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Abstract

We conjecture that each balanced word on N letters

• either arises from a balanced word on two letters by expanding both letters

with a congruence word,

• or is D-periodic with D ≤ 2N − 1.

Our conjecture arises from extensive numerical experiments. It implies, for

any fixed N , the finiteness of the number of balanced words on N letters which

do not arise from expanding a balanced word on two letters. It refines a the-

orem of Graham and Hubert, which states that non-periodic balanced words

are congruence expansions of balanced words on two letters. It also relates to

Fraenkel’s conjecture, which states that for N ≥ 3, every balanced word with

distinct densities d1 > d2 . . . > dN satisfies di = (2N−i)/(2N − 1), since this

implies that the word is D-periodic with D = 2N − 1. For N ≤ 6, we provide a

tentative list of the density vectors of balanced words which do not arise from

expanding a balanced word with fewer letters. We prove that the list is complete

for N = 4 letters.

We also prove that deleting a letter in a congruence word always produces

a balanced word and this construction allows us to further reduce the list of
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density vectors that remains unexplained. Moreover, we prove that deleting a

letter in a m-balanced word produces a m + 1-balanced word, thus extending

and simplifying a result of [11].

Keywords: Balanced words, congruence words, exact covering systems,

constant gap sequences, Graham- Hubert theorem, Fraenkel’s conjecture,

m-balanced words.

1. Introduction

Balanced sequences and balanced words have attracted the attention of

many researchers in discrete mathematics or number theory, but also in ap-

plication fields like scheduling, maintenance, queueing, or apportionment (see,

e.g., [1, 6, 3, 8, 9]). Yet, in spite of this wealth of literature, balanced words5

and their properties are still poorly understood. A most striking, and best

known illustration of this assertion is provided by a conjecture initially formu-

lated by Fraenkel (as mentioned in [14]) for exact covers by Beatty sequences.

Fraenkel’s conjecture was later extended to balanced words (Altman, Gaujal

and Hordijk [1]). Although Fraenkel’s conjecture has been established for words10

on a small number of letters (up to N = 7 letters [2]), its general case remains

stubbornly open.

Our objective in this research was to get a better grasp of the vectors of

densities associated with balanced words. For this purpose, we have conducted

computational experiments in which we have generated all such vectors up to a15

certain size. Out of the numerical results came a conjecture that we believe to

be new and of potential interest to the mathematical community.

Graham [5] made important observations about how balanced words arise

out of balanced words on 2 letters and congruence words. Our study was guided

by the following question “Which balanced words remain after cleaning those20

explained by the construction of Graham?”

This note is organized as follows: in Section 2, we review the literature re-

quired for our study. In Section 3 we explain why Fraenkel’s conjecture is not
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sufficient, to the best of our understanding, to reduce the study of balanced

words to the study of congruence words. In Section 4 we claim our main con-25

tributions: the conjecture about the short period of balanced words, as well as

a simple construction for generating some balanced words by deleting a letter

in a congruence word.

In Section 5 we investigate balanced words with N ≤ 6 letters, providing a

complete list of these words under the validity of our main conjecture. We also30

exhibit that our simple construction explains many of the balanced words that

do not arise from Graham’s construction.

The proof of our conjecture for N = 4 letters is provided in the Appendix.

2. Background

We briefly introduce the definitions that are needed in the sequel. The reader35

is referred to [14, 15, 11, 16] for details and additional information.

Definition 2.1. A sequence is a subset of Z. A sequence S is D-periodic,

where D is a positive integer, if S = {x+D : x ∈ S}. The period of a periodic

sequence is the smallest D for which it is D-periodic. The density δ(S) of a

sequence S is

δ(S) := lim
t→∞
{|I ∩ S|/|I| : I = {a, ..., t}, a ∈ Z},

provided the limit exists.

Definition 2.2. A word on N letters is a function W : Z → {1, ..., N}, or

equivalently, a (left- and right-unbounded) string of symbols on the alphabet

{1, ..., N}. The word W is D-periodic if W (k +D) = W (k) for all k ∈ Z, and40

the period of a word is the smallest positive integer D (if any) for which it is

D-periodic.

Each word is naturally associated with a partition of Z into a finite family

of sequences {Si}i∈{1,...,N}, where Si is the set of integers that W maps to
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the letter i. The word is D-periodic if and only if all sequences Si are D-45

periodic. Provided that all densities δ(Si) exist, the density (vector) of W is

δ(W ) = (δ(S1), . . . , δ(SN )).

A D-periodic word is completely defined by its restriction to the interval

{1, ..., D}. Therefore, when presenting examples, we usually describe a periodic

word by a finite string X of integers or letters, such as X = 1213112231 or50

X = abacaabbca. The word itself is W = (X)∗, where the star operator indicates

infinite repetition of the string X.

Notice that with this setting, we identify (01)∗ and (10)∗. In other words,

this defines a word up to a common shift of all its sequence, which is sufficient

and more convinient, for the issues addressed in this paper.55

Definition 2.3. A factor in a word W is a finite sequence of consecutive letters

of W . Equivalently, a factor is the image by W of a finite interval of integers.

Definition 2.4. A balanced sequence is a sequence S such that, for every pair

I1 and I2 of intervals of integers of the same length, the difference between the

number of elements of the sequence in the two intervals is at most 1: that is, if

I1 = {i1, . . . , i1 + t} and I2 = {i2, . . . , i2 + t}, then

−1 ≤ |I1 ∩ S| − |I2 ∩ S| ≤ 1.

A word is balanced if all its associated sequences are balanced.

Balanced sequences and words have been extensively studied [1, 14, 15].

