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Spectrally Augmented Hartley Transform Precoded
Asymmetrically Clipped Optical OFDM for VLC

Ali W. Azim, Yannis Le Guennec, and Ghislaine Maury

Abstract—In this letter, we propose layered discrete Hart-
ley transform (DHT)-spread asymmetrically clipped optical-
orthogonal frequency division multiplexing (LDHTS-ACO-
OFDM); which employs DHT for multiplexing/demultiplexing
and pulse-amplitude modulation (PAM) alphabets. LDHTS-ACO-
OFDM yields several concrete and significant improvements
over classical layered asymmetrically clipped O-OFDM (LACO-
OFDM), such as, low peak-to-average power ratio (PAPR), low
computational complexity, 3 dB improvement in bit error rate
(BER), and low optical power penalty considering multipath visi-
ble light communication (VLC) channel and bandwidth limitation
of light emitting diode (LED) in combination with its driver.
Besides, LDHTS-ACO-OFDM enhances the spectral efficiency
of conventional DHTS-ACO-OFDM, and ousts the degrading
impact on BER and optical power penalty because of higher
order PAM alphabets in dispersive channel.

Index Terms—Intensity modulation-direct detection, optical-
orthogonal frequency division multiplexing, peak-to-average
power ratio.

I. INTRODUCTION

V ISIBLE light communications (VLC) is preceived as
a complementary technology to overcome the looming

radio-frequency (RF) spectral crisis. Along with some com-
pelling advantages, such as, license free unlimited optical
bandwidth, high-security and no electromagnetic interference,
VLC is particularly appealing as it concurrently provides
lighting and communication.

For VLC, optical-orthogonal frequency division multiplex-
ing (O-OFDM) is an effective approach, as it offers high
data-rate, simple one-tap equalization in the frequency-domain
(FD), and an inherent resilience to combat inter-symbol-
interference (ISI) [1], [2]. In VLC, O-OFDM operates using
intensity modulation-direct detection (IM-DD), for which the
time-domain (TD) signal is constrained to be real-valued
and non-negative. Several tailored O-OFDM schemes sat-
isfying IM-DD constraints, such as, direct-current (DC)O-
OFDM [1], asymmetrically clipped (AC)O-OFDM [2] and
pulse-amplitude modulation-discrete multi-tone (PAM-DMT)
[3] etc. have been proposed. ACO-OFDM and PAM-DMT
are power efficient compared to DCO-OFDM for lower order
modulations alphabets, howbeit, have half the spectral effi-
ciency of DCO-OFDM. To increase the spectral efficiencies
of ACO-OFDM and PAM-DMT toward that of DCO-OFDM,
the so-called hybrid techniques, such as, layered ACO-OFDM
(LACO-OFDM) [4], [5] and augmented spectral efficiency
(ASE)-DMT [6], respectively, have been introduced. These
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schemes maintain power advantage over DCO-OFDM without
relinquishing half of the spectral efficiency.

One practical limitation of O-OFDM schemes, including
both LACO-OFDM and ASE-DMT is high peak-to-average-
power ratio (PAPR), which exacerbates non-linear distortions
from the light emitting diode (LED) [7]. Besides, limited
resolution converters further circumscribe the performance [7].
Albeit, numerous approaches exist to counteract high PAPR
of ACO- and DCO-OFDM, but, their candid implementation
to hybrid approaches is cumbersome. Recently, Zhang et al.
[5] introduced a PAPR reduction approach for LACO-OFDM
based on tone injection, however, it is associated with a
substantial complexity overhead.

Wu et al. [8] have identified that Hermitian symmetry (HS)
prerequisite to attain real-valued TD signal contributes to an
increase of PAPR. Thus, it is analyzed that DHT-spread ACO-
OFDM (DHTS-ACO-OFDM) [9], which averts HS, features
low PAPR. Regardless, we shall establish that DHTS-ACO-
OFDM experiences an increased optical power penalty and
bit error rate (BER) degradation in a dispersive channel.

In this letter, we propose layered DHTS-ACO-OFDM
(LDHTS-ACO-OFDM) to augment the spectral efficiency
and oust the limitations of DHTS-ACO-OFDM. To the best
of our knowledge, a hybrid implementation for a precoded
approach has never been investigated. LDHTS-ACO-OFDM
superimposes layers of DHTS-ACO-OFDM, thus, virtually
occupying all the subcarriers for simultaneous transmission.
We demonstrate that LDHTS-ACO-OFDM manifests lower
PAPR, experiences less optical power penalty, is less complex,
and sustains a 3 dB BER gain over LACO-OFDM in a
dispersive channel; which includes a multipath VLC channel
and a bandwidth limited LED/LED driver combination.

