
another positive number C2, depending only on k, such that∥∥Ψε(·, t)−Ψ(·, t)

∥∥
Hk−2 ≤

(∥∥Ψ0
ε −Ψ0

∥∥
Hk−2 + εKε(Tε)

(
1 +Kε(Tε)

3
))

eC2Kε(Tε)2t,

for any t ∈ [0, Tε]. Statement (ii) in Theorem 4 follows, with A = max{C1, C
4
1 , C

2
1C2}. This

completes the proof of Theorem 4.

3 Details of the proofs

3.1 Proof of Corollary 2

The proof essentially reduces to translate the statements in Theorem 1 in terms of the nonlinear
Schrödinger equation (NLSε). Indeed, consider an initial datum Ψ0

ε ∈ Hk(RN ) satisfying the
assumptions of Corollary 2. Coming back to the scaling in (2), we set

m0
1 = ε

1
2 Re

(
Ψ0

ε

)
and m0

3 = ε
1
2 Im

(
Ψ0

ε

)
,

while we can define the function
m0

2 =
(
1− ε|Ψ0

ε|2
) 1

2 , (3.1)

due to condition (5). The initial datum m0 = (m0
1,m

0
2,m

0
3) then lies in Ek(RN ). Hence, there

exists a positive number Tmax and a unique solution m to (LL) with initial datum m0, which
satisfies the five statements in Theorem 1. As in (2), we then set

Ψε(x, t) = ε−
1
2 e

it
ε
(
m1(x, t) + im3(x, t)

)
.

In view of statement (iii) in Theorem 1, the Sobolev embedding theorem guarantees that the
function Ψε belongs to C0([0, Tmax), C0

b (RN )). In particular, we are able to define the number

Tε := sup
{
T ∈ [0, Tmax) such that ε

1
2 ∥Ψε(·, t)∥L∞ < 1 for any t < T

}
≤ Tmax,

and this number is positive due to condition (5). Note here that either Tε = Tmax, or

ε
1
2 lim

t→Tε

∥∥Ψε(·, t)
∥∥
L∞ = 1.
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With these definitions at hand, statements (i), (ii) and (iv) of Corollary 2 literally follow
from the same statements in Theorem 1. Moreover, the function m2 is continuous on RN × [0, Tε)
by statement (iii) in Theorem 1, and it does not vanish on this set by definition of the number
Tε due to the fact that m is valued in S2. Therefore, we deduce from (3.1) that

m2 =
(
1− ε|Ψε|2

) 1
2 , (3.2)

on RN × [0, Tε). Recall here that the map m is solution to (LL). Since this equation holds
with m ∈ L∞([0, Tmax), Ek(RN )) and ∂tm ∈ L∞([0, Tmax),H

k−2(RN )), we can check that the
functions m̌ and m2 solve (1), and it is enough to apply the chain rule theorem to m2 in order to
derive that the function Ψε is solution to (NLSε) with initial datum Ψ0

ε. A direct computation
then provides the identity

|∇m|2 + 1

ε

(
m2

1 +m2
3

)
= |Ψε|2 + ε|∇Ψε|2 +

ε2⟨Ψε,∇Ψε⟩2C
1− ε|Ψε|2

, (3.3)

and the conservation of the energy Eε in statement (v) follows from the same statement in
Theorem 1. Note finally that this construction of solution Ψε to (NLSε) guarantees the local
Lipschitz continuity of the flow map in statement (iv) of Corollary 2 due to the same property
in Theorem 1.

Concerning uniqueness, the argument is similar. Given another possible solution Ψ̃ε to (NLSε)
with initial data Ψ0

ε as in Corollary 2, we set

m̃(x, t) =
(
ε

1
2 Re

(
e−

it
ε Ψ̃ε(x, t)

)
,
(
1− ε|Ψ̃ε(x, t)|2

) 1
2 , ε

1
2 Im

(
e−

it
ε Ψ̃ε(x, t)

))
,

and we check that the maps m̃ are solutions to (LL) and that they satisfy the statements
in Theorem 1 (on time intervals of the form [0, T̃ε)). In view of the uniqueness statement in
Theorem 1, and of the previous construction of the solution Ψε to (NLSε), we obtain that
Ψ̃ε = Ψε, that is the uniqueness of the solution Ψε. Statement (vi) follows from the same
argument. This concludes the proof of Corollary 2.

3.2 Proof of Proposition 2.1

Let us first recall the Moser estimates∥∥∂α1
x f1∂

α2
x f2 · · · ∂

αj
x fj

∥∥
L2 ≤ Cj,k max

1≤i≤j

∏
m̸=i

∥∥fm∥∥L∞

∥∥fi∥∥Ḣℓ , (3.4)

which hold for any integers (j, ℓ) ∈ N2, any α = (α1, . . . , αj) ∈ Nj , with
∑j

i=1 αi = ℓ, and
any functions (f1, . . . , fj) ∈ L∞(RN )j ∩ Ḣℓ(RN )j (see e.g. [22, 18]). Under the assumptions of
Proposition 2.1, we derive from these estimates that the second-order derivative ∂ttm belongs to
C0([0, T ],Hk(RN )). Hence, the energies Eℓ

LL are of class C1 on [0, T ]. Moreover, in view of (2.6),
integrating by parts provides the formula[

Eℓ
LL

]′
(t) =

⟨
∂tm(·, t), Fε(m)(·, t)

⟩
Ḣℓ−2 =

∑
|α|=ℓ−2

∫
RN

⟨
∂t∂

α
xm(x, t), ∂α

xFε(m)(x, t)
⟩
R3 dx, (3.5)

for any t ∈ [0, T ]. In order to obtain (2.5), we now have to control the derivatives ∂α
xFε(m) with

respect to the various terms in the quantities Eℓ
LL and Eℓ−1

LL . Here, we face the difficulty that the
derivative ∂α

xFε(m) contains partial derivatives of order ℓ + 1 of the function m, which cannot
be bounded with respect to the quantities Eℓ

LL and Eℓ−1
LL . In order to by-pass this difficulty,
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we bring to light a hidden geometric cancellation in the scalar product in the right-hand side
of (3.5).

Let us decompose the derivative ∂α
xFε(m) as

∂α
xFε(m) = −2

∑
1≤i,j≤N

∂ij
(
⟨∂im,∂jm⟩R3

)
m+G1(m)− 1

ε
G2(m) +

1

ε2
G3(m), (3.6)

according to the definition of Fε(m) in (2.7). By the Leibniz formula, the quantity G1(m) is here
given by

G1(m) :=
∑

1≤i,j≤N

(
∂α
x ∂i
(
2⟨∂im,∂jm⟩R3∂jm− |∂jm|2∂im

)
− 2

∑
0≤β≤α̃,β ̸=0

(
α̃

β

)
∂α̃−β
x

(
⟨∂im,∂jm⟩R3

)
∂β
xm
)
,

where ∂α̃
x := ∂α

x ∂ij . As a consequence, we directly infer from the Leibniz formula and the Moser
estimates (3.4) that ∥∥G1(m)

∥∥
L2 ≤ Ck ∥∇m∥2L∞ ∥∇m∥Ḣℓ−1 . (3.7)