A structural theorem about balanced sequences from [10] implies that every60

balanced sequence S has a density. Moreover if the density δ(S) is irrational,

then the balanced sequence S is not periodic.

We now introduce an important class of balanced words which have been

named in several ways: congruence words, exact covering systems, constant gap

words, exact covering congruences [5].65

Definition 2.5. A congruence word is a word {Si}i∈{1,...,N} such that all se-

quences Si are congruence sequences, that is, sequences of the form Si =

{ain+ bi : n ∈ Z}, where ai, bi are arbitrary integers, ai 6= 0.

4



Congruence sequences and words can be characterized in a way that shows

that they are balanced:70

Proposition 2.6. [1] A sequence S ⊆ Z is a congruence sequence if and only if

for every pair of intervals I1 and I2 of almost equal length (i.e. ||I1|−|I2|| ≤ 1),

the balance condition holds (i.e. ||I1 ∩ S| − |I2 ∩ S|| ≤ 1).

Of course this proposition can be used to characterize congruence words, by

requiring the above condition for each of its letters.75

Graham [5] observed that congruence words can be used to build balanced

words from balanced words, as follows.

Definition 2.7. Let W be a word on letters {1, ..., N}, let A be a word on letters

{N +1, ...,M}, and let j ∈ {1, ..., N}. Consider the word WA,j on M −1 letters

obtained by replacing in W the k-th occurrence of letter j by the k-th letter of80

the word A, for all k ∈ Z (we set the convention that the 0-th occurrence of letter

j in W is the one with smallest non-negative position). If A is a congruence

word, the word WA,j is a congruence substitution of the word W .

Definition 2.8. V is a congruence expansion of W if there is a finite sequence

of words W = W1, . . . ,Wk = V such that for all i in {1, . . . k − 1}, the word85

Wi+1 is a congruence substitution of Wi.

Proposition 2.9. [5] Any congruence expansion of a balanced word is also a

balanced word.

Example 2.10. The word W = (abacaba)∗ is balanced and A = (de)∗ is a

congruence word. Then, WA,c = (abadabaabaeaba)∗ is a balanced word obtained90

by substituting occurrences of the letter c by d and by e, alternatively.

Extending a theorem by Graham [5] for irrational densities, Hubert [7] estab-

lished an important property of non-periodic balanced words (see also Altman

et al. [1]): Proposition 2.9 provides a construction for all non-periodic balanced

words.95
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Theorem 2.11. [7] If W is a non-periodic balanced word, then W is a congru-

ence expansion of a balanced word on two letters.

However, not all balanced words are congruence expansions of balanced

words on 2 letters. The most famous among such words are the following [1, 14]:

Definition 2.12. The Fraenkel word on N letters is the periodic balanced word100

FN recursively defined by F1 = 1, FN = FN−1NFN−1 if N ≥ 2 and FN =

(FN )∗ for all N .

For example F3 = 1213121. The density vector of FN is φN , with φNi = 2N−i

2N−1

for i = 1, . . . , N .

Conjecture 2.13 (Fraenkel’s conjecture). For all N ≥ 3, if W is a bal-105

anced word on N letters such that all components of its density vector are pair-

wise distinct, then its density vector is φN .

Conjecture 2.13 has been proved for N ≤ 7 (see Altman et al. [1], Barát and

Varjú [2], Tijdeman [13]), but it remains open for larger values of N .

We end our literature review with the concept of projection of a word on110

a subset of its letters, since we will show later that removing a letter in a

congruence word generates a balanced word.

Definition 2.14. Given a word W = {Si}i∈{1,...,N} on N letters and X ⊆

{1, ..., N}, the projection W−X of W on {1, ..., N} \X is defined by reading W ,

skipping letters in X.115

To refer to a position in the projected word (as it is undefined with the above

definition), we will refer to the associated position in the original word.

It is known for instance that if W is balanced and letter a has density at

least 1/2, then W−a is still a balanced word [1]. Moreover, if W is balanced and

letter a has density at least 2/3, then W−a is a congruence word [12].120

The following generalization of balancedness was proposed and studied by [11].
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Definition 2.15. For a sequence S ⊆ Z, an interval X = {a, ..., b} is a S-chain

if a−1 ∈ S and b+1 ∈ S. For a word W and a letter s, a factor X is a s-chain

if X is directly preceeded and directly followed by an s.

Definition 2.16. For a non-negative integer m, a sequence S ⊆ Z is m-balanced,125

if for every S-chain X and every interval X ′ such that |X ′| = |X|+m+ 1, we

have |X ′ ∩ S| ≥ |X ∩ S|+ 1.

0-balanced sequences are exactly congruence sequences (or contain one ele-

ment). 1-balanced sequences are exactly balanced sequences.

3. Fraenkel conjecture is not sufficient to reduce balanced words to130

congruence words

We should note that the converse of Proposition 2.9 is not valid in general:

if a congruence expansion of a word W is balanced, it does not mean that W

itself is balanced, as in the following example.

Example 3.1. The word W = (dcdedcdedcd)∗ is not balanced. If we use the135

congruence word (ab)∗ to expand W on the letter e, we obtain the balanced word

WA,e = (dcdadcdbdcd)∗ on four letters.

Remark 3.2. Tijdeman [15] asks what are the balanced words on more than

two letters. He goes on to observe that, for such words:

“Obviously each letter has again a density. If the densities of two letters are140

equal, then they can first be identified as one letter with double density, and then

the latter letter can be replaced alternately by the first and second letter. It is

therefore a crucial question to determine the balanced words the letters of which

have distinct densities, so-called Fraenkel words.”