II. LAYERED DHTS-ACO-OFDM

N -order inverse DHT (IDHT) and DHT for an arbi-
trary FD signal, R(k) ∈ R, and an arbitrary TD sig-
nal, r(n) ∈ R, respectively, is defined as r(n) =
IDHT [R(k)] = N−1/2

∑N−1
k=0 R(k)cas (2πkn/N), and

R(k) = DHT [r(n)] = N−1/2
∑N−1

n=0 r(n)cas (2πkn/N) ,
with {n, k} = 0, 1, · · · , N − 1, and cas(·) = cos(·) + sin(·).
The kernel for both IDHT and DHT is similar, so, conve-
niently, the same algorithm can perform both operations [9].

The transmitter of LDHTS-ACO-OFDM is illustrated in
Fig. 1. We consider N subcarriers and L layers. For lth layer,
the input bit stream is mapped onto N/2l PAM symbols, i.e.,
s(l)
(
n(l)
)
, n(l) = 0, 1, · · · , N/2l−1. Subsequently, via N/2l-

order DHT, the TD symbols, s(l)
(
n(l)
)
, are DHT precoded as

S(l)
(
k(l)
)
= DHT

[
s(l)
(
n(l)
)]
, k(l) = 0, 1, · · · , N/2l − 1.
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Fig. 1: Block diagram of LDHTS-ACO-OFDM transmitter.

These N/2l FD DHT precoded symbols, S(l)
(
k(l)
)
, are

assigned to N -length signal, X(l)(k), k = 0, 1, · · · , N − 1,
such that X(l)(k) = S(l)

(
k(l)
)
∀ k = 2l−1

(
2k(l) + 1

)
,

while all the other subcarriers of the corresponding layer are
set to zero. After N -order IDHT, an anti-symmetric signal,
x(l)(n) = IDHT

[
X(l)(k)

]
, n = 0, 1, · · · , N − 1 is obtained,

where x(l)
(
n(l)
)

= −x(l)
(
n(l) +N/2l

)
, and for l > 1,

x(l)(n) = x(l)mod
(
n,N/2l−1

)
, with mod(·, N) being the

modulo N operator. x(l)(n) is clipped at zero to yield

bx(l)(n)c =
{
x(l)(n), x(l)(n) ≥ 0

0, x(l)(n) < 0
= x

(l)
D (n) + x

(l)
C (n) (1)

for n = 0, 1, · · · , N − 1, without loss of useful infor-
mation. b·c represents the clipping operation. x(l)D (n) and
x
(l)
C (n) represents the lth layer data-carrying signal after

clipping and the clipping distortion, respectively. The indexes
k
(l)
D = 2l−1

(
2k(l) + 1

)
and k

(l)
C = 2lk(l) identifies lth layer

data-carrying subcarriers and the subcarriers affected by the
clipping distortion, respectively. Subsequently, bx(l)(n)c, l =
1, 2, · · · , L are combined as

x(n) =

L∑
l=1

bx(l)(n)c, n = 0, 1, · · · , N − 1, (2)

which is transmitted throught the LED. In what follows, we
consider perfect synchronization [7]. Since, the nonlinearity
of the LED can be mitigated using digital pre-distortion [10],
henceforth, we recognize a linear response of the LED.

The receiver of LDHTS-ACO-OFDM is depicted in Fig. 2.
At the receiver, the light intensity is photo-detected using a
photo-diode (PD). The intensity waveform is amplified using
a transimpedance amplifier (TIA), and fed to an analog-to-
digital converter (ADC) to yield y(n) = h(n) ⊗ x(n) +
w(n), n = 0, 1, · · · , N − 1, where h(n) are the channel
impulse response (CIR) coefficients, w(n) represents the ad-
ditive white Gaussian noise (AWGN) samples, and ⊗ is the
convolution operator. y(n) is fed to N -order DHT by which
FD received signal is obtained as Y (k) = DHT[y(n)] =
H(k)X(k) + W (k), k = 0, 1, · · · , N − 1, where H(k) is

y(n)
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Y (k)
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Clipping

Distortion
Removal

Ŷ (l)(k)

Subcarrier
Demapper
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−X̂l
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Fig. 2: Block diagram of LDHTS-ACO-OFDM receiver.

the channel frequency response for the kth subcarrier. After a
single-tap equalization, we get