Here as in the sequel, the notation Ck refers to a positive number depending only on k. Observe
that the uniform boundedness of the gradient ∇m is a consequence of the Sobolev embedding
theorem and the assumption k > N/2 + 1. Similarly, we have

∥∥G2(m)
∥∥
L2 ≤ Ck

(
∥∇m∥Ḣℓ−1

(
∥m1∥2L∞ + ∥m3∥2L∞

)
+ ∥∇m∥2L∞

(
∥m1∥Ḣℓ−2 + ∥m3∥Ḣℓ−2

)
+ ∥∇m∥L∞ ∥∇m∥Ḣℓ−2

(
∥m1∥L∞ + ∥m3∥L∞

))
,

(3.8)

for the quantity

G2(m) :=∂α
x

(
(m2

1 + 3m2
3)∆m1e1 + (3m2

1 +m2
3)∆m3e3 − 2m1m3(∆m1e3 +∆m3e1)

+ (m2
1 +m2

3)∆m2e2 − |∇m|2(m1e1 +m3e3) +∇
(
m2

1 +m2
3

)
· ∇m

)
,

and ∥∥G3(m)
∥∥
L2 ≤ Ck

(
∥m1∥2L∞ + ∥m3∥2L∞

) (
∥m1∥Ḣℓ−2 + ∥m3∥Ḣℓ−2

)
, (3.9)

where
G3(m) := ∂α

x

(
(m2

1 +m2
3)(m1e1 +m3e3)

)
.

We then deal with the remaining term of decomposition (3.6). Coming back to (3.5), we
integrate by parts in order to write∫

RN

⟨
∂t∂

α
xm,∂α

x ∂ij
(
⟨∂im,∂jm⟩R3

)
m
⟩
R3

= −
∫
RN

∂α
x ∂j
(
⟨∂im,∂jm⟩R3

)(⟨
∂t∂

α
x ∂im,m

⟩
R3 +

⟨
∂t∂

α
xm,∂im

⟩
R3

)
,

(3.10)

for any 1 ≤ i, j ≤ N . Arguing as before, we first obtain∣∣∣∣ ∫
RN

∂α
x ∂j
(
⟨∂im,∂jm⟩R3

) ⟨
∂t∂

α
xm,∂im

⟩
R3

∣∣∣∣ ≤ Ck ∥∇m∥2L∞ ∥∇m∥Ḣℓ−1 ∥∂t∂α
xm∥L2 . (3.11)
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On the other hand, it follows from the Landau-Lifshitz equation and the Leibniz formula that

∂α
x ∂j
(
⟨∂im,∂jm⟩R3

) ⟨
∂t∂

α∗
x m,m

⟩
R3

=−
∑
β≤α∗

(
α∗

β

)
∂α
x ∂j
(
⟨∂im,∂jm⟩R3

) ⟨
∂β
xm× ∂α∗−β

x

(
∆m− 1

ε

(
m1e1 +m3e3

))
,m
⟩
R3 ,

where ∂α∗
x := ∂α

x ∂i. The right-hand side of this formula vanishes when β = 0. Due to this
cancellation, we can deduce as before from the Leibniz formula and the Moser estimates (3.4)
that∣∣∣∣ ∫

RN

∂α
x ∂j
(
⟨∂im,∂jm⟩R3

)⟨
∂t∂

α∗
x m,m

⟩
R3

∣∣∣∣ ≤ Ck

(
∥∇m∥2L∞∥∇m∥2

Ḣℓ−1 +
1

ε
∥∇m∥L∞∥∇m∥Ḣℓ−1×

×
(
∥∇m∥L∞

(
∥m1∥Ḣℓ−2 + ∥m3∥Ḣℓ−2

)
+ ∥∇m∥Ḣℓ−2

(
∥m1∥L∞ + ∥m3∥L∞

)))
.

We finally collect this estimate with (3.7), (3.8), (3.9) and (3.11) in order to bound the right-
hand side of (3.5). Using definition (2.3), the fact that 0 < ε < 1, and the Young inequality
2ab ≤ a2 + b2, we obtain (2.5). This completes the proof of Proposition 2.1.

3.3 Proof of Corollary 2.2

In order to establish inequality (2.9), we rewrite (2.5) in terms of the function Ψε. Given
an initial datum Ψ0

ε ∈ Hk+5(RN ) satisfying (5), the corresponding solution Ψε to (NLSε) is
in C0([0, Tε),H

k+4(RN )) by Corollary 2. Here, the characterization of the maximal time Tε

guarantees that
ε

1
2

∥∥Ψε(·, t)
∥∥
L∞ < 1,

for any 0 ≤ t < Tε. In particular, it follows from the continuity properties of the solution Ψε and
the Sobolev embedding theorem that

σT := ε
1
2 max
t∈[0,T ]

∥∥Ψε(·, t)
∥∥
L∞ < 1, (3.12)

for any 0 ≤ T < Tε.

In another direction, the function m defined by (7) solves (LL) for the corresponding initial
datum m0, and we can prove that it is in C0([0, T ], Ek+4(RN )), with ∂tm ∈ C0([0, T ],Hk+2(RN )).
Indeed, the fact that m1 and m3 belong to C0([0, T ],Hk+4(RN )) is a direct consequence of their
definition and of the continuity properties of the function Ψε. Concerning the function m2, we
write it as

m2 = η(ε
1
2Ψε). (3.13)

In view of (3.12), the function η in this formula can be chosen as a smooth function such that

η(x) = (1− |x|2)
1
2 ,

when |x| ≤ σT , and η(x) = (1 + σT )/2 for |x| close enough to 1. As a consequence, we have

m2(·, t)−m2(·, s) = ε
1
2

∫ 1

0
η′
(
ε

1
2
(
(1− τ)Ψε(·, s) + τΨε(·, t)

)) (
Ψε(·, t)−Ψε(·, s)

)
dτ, (3.14)

for any 0 ≤ s ≤ t ≤ T . By the Sobolev embedding theorem, we infer that∥∥m2(·, t)−m2(·, s)
∥∥
L∞ ≤ ε

1
2

∥∥η′∥L∞
∥∥Ψε(·, t)−Ψε(·, s)

∥∥
L∞ ≤ ε

1
2

∥∥η′∥L∞
∥∥Ψε(·, t)−Ψε(·, s)

∥∥
Hk+4 .
(3.15)
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At this stage, let us recall the Moser estimate∥∥F (f)
∥∥
Ḣℓ ≤ Cℓ∥f∥Ḣℓ max

1≤m≤ℓ
∥F (m)∥L∞ ∥f∥m−1

L∞ , (3.16)

which holds for ℓ ≥ 1, f ∈ L∞(RN ) ∩ Ḣℓ(RN ), and F ∈ Cℓ(R), with bounded derivatives up to
order ℓ (see e.g. [22, 18]). Applying this estimate, (3.4) and (3.12) to (3.14), we get the existence
of a positive number A, also depending only on k, η and σT , such that∥∥m2(·, t)−m2(·, s)

∥∥
Ḣℓ ≤ Aε

1
2

(∥∥Ψε(·, t)−Ψε(·, s)
∥∥
Ḣℓ

+ ε
1
2

∥∥Ψε(·, t)−Ψε(·, s)
∥∥
L∞

(∥∥Ψε(·, t)
∥∥
Ḣℓ +

∥∥Ψε(·, s)
∥∥
Ḣℓ

))
,

for any 1 ≤ ℓ ≤ k + 4. Combining with (3.15), we finally deduce that m is continuous on [0, T ],
with values in Ek+4(RN ). Since this map is solution to (LL), it follows from (3.4) and the Sobolev
embedding theorem that its time derivative ∂tm is in C0([0, T ],Hk+2(RN )).