This comment seems to suggest that, by identifying letters of equal density145

in a balanced word, one obtains again a balanced word. However, this is in con-

tradiction with Example 3.1. Indeed, for this example, the density of WA,e is
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(
6
11 ,

3
11 ,

1
11 ,

1
11

)
, with the last two densities (of a and b) being equal. By identi-

fying the letters a and b, however, one obtains the density (of W )
(

6
11 ,

3
11 ,

2
11

)
,

and there is no balanced word with these densities.150

As we will see in Section 4, Example 3.1 does indeed arise from a congruence

word by deleting one letter (of density 1/12). In Section 5 however, we exhibit

balanceable density vectors for which no construction seems to be known.

4. Main new statements

Building upon Theorem 2.11, we concentrate in the sequel on the case of155

periodic words and their (necessarily rational) densities. We tried and list all

balanced words on N = 4, 5 or 6 letters using a computer. To this aim, we

had to restrict our attention to words with a relatively small period D. Our

experiments led us to the following conjecture:

Conjecture 4.1. If a word W on N letters is balanced, then either160

(1) W is a congruence expansion of a balanced word on two letters, or

(2) W is D-periodic for some D ≤ 2N − 1.

Note that the set of words that satisfy condition (2) is finite for each fixed N .

In the next section, we refine Conjecture 4.1 for N ≤ 6, by listing all balanceable

density vectors that do not come from congruence expansions of other balanced165

words. A careful study of these vectors led us to observe that several such density

vectors look very much like density vectors of congruence words. Indeed, they

arise just by deleting a letter of lowest density in a congruence word. These

examples motivate the following observation:

Theorem 4.2. If {Sa}a∈{1,...,N} is a congruence word, then the projected word170

obtained by deleting any of its letter a ∈ {1, ..., N} is balanced.

To prove this Theorem, we first claim it in the most general form allowed

by our proof.
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Lemma 4.3. Let m ∈ Z+ and S, T be two disjoint sequences, such that S is175

m-balanced and T is (m+ 3)-balanced. Let R be the sequence Z \ (S ∪ T ), and

W be the word formed with the three sequences R,S, T . Then, in the word W−T

(that is W projected on R and S), the sequence S is (m+ 1)-balanced.

A weaker version of Lemma 4.3 already appears in [11] (as Theorem 4.2: “If180

we remove a sequence in a m-balanced word W and if W is also billiard, then

we obtain a m + 1-balanced word”; most interestingly, Lemma 4.3 claims that

the billiard assumption can be relaxed).

Let us deduce Theorem 4.2 from Lemma 4.3. In a congruence word, all

sequences are disjoint and 0-balanced. Hence, removing any sequence in a con-185

gruence word leaves the other sequences 1-balanced.

Proof. of Lemma 4.3. Let S̄ be the sequence of integers corresponding to S

in W−T . Assume that S̄ is not (m + 1)-balanced in W−T . Denote by s and t

the letters corresponding to sequences S and T .

Since S̄ is not (m + 1)-balanced, there exists a s-chain X̄ in W−T and a190

factor X̄ ′ such that |X̄ ′| = |X̄|+m+ 2 and |X̄ ′ ∩ S̄| ≤ |X̄ ∩ S̄|.

There exists a s-chain X̄ ′′ ⊇ X̄ ′ of W−T such that |X̄ ′′| ≥ |X̄|+m+ 2 and

|X̄ ′′ ∩ S̄| = |X̄ ∩ S̄|.

X̄ (resp. X̄ ′′) is the projection of a s-chain X (resp. X ′′) of W . Both

are uniquely defined by the fact that they are s-chain in W . We have |X̄ ′′| ≥195

|X̄| + m + 2 and |X̄ ′′ ∩ S̄| = |X̄ ∩ S̄| and |X̄| = |X̄ ∩ S̄| + |X̄ ∩ R̄| and |X̄ ′′| =

|X̄ ′′ ∩ S̄|+ |X̄ ′′ ∩ R̄|. Hence |X ′′ ∩R| − |X ∩R| ≥ m+ 2.

Also we know that X is a s-chain and X ′′ verifies |X ′′∩S| = |X∩S|. Since S

is m-balanced, it implies that |X ′′| ≤ |X|+m (since otherwise, one would have

|X ′′ ∩S| ≥ |X ∩S|+ 1). We have |X| = |X ∩S|+ |X ∩R|+ |X ∩T | and |X ′′| =200

|X ′′∩S|+|X ′′∩R|+|X ′′∩T | and |X∩S| = |X ′′∩S| and |X ′′∩R|−|X∩R| ≥ m+2.

Then, |X ′′| ≤ |X|+m implies that |X ′′ ∩ T |+m+ 2 ≤ |X ∩ T |+m and hence

|X ∩ T | − |X ′′ ∩ T | ≥ 2.

So there exists a t-chain Y ⊆ X such that |Y ∩ T | = |X ′′ ∩ T |.
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We also have that |Y ∩ S| ≤ |X ′′ ∩ S| and |Y ∩R|+ (m+ 2) ≤ |X ′′ ∩R|.205

Finally, adding up the counts of the three sequences to compare their length,

the t-chain Y and the factor sX ′′s serve as a certificate for non (m + 3)-

balancedness of the sequence T : Y is a t-chain and |Y | + m + 4 ≤ |sX ′′s|

and |sX ′′s ∩ T | = |Y ∩ T |. �

210

5. Small values of N

For simplicity, we call density vector (or density, for short) any vector δ ∈ QN

such that
∑N
i=1 δi = 1, and we assume that density vectors are defined up to a

permutation of their components.