Ŷ (k) = X(k) + Z(k) =

L∑
l=1

X̂
(l)
D +

L∑
l=1

X̂
(l)
C + Z(k), (3)

where Z(k) = W (k)/H(k). X̂(l)
D and X̂

(l)
C are the received

FD counterparts of x(l)D and x
(l)
C , respectively. The data on

different layers is detected on a layer-to-layer basis. For
layer 1, no clipping distortion falls on data-carrying subcar-
riers, i.e., X̂(1)

C = 0 thus, Ŷ (1)(k) = Ŷ (k), from which
the data-carrying subcarriers are obtained as S̃(1)

(
k(1)

)
=

Ŷ (1)
(
k
(1)
D

)
. Thereafter, DHT decoding is performed via N/2-

order IDHT, i.e., s̃(1)
(
n(1)

)
= IDHT[S̃(1)

(
k(1)

)
]. Finally, the

transmitted data on layer 1 can be detected as ŝ(1)
(
n(1)

)
=

arg minX∈S ‖2s̃(1)
(
n(1)

)
−X‖, n(1) = 0, 1, · · · , N/2 − 1,

where S denotes the constellation set of the modulation.
For layers l > 1, the clipping distortion affecting the data-

carrying subcarriers comes from (l − 1)th layer, so, we have
Ŷ (l)(k) = Ŷ (l−1)(k) − X̂

(l)
C . An estimate of the clipping

distortion on lth layer, X̂(l)
C is recreated using bx̂(l−1)(n)c

which is obtained utilizing ŝ(l−1)
(
n(l−1)

)
. The data-carrying

subcarriers for layers l > 1 are obtained as S̃(l)
(
k(l)
)

=

Ŷ (l)
(
k
(l)
D

)
which are DHT decoded using N/2l-order IDHT

to have s̃(l)
(
n(l)
)
= IDHT[S̃(l)

(
k(l)
)
]. Identical to layer 1,

the transmitted symbols on layer l > 1 can be detected as

ŝ(l)
(
n(l)
)
= arg min

X∈S

∥∥∥2s̃(l) (n(l))−X∥∥∥ , (4)

for n(l) = 0, 1, · · · , N/2l − 1.
Considering same modulation alphabets for all layers, we

adopt fair power allocation scheme, where the electrical power
appropriated to a layer correlates to the number of data-
carrying subcarriers. Thus, the average electrical power of
lth layer, P (l)

(elec), is half of (l − 1)th layer, P (l−1)
(elec) , yielding

P
(l)
(elec) = (1/2)P

(l−1)
(elec) , l = 2, 3, · · · , L, with P

(1)
(elec) =

(M2 − 1)/12, where M is the PAM alphabet size.
Unlike most O-OFDM approaches, in which atmost half of

the subcarriers are data-carrying due to HS, in LDHTS-ACO-
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OFDM, since, HS is no longer required, all the subcarriers
can carry data if sufficient number of layers are superimposed
(theoretically L =∞).

III. PERFORMANCE ANALYSIS AND DISCUSSION

Firstly, we study PAPR attributes manifested by various
hybrid approaches. Further on, BER performance, and optical
power penalty relative to On-Off Keying (OOK) in a dispersive
channel is evaluated. Lastly, we compute the complexity ex-
hibited by LDHTS-ACO-OFDM and LACO-OFDM. Spectral
efficiency, η in bits/s/Hz for LDHTS-ACO-OFDM, LACO-
OFDM, DHTS-ACO-OFDM and DCO-OFDM is expressed
as log2(M)[

∑L
l=1(N/2

l)/N ], log2(M̃)[
∑L

l=1(N/2
l+1)/N ],

log2(M)[(N/2)/N ] and log2(M̃)[(N/2−1)/N ], respectively,
where M̃ is quadrature-amplitude modulation (QAM) alphabet
size. Unless otherwise mentioned, the 3 dB optical cut-off
frequency of the LED with an optimized driver is set at
f3dB = 150 MHz [11], and all the results are averaged over
2000 runs with N = 1024. For BER and optical power penalty
analysis, we consider a dispersive channel, where the disper-
sions are characterized by multipath VLC propagation and
bandwidth limitation of LED in combination with its driver.
Thus, the overall CIR is given as h(n) = hLED(n)⊗hchan(n),
where hLED(n) denotes the impulse response of the LED, and
hchan(n) are the multipath VLC channel coefficients. hLED(n)
is modeled as a Gaussian low-pass filter having a transfer
function, HLED(f) = exp[−ln(2) (f/f3dB)2] [11]. Moreover,
hchan(n) is obtained using recursive ray tracing algorithm for
indoor VLC [12]. The transmitter and the receiver are perfectly
synchronized, such that, the channel is tapped from the time
of the arrival of line-of-sight (LOS) signal. A sampling time
of 1 ns and up to 4 diffused reflections are considered.