As a consequence, we are in position to apply Proposition 2.1 for the solution m. Coming
back to (7), we express the various terms in inequality (2.5) as

εEℓ
LL(t) = Eℓ

ε(t),

for any 2 ≤ ℓ ≤ k + 2, and

∥m1(·, t)∥2L∞ + ∥m3(·, t)∥2L∞ + ∥∇m(·, t)∥2L∞

= ε
(
∥Ψε(·, t)∥2L∞ + ∥∇Ψε(·, t)∥2L∞ + ε

∥∥∥⟨Ψε(·, t),∇Ψε(·, t)⟩C
(1− ε|Ψε(·, t)|2)

1
2

∥∥∥2
L∞

)
.

Note also that E1
LL(t) = E1

ε(t) by (3.3). In conclusion, the continuous differentiability of the
energies Eℓ

ε, as well as inequality (2.9), readily follow from Proposition 2.1. This completes the
proof of Corollary 2.2.

3.4 Proof of Lemma 2.3

We first infer from the proof of Corollary 2.2 that the energies Eℓ
ε are well-defined on [0, T ] for

1 ≤ ℓ ≤ k + 2, when the solution Ψε to (NLSε) lies in C0([0, T ],Hk+4(RN ) and satisfies condi-
tion (2.10). We also observe that the left-hand side inequalities in (2.11) and (2.12) are direct
consequences of the definitions of the energies Eℓ

ε. Concerning the right-hand side inequalities,
we first deal with (2.12), for which condition (2.10) guarantees that∣∣∣∣ε2⟨Ψε(x, t),∇Ψε(x, t)⟩2C

1− ε|Ψε(x, t)|2

∣∣∣∣ ≤ εσ2
T |∇Ψε(x, t)|2

1− σ2
T

,

for any (x, t) ∈ RN × [0, T ]. The inequality then follows, with C = 1/(2− 2σ2
T ).

We argue similarly for the right-hand side inequality in (2.11). We take advantage of the
uniform bound given by (2.10) in order to control the space derivatives of the function (1 −
ε|Ψε|2)1/2. As in the proof of Corollary 2.2, we introduce a smooth function such that

η(x) = (1− |x|2)
1
2 ,

when |x| ≤ σT , and η(x) = (1+σT )/2 for |x| close enough to 1. Since (1− ε|Ψε|2)1/2 = η(ε
1
2Ψε)

by (2.10), we again deduce from the Moser estimate (3.16) that∥∥∆(1− ε|Ψε(·, t)|2)
1
2

∥∥
Ḣℓ−2 ≤ Cε

1
2

∥∥∆Ψε(·, t)
∥∥
Ḣℓ−2 max

1≤m≤ℓ
ε

m−1
2

∥∥Ψε(·, t)
∥∥m−1

L∞ ,

15



where C refers, here as in the sequel, to a positive number depending only on k and σT (once
the choice of the function η is fixed). Condition (2.10) then provides

ε
∥∥∆(1− ε|Ψε(·, t)|2)

1
2

∥∥2
Ḣℓ−2 ≤ C2ε2

∥∥∆Ψε(·, t)
∥∥2
Ḣℓ−2 . (3.17)

At this stage, we are left with the estimates of the two terms in (2.8), which depend on the
time derivative of the function Ψε. Concerning the first one, we rewrite (NLSε) as

iε∂tΨε + εdiv
((

1− ε|Ψε|2
) 1

2∇Ψε −∇
(
1− ε|Ψε|2

) 1
2Ψε

)
+
(
1− (1− ε|Ψε|2)

1
2
)
Ψε = 0,

so that∥∥ε∂tΨε(·, t)− iΨε(·, t)
∥∥
Ḣℓ−2 ≤ ε

∥∥(1− ε|Ψε(·, t)|2
) 1

2∇Ψε(·, t)
∥∥
Ḣℓ−1

+ ε
∥∥∇(1− ε|Ψε(·, t)|2

) 1
2Ψε(·, t)

∥∥
Ḣℓ−1 +

∥∥(1− ε|Ψε(·, t)|2
) 1

2Ψε(·, t)
∥∥
Ḣℓ−2 .

(3.18)

Invoking the Moser estimate (3.4), we have∥∥(1− ε|Ψε(·, t)|2
) 1

2∇Ψε(·, t)
∥∥
Ḣℓ−1 +

∥∥∇(1− ε|Ψε(·, t)|2
) 1

2Ψε(·, t)
∥∥
Ḣℓ−1

≤ C
(∥∥Ψε(·, t)

∥∥
Ḣℓ +

∥∥Ψε(·, t)
∥∥
L∞

∥∥(1− ε|Ψε(·, t)|2
) 1

2
∥∥
Ḣℓ

)
,

so that (2.10) and (3.17) provide∥∥(1− ε|Ψε(·, t)|2
) 1

2∇Ψε(·, t)
∥∥
Ḣℓ−1 +

∥∥∇(1− ε|Ψε(·, t)|2
) 1

2Ψε(·, t)
∥∥
Ḣℓ−1 ≤ C

∥∥∆Ψε(·, t)
∥∥
Ḣℓ−2 .

Similarly, we can bound the last term in the right-hand side of (3.18) by ∥Ψε∥Ḣℓ−2 if ℓ = 2, and
by∥∥(1− ε|Ψε(·, t)|2

) 1
2Ψε(·, t)

∥∥
Ḣℓ−2 ≤ C

(
∥Ψε(·, t)∥Ḣℓ−2 +

∥∥Ψε(·, t)
∥∥
L∞

∥∥(1− ε|Ψε(·, t)|2
) 1

2
∥∥
Ḣℓ−2

)
,

otherwise. Since ℓ− 2 ≥ 1 in this case, we again infer from (2.10) and (3.16) that∥∥Ψε(·, t)
∥∥
L∞

∥∥(1− ε|Ψε(·, t)|2
) 1

2
∥∥
Ḣℓ−2 ≤ C

∥∥Ψε(·, t)
∥∥
Ḣℓ−2 .

Gathering the previous estimates of the right-hand side of (3.18), we finally get∥∥ε∂tΨε(·, t)− iΨε(·, t)
∥∥2
Ḣℓ−2 ≤ C

(
ε2
∥∥∆Ψε(·, t)

∥∥2
Ḣℓ−2 +

∥∥Ψε(·, t)
∥∥2
Ḣℓ−2

)
. (3.19)

We now turn to the last term in (2.8). Coming back to (NLSε), we infer that

∂t
(
1− ε|Ψε|2

) 1
2 = ε div⟨iΨε,∇Ψε⟩C,

and we again deduce from (2.10) and (3.4) that

ε
∥∥∂t(1− ε|Ψε(·, t)|2

) 1
2
∥∥2
Ḣℓ−2 ≤ ε3

∥∥Ψε(·, t)
∥∥2
L∞

∥∥∆Ψε(·, t)
∥∥2
Ḣℓ−2 ≤ Cε2

∥∥∆Ψε(·, t)
∥∥2
Ḣℓ−2 .