Definition 5.1. A density vector δ = (δ1, . . . , δN ) ∈ QN is balanceable if there215

exists a balanced word W on N letters such that δ(W ) = δ. For a balanceable

density δ, the period of δ, denoted D(δ), is the smallest period of a balanced

word with density δ.

For a density vector with pairwise distinct components, Conjecture 2.13

implies Conjecture 4.1. If the components take at most two distinct values, the220

density vector is of the form (α/k1, ..., α/k1, (1−α)/k2, ..., (1−α)/k2) for some

α ∈ (0, 1) and two integers k1, k2. Hence the vector is balanceable and validates

case (1) in Conjecture 4.1.

5.1. The case N ≤ 3

The following results are well-known and can be found for instance in Altman225

et al. [1] or Tijdeman [13].

Proposition 5.2. For N = 2 letters, the balanceable density vectors are exactly

the vectors of the form: (α, 1− α), for all 0 < α < 1.

Proposition 5.3. For N = 3 letters, the balanceable density vectors are exactly

the vectors of the form: (α/2, α/2, 1−α), for all 0 < α < 1. The only balanceable230

vector not in this infinite list is φ3 = (4/7, 2/7, 1/7).
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These results immediately imply that Conjecture 4.1 holds when N ≤ 3.

5.2. The case N = 4

Altman et al. [1] establish several results on balanceable vectors of four

densities, including a proof of Fraenkel’s conjecture. The Appendix of [1] also235

provides a list of balanceable vectors for N = 4. This list is actually complete:

Theorem 5.4. For N = 4 letters, the balanceable density vectors are exactly

the vectors in the following classes:

1) All vectors of the form

(
α

3
,
α

3
,
α

3
, 1− α), (

α

2
,
α

4
,
α

4
, 1− α), (

α

2
,
α

2
,

1− α
2

,
1− α

2
),

for all 0 < α < 1.

2) Five balanceable vectors which are not in the previous infinite classes, namely:(
6
11 ,

3
11 ,

1
11 ,

1
11

) (
6
11 ,

2
11 ,

2
11 ,

1
11

) (
4
11 ,

4
11 ,

2
11 ,

1
11

) (
8
14 ,

4
14 ,

1
14 ,

1
14

) (
8
15 ,

4
15 ,

2
15 ,

1
15

)
.

The proof of Theorem 5.4 is provided in Appendix A. The first three infinite240

classes in Theorem 5.4 satisfy condition (1) of Conjecture 4.1: they can be

obtained from a two-letter word on {a, b} with density (α, 1−α), by expanding

either the first letter a using one of the congruence words cde or cdce, or each

of the two letters a and b using the congruence words cd and ef , respectively.

Note also that
(

8
14 ,

4
14 ,

1
14 ,

1
14

)
arises from a congruence expansion of the Fraenkel245

word with density
(
4
7 ,

2
7 ,

1
7

)
. Hence, we have the following statement:

Corollary 5.5. For N = 4 letters, the balanceable density vectors which are

not density vectors of a congruence expansion of some balanced word on N ≤ 3

letters, are:(
6
11 ,

3
11 ,

1
11 ,

1
11

) (
6
11 ,

2
11 ,

2
11 ,

1
11

) (
4
11 ,

4
11 ,

2
11 ,

1
11

) (
8
15 ,

4
15 ,

2
15 ,

1
15

)
250

All of them can be constructed from Theorem 4.2 (increasing both the number

of letters and the period by 1 yields the density vector of a congruence word, e.g.

(6/12, 3/12, 1/12, 1/12, 1/12) in the first case).

11



5.3. The case N = 5255

For N = 5, Fraenkel’s conjecture has been proved by Tijdeman [13]. We

have verified by computer the following conjecture for all vectors with a period

D ≤ 130.

Conjecture 5.6. For N = 5, the balanceable vectors which are not density

vectors of a congruence expansion of some balanced word on N ≤ 4 letters are:260 (
8
13 ,

2
13 ,

1
13 ,

1
13 ,

1
13

) (
6
17 ,

6
17 ,

2
17 ,

2
17 ,

1
17

) (
12
23 ,

6
23 ,

3
23 ,

1
23 ,

1
23

)
(

6
13 ,

3
13 ,

2
13 ,

1
13 ,

1
13

) (
9
17 ,

3
17 ,

3
17 ,

1
17 ,

1
17

) (
12
23 ,

6
23 ,

2
23 ,

2
23 ,

1
23

)
(

4
13 ,

3
13 ,

2
13 ,

2
13 ,

2
13

) (
6
17 ,

6
17 ,

3
17 ,

1
17 ,

1
17

) (
12
23 ,

4
23 ,

4
23 ,

2
23 ,

1
23

)
(

8
23 ,

8
23 ,

4
23 ,

2
23 ,

1
23

) (
16
31 ,

8
31 ,

4
31 ,

2
31 ,

1
31

)
Those we cannot construct from Theorem 4.2 are boxed.

5.4. The case N = 6

The case N = 6 is similar to the previous ones. The following conjecture

has been tested by computer for all density vectors with a period D ≤ 80.265

Conjecture 5.7. For N = 6, the balanceable vectors which are not density

vectors of a congruence expansion of some balanced word on N ≤ 5 letters are:
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(
5
13 ,

3
13 ,

2
13 ,

1
13 ,

1
13 ,

1
13

) (
6
19 ,

4
19 ,

4
19 ,

2
19 ,

2
19 ,

1
19

) (
12
35 ,

12
35 ,

6
35 ,

2
35 ,

2
35 ,

1
35

)
(

9
16 ,

3
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16

) (
10
19 ,

5
19 ,

1
19 ,

1
19 ,

1
19 ,

1
19

) (
12
35 ,

12
35 ,

4
35 ,

4
35 ,

2
35 ,

1
35

)
(
10
17 ,

2
17 ,

2
17 ,

1
17 ,

1
17 ,

1
17

) (
10
19 ,

2
19 ,

2
19 ,

2
19 ,

2
19 ,

1
19

) (
24
47 ,

12
47 ,

6
47 ,

3
47 ,

1
47 ,

1
47

)
(

9
17 ,

3
17 ,

2
17 ,

1
17 ,

1
17 ,

1
17

) (
4
19 ,

4
19 ,

4
19 ,

4
19 ,

2
19 ,

1
19

) (
24
47 ,

12
47 ,

6
47 ,

2
47 ,

2
47 ,

1
47

)
(

8
17 ,

3
17 ,

2
17 ,

2
17 ,

1
17 ,

1
17

) (
8
21 ,

8
21 ,

2
21 ,

1
21 ,

1
21 ,

1
21

) (
24
47 ,

12
47 ,

4
47 ,

4
47 ,

2
47 ,

1
47

)
(

6
17 ,

4
17 ,

3
17 ,

2
17 ,

1
17 ,

1
17

) (
12
25 ,

6
25 ,

3
25 ,

2
25 ,

1
25 ,

1
25

) (
24
47 ,

8
47 ,

8
47 ,

4
47 ,

2
47 ,

1
47

)
(

6
17 ,

4
17 ,

2
17 ,

2
17 ,

2
17 ,

1
17

) (
9
26 ,

9
26 ,

3
26 ,

3
26 ,

1
26 ,

1
26

) (
16
47 ,

16
47 ,

8
47 ,

4
47 ,

2
47 ,

1
47

)
(

4
17 ,

4
17 ,

3
17 ,

2
17 ,

2
17 ,

2
17

) (
12
35 ,

12
35 ,

6
35 ,

3
35 ,

1
35 ,

1
35

) (
32
63 ,

16
63 ,

8
63 ,

4
63 ,

2
63 ,

1
63

)
(
10
19 ,

3
19 ,

2
19 ,

2
19 ,

1
19 ,

1
19

) (
18
35 ,

9
35 ,

3
35 ,

3
35 ,

1
35 ,

1
35

)
(

6
19 ,

6
19 ,

3
19 ,

2
19 ,

1
19 ,

1
19

) (
18
35 ,

6
35 ,

6
35 ,

3
35 ,

1
35 ,

1
35

)
(

9
19 ,

3
19 ,

3
19 ,

2
19 ,

1
19 ,

1
19

) (
18
35 ,

6
35 ,

6
35 ,

2
35 ,

2
35 ,

1
35

)
Those we cannot construct from Theorem 4.2 are boxed.

6. Conclusion270

Most balanced words seem to arise from balanced words on two letters by

congruence expansion. Those which don’t come from a word on two letters seem

to have a period D satisfying D ≤ 2N − 1. Among them, several come from

deleting a letter in a congruence word. However there remain balanced words

on 5 and 6 letters for which no particular structure seems to be known.275

In the last 2 decades, attention on balanced words focused on Fraenkel’s

conjecture, providing proofs for up to 7 letters. We argue however, that even

proving this conjecture might not be sufficient to understand balanced words,

and that new constructions are needed to obtain a satisfying structural descrip-

tion of balanced words.280
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A. Proof of Theorem 5.2325

If a balanced word on 4 letters is not periodic, it is a congruence expansion

of a word on 2 letters (see Theorem 2.11) and hence, it is of the form(α
3
,
α

3
,
α

3
, 1− α

)
,
(α

2
,
α

4
,
α

4
, 1− α

)
,

(
α

2
,
α

2
,

1− α
2

,
1− α

2

)
.

Notice that the density vector of a (periodic balanced) word on 4 letters with

exactly 2 distinct values is of the form
(
α
2 ,

α
2 ,

1−α
2 , 1−α2

)
or
(
1− α, α3 ,

α
3 ,

α
3

)
. If

a balanced word on 4 letters has a density vector with 4 distinct values then,

by [1], this vector is
(

8
15 ,

4
15 ,

2
15 ,

1
15

)
.
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We therefore consider the remaining case, i.e. a periodic balanced word W330

on 4 letters with exactly 3 distinct densities δa ≥ δb ≥ δc ≥ δd. One has δa > δc

and δb > δd.

The sketch of the proof of Theorem 5.2 follows from the claims hereunder:

• If W contains aaa, then its density vector is of the form
(
1− α, α2 ,

α
4 ,

α
4

)
(Claim 1)335

• if W does not contain aaa,

– If δa = δb then the densities are ( 4
11 ,

4
11 ,

2
11 ,

1
11 ) (Claim 2)

– If δa > δb, then

∗ W cannot contain bab as a factor (Claim 3)

∗ If W contains baab then the densities are ( 8
14 ,

4
14 ,

1
14 ,

1
14 )340

or ( 6
11 ,

3
11 ,

1
11 ,

1
11 ) (Claim 4)

∗ δa < 2δc is impossible (Claim 5)

∗ If δa = 2δc then the densities are (α2 , 1− α,
α
4 ,

α
4 )

or (α2 ,
α
4 ,

α
4 , 1− α) (Claim 6)

∗ We then consider that δa > 2δc (Claim 7)345

· δb > 2δc is impossible

· If δb = 2δc then the densities are (1− α, α2 ,
α
4 ,

α
4 )

· If δb < 2δc then the densities are ( 6
11 ,

2
11 ,

2
11 ,

1
11 )

Before proving the claims, we state some preliminary general lemmas on

balanced words.350

Lemma A.1. Let s and t be two integers. If a balanced sequence S has density

δS > t/s then there exists an interval of s integers with at least t + 1 elements

from S.