Combining this inequality with (3.18) and (3.19), we conclude that the energy Eℓ
ε(t) can be

bounded from above according to (2.11). This completes the proof of Lemma 2.3.
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3.5 Proof of Proposition 2.4

The proof relies on a continuation argument, which is based on the Sobolev control of the solution
Ψε provided by the energies Ek

ε . Assume first that the initial condition Ψ0
ε lies in Hk+5(RN ) and

satisfies condition (2.13) for a positive number C∗ to be fixed later. In this case, Corollary 2 yields
the existence of a maximal time Tmax and of a unique solution Ψε ∈ C0([0, Tmax),H

k+4(RN ))
to (NLSε) with initial datum Ψ0

ε. In particular, we infer from Corollary 2.2 that the quantity
Σk+2
ε defined by

Σk+2
ε :=

k+2∑
ℓ=1

Eℓ
ε,

is well-defined and of class C1 on [0, Tmax). On the other hand, we can invoke the Sobolev
embedding theorem so as to find a positive number C1, depending only on k, such that

ε
1
2

∥∥Ψ0
ε

∥∥
L∞ ≤ ε

1
2C1

∥∥Ψ0
ε

∥∥
Hk−1 .

Assuming that condition (2.13) holds for a number C∗ such that σC∗ ≥ 2C1, we obtain

ε
1
2

∥∥Ψ0
ε

∥∥
L∞ ≤ C1

C∗
≤ σ

2
.

As a consequence of the continuity properties of the quantity Σk+2
ε and of the solution Ψε, we

deduce that the stopping time

T∗ := sup
{
t ∈ [0, Tmax) : ε

1
2

∥∥Ψε(·, τ)
∥∥
L∞ ≤ σ and Σk+2

ε (τ) ≤ 2Σk+2
ε (0) for any τ ∈ [0, t]

}
,

(3.20)
is positive.

At this stage, we go back to inequality (2.9) in order to find a further positive number C2,
also depending only on k, such that[

Σk+2
ε

]′
(t) ≤ C2

(
∥Ψε(·, t)∥2L∞ + ∥∇Ψε(·, t)∥2L∞ + ε

∥∥∥⟨Ψε(·, t),∇Ψε(·, t)⟩C
(1− ε|Ψε(·, t)|2)

1
2

∥∥∥2
L∞

)
Σk+2
ε (t),

for any 0 ≤ t < T∗. Due to the definition of T∗, we observe that

ε
∥∥∥⟨Ψε(·, t),∇Ψε(·, t)⟩C

(1− ε|Ψε(·, t)|2)
1
2

∥∥∥2
L∞

≤ 1

1− σ2
∥∇Ψε(·, t)∥2L∞ .

Combining these inequalities with the Sobolev embedding theorem, we are led to[
Σk+2
ε

]′
(t) ≤ C2

1C2

1− σ2
Σk+2
ε (t)2.

Setting

Tε :=
1− σ2

2C2
1C2Σ

k+2
ε (0)

, (3.21)

and integrating the previous inequality, we infer that

Σk+2
ε (t) ≤ (1− σ2)Σk+2

ε (0)

1− σ2 − C2
1C2Σ

k+2
ε (0)t

≤ 2Σk+2
ε (0), (3.22)

for any t < Tε. Invoking once again the Sobolev embedding theorem and the definition of the
quantity Σk+2

ε , we also get

ε
1
2 ∥Ψε(·, t)∥L∞ ≤ C1ε

1
2Σk+2

ε (t)
1
2 ≤

√
2C1ε

1
2Σk+2

ε (0)
1
2 .
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In view of Lemma 2.3, we infer the existence of a positive number C3, depending only on k and
σ, such that

ε
1
2 ∥Ψε(·, t)∥L∞ ≤

√
2C1C3ε

1
2

(∥∥Ψ0
ε

∥∥
Hk + ε

1
2

∥∥∇Ψ0
ε

∥∥
Ḣk + ε

∥∥∆Ψ0
ε

∥∥
Ḣk

)
,

again when t < Tε. Enlarging C∗ so that
√
2C1C3 ≤ σC∗, we deduce that

ε
1
2 ∥Ψε(·, t)∥L∞ ≤ σ. (3.23)

In view of (3.22), a continuation argument then guarantees that either Tε ≤ T∗ ≤ Tmax, or
T∗ = Tmax < Tε. In this latter case, it results from the conditions in (6) and from (3.23) that∫ Tmax

0

∥∥∇Ψε(·, t)
∥∥2
L∞ dt = ∞. (3.24)

On the other hand, as a further consequence of the Sobolev embedding theorem, of Lemma 2.3
and of (3.22), we have∫ Tmax

0

∥∥∇Ψε(·, t)
∥∥2
L∞ dt ≤ C2

1

∫ Tmax

0

∥∥Ψε(·, t)
∥∥2
Hk dt ≤ 4C2

1Σ
k+2
ε (0)Tmax.

When Tmax < Tε, definition (3.21) yields∫ Tmax

0

∥∥∇Ψε(·, t)
∥∥2
L∞ dt ≤ 2− 2σ2

C2
< ∞,

which contradicts (3.24). As a conclusion, the stopping time T∗ is at least equal to Tε, and we
derive from Lemma 2.3 and from (3.22) that∥∥Ψε(·, t)

∥∥2
Ḣk + ε

∥∥∇Ψε(·, t)
∥∥2
Ḣk + ε2

∥∥∆Ψε(·, t)
∥∥2
Ḣk

≤ 2Σk+2
ε (t) ≤ 4Σk+2

ε (0) ≤ 4C2
3

(∥∥Ψ0
ε

∥∥2
Ḣk + ε

∥∥∇Ψ0
ε

∥∥2
Ḣk + ε2

∥∥∆Ψ0
ε

∥∥2
Ḣk

)
,

for any 0 ≤ t ≤ Tε. Similarly, we derive from (3.21) that

Tε ≥
1

2C2
1C2C2

3

(
∥Ψ0

ε∥2Ḣk
+ ε∥∇Ψ0

ε∥2Ḣk
+ ε2∥∆Ψ0

ε∥2Ḣk

) .
It then remains to again enlarge the number C∗ so that C∗ ≥ 4C2

3 and C∗ ≥ 2C2
1C2C

2
3 in order to

complete the proof of Proposition 2.4, provided that Ψ0
ε ∈ Hk+5(RN ). In view of the continuity

of the (NLSε) flow with respect to the initial datum in Corollary 2, we can extend this result
to arbitrary initial conditions Ψ0

ε ∈ Hk+3(RN ) by a standard density argument. This ends the
proof of Proposition 2.4.