Proof. Suppose that any interval of s integers contains at most t elements

from S. By partitionning the integers into a sequence of intervals of size s, we355
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see that the density of S is at most t/s. �

Moreover, the converse is true if S is periodic:

Lemma A.2. Let s and t be two integers. Let S be a periodic balanced sequence.

S has density δS > t/s if and only if there exists an interval of s integers with360

at least t+ 1 elements from S.

Proof. Suppose the last condition holds. By balancedness, each interval of

size s has at least t elements. Partition the integers into a sequence of intervals

of size s. Let D be a period of S. In every set of D consecutive intervals of size

s, there is at least one interval with at least t + 1 elements. Hence the density365

is at least t/s+ 1/Ds. �

Lemma A.3. Let W be a periodic balanced word, and x and y be two letters

of W and k be an integer. Then δx > kδy if and only if there exists a factor

containing k + 1 x’s and no y.370

Proof. Assume that W contains a factor I with k+ 1 x’s and no y. Partition

W into factors of size |I|. By balancedness, in each such factor, there are at

least k x’s and at most one y. By periodicity, a factor with k + 1 x’s and no y

appears sufficiently often so that δx >
k
|I| and δy <

1
|I| . Hence, δx > kδy.

Assume that between two consecutive y, there are at most k x’s. Partition375

W in factors starting with a y and with no other y inside. Each factor contains

at most k x’s. Approximating the densities (which exist either by periodicity

or by balancedness) on any number of consecutive such factors, one obtains

δx ≤ kδy. �

380

Lemma A.4. Let W be a periodic balanced word, and x and y be two letters

of W and k be an integer. Then δx < kδy if and only if there exists a factor

starting and ending with a y and no other y and strictly less than k x’s.
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Proof. Assume there exists a factor I starting and ending with a y and

no other y and strictly less than k x’s. Partition W into factors of size |I|.385

By balancedness, in each such factor, there are at most k x’s and at least one

y. By periodicity, a factor with strictly less than k x’s between 2 y’s appears

sufficiently often so that δx <
k
|I| and δy >

1
|I| . Hence, δx < kδy.

Assume that between two consecutive y, there are at least k x’s. Partition

W in factors starting with a y and with no other y inside. Each factor contains390

at least k x’s. We thus obtain that δx ≥ kδy. �

In particular, the case k = 1 means that there is a factor spanned by 2 y

and containing no x.

Notice that Lemmas A.2 to A.4 also apply to Beatty sequences but they395

cannot be generalized to non balanced sequences. The following lemma is an

immediate consequence of the last two lemmas.

Lemma A.5. Let W be a periodic balanced word, and x and y be two letters of

W with densities δx = δy. Then, letters x and y alternate in W .

Let X be a factor. The notation X means that we do not make any assump-400

tion on the order of the letters of X. For instance abcb represents either abcb or

acbb.

Claim 1. A periodic balanced word on 4 letters, with exactly 3 distinct densities

and containing aaa as a factor, has densities of the form (1− α, α2 ,
α
4 ,

α
4 ).

Proof. If a periodic balanced word W on 4 letters contains the factor aaa,405

then by Lemma A.2, δa ≥ 2/3. In this case, Simpson’s Theorem [12] indi-

cates that the word W induced by removing a is a congruence word on 3 let-

ters. The unique possible density vectors of a congruence word on 3 letters are

( 1
3 ,

1
3 ,

1
3 ) and ( 1

2 ,
1
4 ,

1
4 ), see [1]. Therefore, W has a density vector of the form

(1−α, α3 ,
α
3 ,

α
3 ) or (1−α, α2 ,

α
4 ,

α
4 ). Assuming 3 distinct densities, only remains410

the latter. �
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We therefore consider in the sequel that W contains no aaa.

Claim 2. A balanced word on 4 letters with δa = δb > δc > δd and no aaa as a

factor has densities of the form ( 4
11 ,

4
11 ,

2
11 ,

1
11 ).415

Proof. Condition δa = δb implies that between two a, there is a b (Lemma A.5)

and conversely. Therefore, aa is not a factor of W . In this proof, the factors

are given up to a renaming of a and b.

By Lemma A.2, W contains aba if and only if 1
3 < δa = δb which is in turn

equivalent to W contains a factor of 3 letters with 2 b which alternate with an420

a. Therefore, W contains aba if and only if it contains bab.

If W contains no aba, then it has no bab. Since δc > δd, W contains cabc and

since δa > δc, it also contains abda (Lemma A.4 with k = 1). This contradicts

balancedness for c on 4 letters.

Therefore W contains aba (and hence bab). It implies that each factor of 3425

letters contains at least an a and a b.

Since δc > δd, the word W contains a factor of the form c(ab)kalc (or

c(ba)kblc, but with the renaming of a and b we won’t consider this second

case) for some value k ≥ 1 and l = 0 or 1. It implies that every factor of 2k− 1

letters contains at least (k − 1) times a and (k − 1) times b and every factor of430

2k+ l+2 letters contains at least a c. This implies that around each d the factor

is (ab)k−1d(ab)k−1 with 4k− 3 letters without any c. Hence 4k− 3 < 2k+ l+ 2

with l ≤ 1 which implies k ≤ 2.

Word W contains abdab (it contains a d and in 3 consecutive letters there

is at least an a and a b). Therefore, there are at least 4 letters between two435

consecutive c which implies k = 2.

If l = 1, then W contains cababac and every 5 consecutive letters contain at

least 2 a and also 2 b by Lemma A.2 together with δa = δb. Therefore, letter d

is contained in abdabab which contradicts the balancedness of c on 7 letters.

Therefore, every factor spanned by 2 consecutive c not containing a d is440

cababc. It implies that around a d, one has cabdabc (3 letters have at least 1 a

and 1 b and 6 letters have at least one c). Let C = cabab and D = cabdab and
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W can be viewed as a word on C and D where one can exchange a and b in C

or D.

Extending C with the conditions on a and b leads to abcabab. Therefore, 7445

letters contain at most one d and hence DD contradicts balancedness of d on 7

letters.

Extending D leads to bcabdabca and hence 8 letters contain at most 3 a and

3 b. But CC = cababcabab contradicts the balancedness of a and b on 8 letters.

Therefore, C andD alternate inW and hence the density vector is ( 4
11 ,

4
11 ,

2
11 ,

1
11 ).450

�

We assume in the sequel that δa > δb.

Claim 3. A balanced word W on 4 letters with δa > δb and exactly 3 distinct

densities cannot contain bab as a factor.455

Proof. Suppose that W contains bab. Since δa > δb, there exists a factor

with two a and no b. Consider a longest factor X with this property. If |X| = 2

then X = aa, and every 2 letters contains an a. Hence around c, one has aca

which contradicts the maximality of X. Hence |X| ≥ 3 which, together with

bab contradicts balancedness of b on 3 letters. �460

We assume in the sequel that W does not contain bab as a factor.

Claim 4. A balanced word W on 4 letters with δa > δb and exactly 3 distinct

densities and containing baab as a factor has density vector either ( 8
14 ,

4
14 ,

1
14 ,

1
14 )

or ( 6
11 ,

3
11 ,

1
11 ,

1
11 ).465

Proof. The word W contains baab implies δb > δc by Lemma A.3 with k = 1.

Hence we have δc = δd.

Because of baab, between 2 b’s, there are at most 3 letters and every two

consecutive letters contain an a. Let A = baa and C = baca and D = bada

Word W can be viewed as a word on A, C and D each of them appearing at470
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least once. AA = baabaa is impossible since it contradicts the balancedness of

a on 5 letters because of the existence of bacab.

Since δc = δd, C and D alternate by Lemma A.5 and hence W contains

CAD or DAC around an A. In both cases, W contains a factors of 9 letters

with no d and a factor of 9 letters with no c. Therefore W can contain neither475

DCD nor CDC (9 letters with 2 d and 9 letters with 2 c which contradicts the

balancedness of c and d).

ACA (and ADA) is incompatible with CD and DC. Indeed, ACA =

baabacabaa contains 9 letters with 6 a. But both CD and DC (necessarily

followed by a b) imply 9 letters with 4 a. This contradicts balancedness for a480

on 9 letters.

Assume that W contains CAD. If CAD is followed by A, then W =

(CADA)∗ with density vector ( 8
14 ,

4
14 ,

1
14 ,

1
14 ). If CAD is followed by C then

W = (DCA)∗ with density vector ( 6
11 ,

3
11 ,

1
11 ,

1
11 ).

If W contains no CAD, then it contains DAC and the same reasonning485

applies. �

We assume in the sequel that W does not contain baab as a factor.

Claim 5. There does not exist a balanced word W on 4 letters, with exactly 3

distinct densities, such that δa > δb and δa < 2δc.490

Proof.

In W , let X be a factor spanned by 2 consecutive c and containing exactly

one a. X exists because of the condition δa < 2δc (Lemma A.4 with k = 2).

Moreover, since δa > δc, there also exists a word with two a and no c. Because

of the conditions on the density, X contains one a, zero or one d and one or two495

b. Since W does not contain bab (Claim 3), X 6= cbabc.

• Case 1. X = cabc

Then, between 2 consecutive c there are at most 3 letters. Moreover, since

δa > δc, there are 2 consecutive c with 2 a in between. Hence, every 3

letters contain at least an a.500
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A factor containing d must be of the form cdabc or cbadc (always an a and

a b and at most 3 letters between two c and every 3 letters contains an a).

Since δb ≥ δc, there are at most 3 letters between two b and hence the pre-

vious factors expand to bcdabc or cbadcb which contradicts balancedness

of a on 3 letters.505

• Case 2. X = cabbdc where abbd means that those letters can be in any

order. In this case, 4 letters contain at least one b.

Since δa > δb, there exists a factor with 2 a and no b. Because of the

previous condition, this factor is of length at most 3. It implies that W

contains aa or aca or ada. Hence, every 3 letters contain an a. This is in510

contradiction with X = cabbdc which is a 6 letters word with only one a.

• Case 3. X = cabdc and δb > δc. Hence, there are at most 4 letters between

two consecutive c. Since δb > δc, there exists 2 b between 2 consecutive

c. Moreover, between 2 b, there is at least one a and bab is forbidden.

Therefore, W contains cabbdc and Case 2 applies.515

• Case 4. cabdc and δb = δc.

Word W contains bacab (2 b with no d, no aa because of bc or dc, no bacb

because already done in Case 1).

Therefore, W contains bcadb or bdacb (only one a between two consecutive

b). Hence, between 2 a there are one or two letters.520

Extending bcadb leads to abcadba and then to dabcadbac: the first letter

is a d because aa is forbidden and there are at least 3 letters between two

consecutive b or c. The last letter is a c because there are at most 4 letters

between 2 c.

Therefore, we know that there are 4 or 5 letters between 2 d (bacab and525

dabcad) and 3 or 4 letters between 2 c and between 2 b.