3.6 Proof of Lemma 2.5

Assume first that the initial condition Ψ0 belongs to Hk+2(RN ) and consider the correspond-
ing solution Ψ ∈ C0([0, Tmax),H

k+2(RN )) to (CS). In this case, the derivative ∂tΨ is in
C0([0, Tmax),H

k(RN )), so that the quantity

Sk(t) =
1

2

∥∥Ψ(·, t)
∥∥2
Hk ,
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is well-defined and of class C1 on the interval [0, Tmax). In view of (CS), its derivative is equal to

S′
k(t) =

⟨
−∆Ψ(·, t)− 1

2
|Ψ(·, t)|2Ψ(·, t), iΨ(·, t)

⟩
Hk

,

for any 0 ≤ t ≤ Tmax. Since we have

−
⟨
∆Ψ(·, t), iΨ(·, t)

⟩
Hk =

⟨
∇Ψ(·, t), i∇Ψ(·, t)

⟩
Hk = 0,

by integration by parts, we can combine the Moser estimates in (3.4) and the Sobolev embedding
theorem in order to get

S′
k(t) ≤

1

2

∥∥|Ψ(·, t)|2Ψ(·, t)
∥∥
Hk

∥∥Ψ(·, t)
∥∥
Hk ≤ Ck

∥∥Ψ(·, t)
∥∥2
L∞

∥∥Ψ(·, t)
∥∥2
Hk ≤ CkSk(t)

2.

Here, the positive number Ck, possibly changing from inequality to inequality, only depends on
k. Setting

T∗ :=
1

2CkSk(0)
=

1

Ck∥Ψ0
∥∥2
Hk

, (3.25)

we conclude that
Sk(t) ≤

Sk(0)

1− CktSk(0)
≤ 2Sk(0) = ∥Ψ0

∥∥2
Hk , (3.26)

as long as t ≤ T∗. Invoking again the Sobolev embedding theorem, we also have∥∥Ψ(·, t)
∥∥
L∞ ≤ CkSk(t)

1
2 ≤ Ck∥Ψ0

∥∥
Hk < ∞,

and a continuation argument as in the proof of Proposition 2.4 guarantees that the maximal
time of existence Tmax is greater than T∗. In view of (3.25) and (3.26), this completes the proof
of Lemma 2.5 when Ψ0 ∈ Hk+2(RN ). Using the uniform lower bound on the maximal time
of existence provided by T∗, we can finally perform a standard density argument to extend this
lemma to any arbitrary initial datum Ψ0 ∈ Hk(RN ). This concludes the proof of Lemma 2.5.

3.7 Proof of Proposition 2.6

Set
Sk−2(t) =

1

2

∥∥uε(·, t)∥∥2Hk−2 ,

for any t ∈ [0, T ]. Under the assumptions of Proposition 2.6, the functions uε and ∂tuε lie in
C0([0, T ],Hk) and in C0([0, T ],Hk−2), respectively. Hence, the function Sk−2 is of class C1 on
[0, T ]. In view of (2.15), its derivative is given by

S′
k−2(t) =

⟨
−∆uε(·, t)−Gε(·, t) + εRε(·, t), iuε(·, t)

⟩
Hk−2 ,

where we denote
Gε :=

1

2

(
|uε +Ψ|2(uε +Ψ)− |Ψ|2Ψ

)
.

Integrating by parts, we see that⟨
∆uε, iuε

⟩
Hk−2 = −

⟨
∇uε, i∇uε

⟩
Hk−2 = 0,

so that the Cauchy-Schwarz inequality leads to∣∣S′
k−2(t)

∣∣ ≤ √
2Sk−2(t)

1
2

(∥∥Gε(·, t)
∥∥
Hk−2 + ε

∥∥Rε(·, t)
∥∥
Hk−2

)
. (3.27)
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At this point, we notice that

Gε =
1

2

(
|uε|2uε + |uε|2Ψ+ 2⟨uε,Ψ⟩C(uε +Ψ) + |Ψ|2uε

)
,

and we invoke the Moser estimates (3.4), as well as the Young inequality 2ab ≤ a2 + b2, in order
to obtain∥∥Gε

∥∥
Hk−2 ≤ Ck

(
∥uε∥Hk−2

(
∥uε∥2L∞ + ∥Ψ∥2L∞

)
+ ∥Ψ∥Hk−2 ∥uε∥L∞

(
∥uε∥L∞ + ∥Ψ∥L∞

))
,

Here as in the sequel, the notation Ck refers to a positive number depending only on k. Due to
the assumption k > N/2 + 2, the Sobolev embedding of Hk−2(RN ) into L∞(RN ) then leads to∥∥Gε(·, t)

∥∥
Hk−2 ≤ Ck Sk−2(t)

1
2 Kε(T )

2. (3.28)

We now turn to the remainder term Rε, which we decompose as Rε := Rε,1 − Rε,2 − Rε,3

according to the three terms in the right-hand side of (2.2). We introduce a smooth function χ
such that

χ(x) =
1

1 + (1− |x|2)
1
2

,

when |x| ≤ σ, and we use (2.16) to recast Rε,1 as

Rε,1 = |Ψε|2∆Ψε χ
(
ε

1
2 Ψε

)
.

We next apply the Moser estimate (3.16) and invoke again (2.16) to obtain∥∥χ(ε 1
2 Ψε)

∥∥
Ḣℓ ≤ Ck,σ∥Ψε∥Ḣℓ ,

when 1 ≤ ℓ ≤ k − 2. Here as in the sequel, the notation Ck,σ refers to a positive number
depending only on k and σ. In view of (3.4), this gives∥∥Rε,1

∥∥
Ḣℓ ≤ Ck,σ∥Ψε∥L∞

(
∥∆Ψε∥L∞

(
1 + ∥Ψε∥L∞

)
∥Ψε∥Ḣℓ + ∥Ψε∥L∞∥Ψε∥Ḣℓ+2

)
.

Since ∥∥Rε,1

∥∥
L2 ≤ ∥Ψε∥2L∞∥Ψε∥Ḣ2 ,

due to (2.16), we deduce from the condition k > N/2 + 2 and the Sobolev embedding theorem
that ∥∥Rε,1

∥∥
Hk−2 ≤ Ck,σKε(T )

3
(
1 +Kε(T )

)
.

We argue similarly for the term

Rε,2 =
1

2
|Ψε|4 χ

(
ε

1
2 Ψε

)2
Ψε,

which we bound as ∥∥Rε,2

∥∥
Hk−2 ≤ Ck,σKε(T )

5
(
1 +Kε(T )

)
.

Concerning the term Rε,3, we introduce a further smooth function ρ such that

ρ(x) =
1

(1− |x|2)
1
2

,

when |x| ≤ σ, and we write

Rε,3 =
((

⟨Ψε,∆Ψε⟩C + |∇Ψε|2
)
ρ
(
ε

1
2 Ψε

)
+ ε

1
2 ⟨Ψε,∇Ψε⟩C · ∇Ψε ρ

′(ε 1
2 Ψε

))
Ψε.
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Arguing as for the function χ, we have∥∥ρ(ε 1
2 Ψε)

∥∥
Ḣℓ +

∥∥ρ′(ε 1
2 Ψε)

∥∥
Ḣℓ ≤ Ck,σ∥Ψε∥Ḣℓ ,

for 1 ≤ ℓ ≤ k − 2, and we infer as before that∥∥Rε,3

∥∥
Hk−2 ≤ Ck,σKε(T )

3
(
1 +Kε(T )

)
.

We conclude that ∥∥Rε

∥∥
Hk−2 ≤ Ck,σKε(T )

3
(
1 +Kε(T )

3
)
.

Coming back to (3.27) and using (3.28), as well as the Young inequality, we obtain

S′
k−2(t) ≤ Ck,σKε(T )

2
(
Sk−2(t) + ε2Kε(T )

2
(
1 +Kε(T )

6
))

.

Estimate (2.17) finally follows from the Gronwall inequality.

A Solitons of the Landau-Lifshitz equation

In this appendix, we focus on the correspondence between the solitons of the one-dimensional
Landau-Lifshitz equation and of the one-dimensional cubic Schrödinger equation. Concerning
this latter equation, it is well-known that it owns bright solitons (see e.g. [25]). Up to a space
translation and a phase shift, they are given by

Ψc,ω(x, t) =
(4ω − c2)

1
2 ei

c(x−ct)
2

cosh
( (4ω−c2)

1
2

2 (x− ct)
) eiωt, (A.1)

for any (x, t) ∈ R2. In this formula, the speed c ∈ R and the angular velocity ω ∈ R satisfy the
condition 4ω > c2. In the sequel, our goal is to exhibit solitons for the one-dimensional Landau-
Lifshitz equation, which converge towards the bright solitons Ψc,ω in the cubic Schrödinger regime
that we have derived in Theorem 4.

Going back to the scaling in (2) and to formula (A.1), we look for solitons to (LL) under the
form

m̌c,ω(x, t) = V̌c,ω(x− ct)eiωt and [mc,ω]2(x, t) := [Vc,ω]2(x− ct), (A.2)

for any (x, t) ∈ R2. Here, we have set, as before, V̌c,ω = [Vc,ω]1 + i[Vc,ω]3. The speed c and the
angular momentum ω are real numbers. In order to simplify the analysis, we also assume that
λ := λ1 = λ3 > 0 as in the cubic Schrödinger regime. Using the equivalent formulation of the
one-dimensional Landau-Lifshitz equation given by

m× ∂tm− ∂xxm−
(
|∂xm|2 + λ(m2

1 +m2
3)
)
m+ λ

(
m1e1 +m3e3

)
= 0,

we observe that the functions V̌c,ω and [Vc,ω]2 solve the ordinary differential system{
−v̌′′ + ic

(
v2v̌

′ − v′2v̌
)
−
(
|v̌′|2 + |v′2|2 + λ|v̌|2

)
v̌ + λv̌ + ωv2v̌ = 0,

−v′′2 + c⟨iv̌, v̌′⟩C −
(
|v̌′|2 + |v′2|2 + λ|v̌|2

)
v2 − ω|v̌|2 = 0.

(TWc,ω)

This system appears as a perturbation of the harmonic maps equation, which corresponds to
the case c = λ = ω = 0. It is invariant by translations and by phase shifts (of the function
v̌). In the energy space E(R), the unique constant solutions to (TWc,ω) are the trivial solutions
e2 = (0, 1, 0) and −e2 = (0,−1, 0). Moreover, we are able to classify all the non-trivial solutions
in this space according to the possible values of the parameters c, λ and ω.
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Theorem A.1. Let λ > 0 and (c, ω) ∈ R2. Up to the invariance by translations and phase shifts
(of the map V̌c,ω), the unique non-trivial solutions Vc,ω to (TWc,ω) in the energy space E(R) are
given by the following formulae :

(i) For ω = c = 0,

∀x ∈ R, V̌0,0(x) =
1

cosh(λ
1
2x)

, and [V0,0]2(x) = δ tanh
(
λ

1
2x
)
,

with δ ∈ {±1}.
(ii) For 0 < −ωδ < λ and c2 < 4

(
λ+ ωδ

)
, or for ωδ ≥ 0 and 0 < c2 < 4

(
λ+ ωδ

)
,

∀x ∈ R, V̌c,ω(x) =
(4(λ+ δω)− c2)

1
2 e

icδx
2

2λ+ δω + (λc2 + ω2)
1
2 cosh

(
(4(λ+ δω)− c2)

1
2x
)×

×
((

2(λc2 + ω2)
1
2 + c2 − 2δω

) 1
2
cosh

((
(λ+ δω)− c2

4

) 1
2
x
)

+ i sign(c)δ
(
2(λc2 + ω2)

1
2 − c2 + 2δω

) 1
2
sinh

((
(λ+ δω)− c2

4

) 1
2
x
))

,

and

∀x ∈ R, [Vc,ω]2(x) = δ

(
1− 4(λ+ δω)− c2

2λ+ δω + (λc2 + ω2)
1
2 cosh

(
(4(λ+ δω)− c2)

1
2x
)),

with δ ∈ {±1}. Moreover, when c ̸= 0, the map V̌c,ω can be lifted as V̌c,ω = |V̌c,ω|eiφc,ω , with

φc,ω(x) =
cδx

2
+ sign(c)δ arctan

((2(λc2 + ω2)
1
2 − c2 + 2δω

2(λc2 + ω2)
1
2 + c2 − 2δω

) 1
2
tanh

((
(λ+ δω)− c2

4

) 1
2
x
))

.

Remark A.2. Observe that the numbers δ = ±1 in this statement give account of the limit
when x → +∞ of the function [Vc,ω]2.

Proof. The proof follows the approach developed in [11]. By classical regularity theory (see
e.g. [17]), all the solutions v = (v1, v2, v3) to (TWc,ω) in E(R) are smooth, and all their derivatives
are bounded. Given a non-trivial solution v in E(R), this implies that

v2(±∞) := lim
x→±∞

v2(x) ∈ {−1, 1}, and lim
x→±∞

|v′(x)| = 0.

Taking the complex scalar product of the first equation of (TWc,ω) by v̌′, multiplying the second
one by v′2, and summing the resulting identities, we obtain(

|v′|2
)′
= −2ωv′2 − 2λv2v

′
2,

due to the fact that |v| = 1. Integrating this expression from either −∞ or +∞ gives

|v′|2 = λ
(
1− v22

)
− 2ω

(
v2 − v2(±∞)

)
. (A.3)

In particular, we observe that
v2(−∞) = v2(+∞),

except possibly when ω = 0. As a consequence, we infer that the energy density

e(v) :=
1

2

(
|v′|2 + λ|v̌|2

)
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is equal to
e(v) = λ

(
1− v22

)
− ω

(
v2 − v2(±∞)

)
. (A.4)

Taking the complex scalar product of the first equation of (TWc,ω) by iv̌ and integrating the
resulting expression leads to

⟨iv̌, v̌′⟩C = c(v2(±∞)− v2
)
, (A.5)

and we observe that c is also equal to 0 in case v2(+∞) ̸= v2(−∞). Introducing (A.4) and (A.5)
in the second equation of (TWc,ω), we finally obtain the second-order differential equation for
the function v2

− v′′2 +
(
v2 − v2(±∞)

)(
2λv22 + (2λv2(±∞) + 3ω)v2 − c2 + v2(±∞)ω

)
= 0. (A.6)

At this stage, we split the analysis into two cases according to the values of v2(−∞) and
v2(+∞). If they are different, we know that c = ω = 0, and (A.6) reduces to

−v′′2 − 2λv2
(
1− v22

)
= 0.

Multiplying this equation by v′2 and integrating, we get

−
(
v′2
)2 − 2λv22 + λv42 + λ = 0.