We now prove that W cannot contain both badc and bc. Suppose W

contains a factor the form badcXbc or bcXbadc for some factor X. Since
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b and c alternate in X, there are the same number x of b and c in X. In

cXbc (resp. bcXb), there is x + 2 times the the letter c (resp. b) and in530

adcS (resp. Xbad) there are x times the letter b (resp. c) and both words

have the same length. This is in contradiction with δb = δc. The same

reasonning applies for proving that W cannot contain both dcab and cb.

Extending cabac leads to badcabacdab (at most 5 letters between two d,

every three letters an a, at most 4 letters between two b). But W contains535

cbadc or cdabc (there exists a factor beggining and ending with c and only

one a and every such factor contains at least 3 letters), hence W contains

cb or bc. But badcabacdab contains badc and cdab This is in contradiction

with the previous result.

�540

Claim 6. A balanced word W on 4 letters, with exactly 3 distinct densities,

such that δa > δb and δa = 2δc has densities of the form δ = (α2 , 1−α,
α
4 ,

α
4 ) or

δ = (α2 ,
α
4 ,

α
4 , 1− α).

Proof. With δa = 2δc and δa > δb, if δb = δc then, the density is of the form545

δ = (α2 ,
α
4 ,

α
4 , 1−α) and if δc = δd, then it is of the form δ = (α2 , 1−α,

α
4 ,

α
4 ). �

Claim 7. A balanced word W on 4 letters, with exactly 3 distinct densities, such

that δa > δb and δa > 2δc satisfies δ = (1− α, α2 ,
α
4 ,

α
4 ) or δ = ( 6

11 ,
2
11 ,

2
11 ,

1
11 ).

Proof. The condition δa > 2δc implies that there exists a factor with at least550

3 a between 2 c (Lemma A.3 with k = 2). Let X be such a factor. Then, X is

of the form X = cX ′c where X ′ contains no c and contains at least 3 a.

If δb > 2δc, then there exists 3 b between two consecutive c. Hence W

contains bakb with k ≥ 1 which case has already been eliminated.

If δb = 2δc, then we are done: the density is of the form (1− α, α2 ,
α
4 ,

α
4 ).555

Hence, we consider the remaining case δb < 2δc. It implies that there exists

a factor with only one b between two consecutive c (Lemma A.4 with k = 2).
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• Case 1. X = caabaac and δb = δc.

Every 5 letters contain at least 3 a and there are at most 6 letters between

2 c. Therefore, every d is included in the factor aacabaadacaa up to a560

symmetry. But δb = δc implies that every 7 letters contain at least a b

which is not the case in the previous factor.

• Case 2. X = cabaac and δb = δc.

Then the only other possibility between two c up to a symmetry is cabadac

(at most 5 letters between 2 c and every 4 letters contain at least 2 a).565

Denote A = caaba and A = cabaa and B = cabada and B = cadaba. W

can be viewed as a word on letters A, A, B and B.

The factor AA = c[aabacaa]bac contradicts balancedness for a on 7 letters

with B or B followed by a c by definition (the same for A A).

BB = caba[dacabad]ac or BB or B B contradict balancedness for d on 7570

letters with A or A followed by ca by definition.

AA = caa[bacab]aa or BB contradict balancedness for b on 5 letters with

cab[adaca].

AA = cabaacaaba has already been considered in Case 1 (exchanging the

role of b and c since δb = δc).575

Therefore, A or A alternate with B or B which implies densities verifying

( 6
11 ,

2
11 ,

2
11 ,

1
11 ).

• Case 3. X = cabadac and δb = δc.

Then W contains caabac or caabaac (balancedness of c when there is no

d between two consecutive c). This has already been considered in the580

previous cases.

If X contains 4 a, the reasoning is similar. It cannot contain more a’s

because of caabac or caabaac.

• Case 4. W contains aa and δc = δd.
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There exists 2 consecutive c with only one b in between (δc > 2δb and there585

also exists 2 consecutive c with 2 b in between (δc < δb). Letters c and

d alternate. Therefore W contains A = ca∗baxdbac and B = calbaydca

with l ≤ 2. in A there are at least 5 + x letters between two c. Hence,

4 + x ≤ l+ 2 + y for balancedness of c. Since l ≤ 2, one obtains y ≥ x. In

B, there are y + 3 ≥ x + 3 letters without a b and in A, there are 3 + x590

letters with two b contradicting balancedness on b.

• Case 5. W does not contain aa and δc = δd.

There exists 3 a between 2 consecutive c. Therefore W contains caaabdc

or caaabbdc and hence, every 3 letters contain at least an a.

There exists a factor with one b between 2 c. Therefore, if W contains595

caaabbdc then, it contains cabadac or cadabac (at least 5 letters between

2 c).

Therefore, there exists 4 consecutive letters with no b. But there exists

2 b between consecutive c therefore, W contains cbadabc or cabadabc or

cbadabac.600

We now prove that W cannot contain both cabad and cad. Suppose W is

of the form cabadXcad for some word X. Since c and d alternate, there

are the same number µ of c and d in X. In dXcad there are µ + 2 times

the letter d and in abadS, there are µ times letter c and both words have

the same length. This is in contradiction with δc = δd. Similarly, one can605

prove that W cannot contain both dabac and dac (exchange the roles of c

and d in the proof).

If W contains cbadabc, then it is extended to dacbadabcad. But W also

contains cabadac or cadabac. In the former case, it contains both cabad

and cad and in the latter case, it contains dabac and dac, which contradicts610

the previous paragraph.

If W contains cabadabc, then it is extended to cabadabcad which contains

both cabad and cad again leading to a contradiction. Similarly, cbadabac
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extends to dacbadabac which contains both dac and dabac.

�615
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