By the intermediate value theorem, we also know that v2 vanishes. Up to a translation, we can
assume that v2(0) = 0. Hence, v′2(0) is equal to ±λ1/2. Coming back to (A.6) and invoking the
Cauchy-Lipshitz theorem, we conclude that there exist only two possible solutions depending on
the value of v′2(0). Finally, we check that the functions

v2(x) = ± tanh
(
λ

1
2x
)
, (A.7)

are these two possible solutions. We next go back to the first equation in (TWc,ω) and use (A.4)
in order to write

− v̌′′ + λ
(
2v22 − 1

)
v̌ = 0. (A.8)

Again by (A.4), we obtain

|v̌′(0)|2 = λ
(
1− v2(0)

2
)
− v′2(0)

2 = 0.

We are now reduced to invoke the Cauchy-Lipshitz theorem as before, and then to solve explic-
itly (A.8), so as to prove the existence of a complex number α such that

v̌(x) =
α

cosh(λ
1
2x)

, (A.9)

for any x ∈ R. Since |v̌|2 = 1− v22, we infer that |α| = 1, and up to a phase shift of the function
v̌, we can assume that α = 1. Statement (i) in Theorem A.1 then follows from formulae (A.7)
and (A.9).

We now assume that v2(−∞) = v2(+∞) := v∞2 ∈ {−1, 1}. Multiplying (A.6) by v′2 and
integrating, we have(

v′2
)2

=
(
v2 − v∞2

)2(
λ
(
v2 + v∞2

)2
+ 2ω

(
v2 + v∞2

)
− c2

)
, (A.10)

so that
λ
(
v2(x) + v∞2

)2
+ 2ω

(
v2(x) + v∞2

)
− c2 ≥ 0, (A.11)
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for any x ∈ R. Taking the limit x → ∞, we obtain the necessary condition

c2 ≤ 4
(
λ+ ωv∞2

)
,

for having a non-trivial solution, and we assume this condition to be fulfilled in the sequel.

At this stage, we also know that v2 owns a global minimum when v∞2 = 1, respectively
maximum when v∞2 = −1. This optimum is different from ±1, otherwise it follows from applying
the Cauchy-Lipschitz theorem to (A.6) that the solution v is trivial. Up to a translation, we can
assume that this optimum is attained at x = 0, so that v′2(0) = 0, with −1 < v2(0) < 1. In view
of (A.10), this gives

λ
(
v2(0) + v∞2

)2
+ 2ω

(
v2(0) + v∞2

)
− c2 = 0.

Using (A.11), we deduce that

v2(0) =
1

λ

(
v∞2 (ω2 + c2λ)

1
2 − ω − λv∞2

)
. (A.12)

In particular, the inequality −1 < v2(0) < 1 leads to the strongest necessary conditions

or

{
0 < −ωv∞2 < λ, and c2 < 4

(
λ+ ωv∞2

)
,

ωv∞2 ≥ 0, and 0 < c2 < 4
(
λ+ ωv∞2

)
,

(A.13)

which we assume in the sequel. In view of (A.12), and since v′2(0) = 0, applying the Cauchy-
Lipschitz theorem to (A.6) then provides the uniqueness, if existence, of the solution v2. Note
also that, as a further consequence of the Cauchy-Lipschitz theorem, the function v2 is even.

In order to construct this solution, we set y = 1− v∞2 v2. The function y is even, positive and
owns a global maximum at x = 0. Rewriting (A.10) in terms of the function y and taking the
square root of the resulting expression, we deduce that

y′(x) = −y(x)
(
λy(x)2 − 2(ωv∞2 + 2λ)y(x) + 4(λ+ ωv∞2 )− c2

) 1
2 , (A.14)

for any x ≥ 0. Observe here that the polynomial P (X) = λX2−2(ωv∞2 +2λ)X+4(λ+ωv∞2 )−c2

owns two distinct roots

X+ := 2 +
1

λ

(√
ω2 + λc2 + ωv∞2

)
≥ 2 > X− := 2− 1

λ

(√
ω2 + λc2 − ωv∞2

)
,

due to (A.13). Since y(0) = X− by (A.12) and since y attains its global maximum at x = 0, it
follows that the quantity P (y(x)) in the right-hand side of (A.14) is positive for any x ̸= 0. In
view of (A.13), we are also allowed to write

d
dy

(
arcosh

(4(λ+ ωv∞2 )− c2 − (ωv∞2 + 2λ)y

y
√
ω2 + λc2

))
= −

(
4(λ+ ωv∞2 )− c2

) 1
2

y
√
P (y)

,

for any 0 < y < X−. The existence of the solution v2, as well as its expression in Statement (ii)
of Theorem A.1, then follow from combining this formula with (A.14).

We next proceed with the first equation in (TWc,ω). Inserting (A.4) in this equation, we
obtain the second-order linear differential equation

− v̌′′ + icv2v̌
′ +
(
2λv22 − icv′2 + 3ωv2 − λ− 2ωv∞2

)
v̌ = 0. (A.15)

Since |v̌|2 = 1− v22, the function |v̌|2 owns a global maximum for x = 0, which is given by

|v̌(0)|2 =
2(λ+ ωv∞2 )

(
(ω2 + c2λ)

1
2 − ωv∞2

)
− c2λ

λ2
̸= 0,

24



in view of (A.12). Using the invariance by phase shift of the function v̌, we can assume that

v̌(0) =
1

λ

(
2(λ+ ωv∞2 )

(
(ω2 + c2λ)

1
2 − ωv∞2

)
− c2λ

) 1
2
, (A.16)

By maximality at x = 0, we also know that

⟨v̌(0), v̌′(0)⟩C = 0,

while (A.5) provides
⟨iv̌(0), v̌′(0)⟩C = c(v∞2 − v2(0)

)
.

Hence, we have

v̌′(0) = ic
v∞2 − v2(0)

|v̌(0)|2
v̌(0) = icv∞2

(2λ+ ωv∞2 − (ω2 + c2λ)
1
2

(ω2 + c2λ)
1
2 − ωv∞2

) 1
2
. (A.17)

In view of (A.16) and (A.17), we deduce as before from the Cauchy-Lipschitz theorem that there
exists at most one solution v̌ to (A.15).

In order to conclude the proof, we are left with the construction of this solution. We split
the analysis into two cases. When c = 0, equation (A.15) reduces to

− v̌′′ +
(
2λv22 + 3ωv2 − λ− 2ωv∞2

)
v̌ = 0. (A.18)

Taking the real and imaginary parts of this equation, we infer that v1 and v3 also solve it.
By (A.16) and (A.17), we have v3(0) = v′3(0) = 0. By the Cauchy-Lipschitz theorem once again,
the function v3 identically vanishes, and we obtain

v1(x)
2 = 1− v2(x)

2 = −
8v∞2 ω(λ+ v∞2 ω)

(
1 + cosh(2(λ+ v∞2 ω)

1
2x)
)(

2λ− v∞2 ω
(
cosh(2(λ+ v∞2 ω)

1
2x)− 1

))2 ,

for any x ∈ R. Here, we have used the property that |ω| = −v∞2 ω due to conditions (A.13).
Since v′1(0) = 0 and

v1(0) = −2
√
2

λ

(
ωv∞2 λ+ ω2

) 1
2 ,

by (A.16) and (A.17), we infer that

v̌(x) = v1(x) =
4
(
− v∞2 ωλ− ω2

) 1
2 cosh

(
(λ+ v∞2 ω)

1
2x
)

2λ− v∞2 ω
(
cosh(2(λ+ v∞2 ω)

1
2x)− 1

) ,

is the desired solution to (A.15).

We finally turn to the case c ̸= 0. We now compute

|v̌(x)|2 =

(
4(λ+ v∞2 ω)− c2

)(
2(λc2 + ω2)

1
2 cosh

(
(4(λ+ v∞2 ω)− c2)

1
2x
)
+ c2 − 2v∞2 ω

)
(
2λ+ v∞2 ω + (λc2 + ω2)

1
2 cosh

(
(4(λ+ v∞2 ω)− c2)

1
2x
))2 ,

for any x ∈ R. In this case, we observe that the function v̌ does not vanish on R, so that we can
lift it as v̌ = |v̌|eiφ with a smooth phase function φ. Coming back to (A.5), we compute

φ′(x) =
c

v∞2 + v2(x)
=

cv∞2
2

(
1 +

4(λ+ v∞2 ω)− c2

2(λc2 + ω2)
1
2 cosh

(
(4(λ+ v∞2 ω)− c2)

1
2x
)
+ c2 − 2v∞2 ω

)
.
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Since v̌(0) > 0 by (A.16), we can also assume that φ(0) = 0. Checking that

d
dy

(
2a

b(1− d2)
1
2

arctan
((1− d

1 + d

) 1
2
tanh

(ay
2

)))
=

a2

b
(
cosh(ay) + d

) ,
for any y ∈ R, and any coefficients a > 0, b > 0 and −1 < d < 1, we conclude that the phase
function φ is given by the formula in Statement (ii) of Theorem A.1. Finally, the formula for
the map v̌ follows from the ones for |v̌| and φ using the identities

∀x ∈ R, cos(arctan(x)) =
1

(1 + x2)
1
2

, and sin(arctan(x)) =
x

(1 + x2)
1
2

.

This concludes the proof of Theorem A.1.

We now go back to the cubic Schrödinger regime of the Landau-Lifshitz equation. In view
of the classification in Theorem A.1, the solitons Ψc,ω of (CS) can be obtained in this regime as
the limit of the solitons mcε,ωε of (LL) for the choice of parameters

cε = c, δε = 1, λε =
1

ε
, and ωε = ω − 1

ε
. (A.19)

Indeed, fix ω > 0 and c ≥ 0, with 4ω > c2, so that the soliton Ψc,ω is well-defined. The
assumptions 0 < −ωεδε and c2ε < 4

(
λε + ωεδε

)
then hold for ε small enough. By Theorem A.1,

there exist non-trivial solutions Vcε,ωε to (TWc,ω) with

V̌cε,ωε(x) =
ε

1
2 (4ω − c2)

1
2 e

icx
2

1 + ωε+ (1 + (c2 − 2ω)ε+ ω2ε2)
1
2 cosh

(
(4ω − c2)

1
2x
)×

×
((

2(1 + (c2 − 2ω)ε+ ω2ε2)
1
2 + 2 + (c2 − 2ω)ε

) 1
2 cosh

((
ω − c2

4

) 1
2
x
)

+ i sign(c)
(
2(1 + (c2 − 2ω)ε+ ω2ε2)

1
2 − 2 + (2ω − c2)ε

) 1
2 sinh

((
ω − c2

4

) 1
2
x
))

.

(A.20)

Coming back to the scaling in (2), we observe that the corresponding function

Υε(x, t) := ε−
1
2 m̌cε,ωε(x, t)e

it
ε = ε−

1
2 V̌cε,ωε(x− ct)eiωt, (A.21)

satisfies
Υε(x, t) → Ψc,ω(x, t),

as ε → 0. Moreover, we can control the difference between the functions Υε and Ψc,ω by a factor
of order ε as in Theorem 4.

Proposition A.3. Let k ∈ N, c ≥ 0 and ω > 0, with 4ω > c2. Given any number 0 < ε < 1/ω,
consider the function Υε defined by (A.21), with the choice of parameters cε, δε, λε and ωε given
by (A.19). There exists a positive number Ck, depending only on k, c and ω, such that∥∥Υε(·, t)−Ψc,ω(·, t)

∥∥
Hk ∼

ε→0
Ckε,

for any t ∈ R.
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Proof. Given any real number t, we infer from (A.1) and (A.21) that∥∥Υε(·, t)−Ψc,ω(·, t)
∥∥
Hk =

∥∥ε− 1
2 V̌cε,ωε − Uc,ω

∥∥
Hk , (A.22)

where we have set

Uc,ω(x) =
2α ei

cx
2

cosh
(
αx
) ,

with α := (ω − c2/4)1/2. In view of (A.20), we have

ε−
1
2 V̌cε,ωε(x)− Uc,ω(x) = εWc,ω(x) + ε2Rε(x), (A.23)

where the first-order term Wc,ω is equal to

Wc,ω(x) :=
α ei

cx
2

4 cosh(αx)2

(
(4α2 − c2) cosh(αx)− 8α2

cosh(αx)
+ 4icα sinh(αx)

)
,

whereas the remainder term Rε is given by

Rε(x) :=
α ei

cx
2

2 cosh(αx)4

(
2
(
Γε − 2Nε − νεγε

)
cosh(αx)3 −

(
γε(ω − νε)− 2Nε

)
cosh(αx)

+i sign(c) sinh(αx)
(
2(Kε − νεκε) cosh(αx)

2 − (ω − νε)κε)
)

+

(
ω − νε + 2νε cosh(αx)

2
)2

2(1 + ενε) cosh(αx)2 + ε(ω − νε)

(
(2 + εγε) cosh(αx) + iε sign(c)κε sinh(αx)

))
.

In this expression, we have set

γε :=
c2 − 2ω

2
+ εΓε :=

1

ε

((
2(1 + (c2 − 2ω)ε+ ω2ε2)

1
2 + 2 + (c2 − 2ω)ε

) 1
2 − 2

)
,

κε :=
|c|(4ω − c2)

1
2

2
+ εKε :=

1

ε

(
2(1 + (c2 − 2ω)ε+ ω2ε2)

1
2 − 2 + (2ω − c2)ε

) 1
2
,

and

νε :=
c2 − 2ω

2
+ εNε :=

1

ε

((
1 + (c2 − 2ω)ε+ ω2ε2

) 1
2 − 1

)
.

Since

Γε →
4ωc2 − c4 − 2ω2

8
, Kε →

|c|(2ω − c2)(4ω − c2)
1
2

8
, and Nε →

c2(4ω − c2)

8
,

as ε → 0, it follows from the smoothness and the exponential decay of the remainder term Rε

that its Hk-norm remains bounded as ε → 0. In view of (A.23), we deduce that∥∥ε− 1
2 V̌cε,ωε − Uc,ω

∥∥
Hk ∼

ε→0
ε∥Wc,ω∥Hk .

It is then enough to set Ck := ∥Wc,ω∥Hk and to use (A.22) so as to complete the proof of
Proposition A.3.
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