A. PAPR Performance

Complementary cumulative distribution function (CCDF)
curves for LDHTS-ACO-OFDM, LACO-OFDM, DHTS-
ACO-OFDM, DCO-OFDM, ASE-DMT, and enhanced
unipolar-OFDM (eU-OFDM) [13] for η = 1 bits/s/Hz are
depicted in Fig. 3. We use L = 5 for LDHTS-ACO-OFDM
and LACO-OFDM and 5 depths for ASE-DMT and eU-
OFDM. The CCDF curves indicate that LDHTS-ACO-OFDM
distinctly has the lowest PAPR, with a gain of almost 2.4
dB, 0.8 dB, 3.2 dB, 3.1 dB and 3.4 dB over LACO-OFDM,
DHTS-ACO-OFDM, DCO-OFDM, ASE-DMT and eU-
OFDM, respectively, at CCDF = 0.1. A similar progression
is expected for η > 1 bits/s/Hz. The reduced PAPR results in
power gain as higher modulation power can be attained after
the digital-to-analog converter (DAC). Besides, cost of the
converters can also be reduced.

B. Bit Error Rate Performance

The bandwidth (BW) of transmitted signal for both η =
{1, 2} bits/s/Hz is set at 200 MHz thus, culminating a notable
impact of bandwidth limitation of the LED/LED driver com-
bination. BER performance against electrical signal-to-noise
ratio (SNR) per bit, Eb(elec)

/N0 for η = 1 bits/s/Hz and η = 2

PAPRǫ(dB)

7 8 9 10 11 12 13 14

P
r
(P

A
P
R
>
P
A
P
R

ǫ
)

0

0.2

0.4

0.6

0.8

1
PAPR Analysis: η ≈ 1

LDHTS-ACO-OFDM

LACO-OFDM

DHTS-ACO-OFDM

DCO-OFDM

ASE-DMT

eU-OFDM

Fig. 3: CCDF curves for PAPR analysis of different modulation schemes.
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bits/s/Hz is displayed in Fig. 4(a) and Fig. 4(b), respectively.
We use L = 5 for LDHTS-ACO-OFDM and LACO-OFDM.
It may be noticed that the BER of DHTS-ACO-OFDM drasti-
cally degrades from η = 1 bits/s/Hz to η = 2 bits/s/Hz because
of the degrading impact of the dispersive channel on higher
order modulation alphabets; which are required for η = 2
bits/s/Hz. This issue is rectified in LDHTS-ACO-OFDM;
where lower order modulation alphabets can achieve higher
spectral efficiences because of the superimposed structure.
Moreover, the BER performance of LDHTS-ACO-OFDM is
superior compared to both LACO-OFDM and DCO-OFDM.
LDHTS-ACO-OFDM maintains a 3 dB gain over LACO-
OFDM, because of an averaging effect of the DHT decoder
which results in a same SNR for all subcarriers, whereas, for a
system without precoding like LACO-OFDM, the SNR varies
for each subcarrier [14].

C. Optical Power Penalty

For a given BER, Pb, optical power penalty is obtained
by normalizing the required optical power by the average
optical power needed for OOK, EOOK

b(opt)
/N0, in an AWGN

channel with no bandwidth limitation. EOOK
b(opt)

/N0 to achieve
Pb is obtained as EOOK

b(opt)
/N0 = erfc−2 (2Pb), where erfc(·)

is the complementary error function. Considering a dispersive
channel, Pb = 10−3, and η = 2 bits/s/Hz, the optical power
penalty is obtained by varying the ratio of data-rate to the 3
dB cut-off frequency, i.e., Rb/f3dB, as presented in Fig. 5.
It is recognized that LDHTS-ACO-OFDM suffers low optical
power penalty compared to LACO-OFDM for high data-rates
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due to precoding, whereas, for low data-rates, the optical
power penalty for both LDHTS-ACO-OFDM and LACO-
OFDM is essentially the same. Conventional DHTS-ACO-
OFDM incurs considerably high optical power penalty because
of the requirement of higher order modulation alphabets to
achieve η = 2 bits/s/Hz. Moreover, DCO-OFDM experiences
the largest optical power penalty because of the required bias.
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Fig. 5: Optical power penalty of different modulation schemes.

D. Complexity Analysis

The complexities of LACO-OFDM and LDHTS-ACO-
OFDM are evaluated by computing the total number of
required arithmetic operations at the transceiver. Discrete
Fourier transform (DFT) and inverse DFT (IDFT) is im-
plemented using fast Fourier transform (FFT) and in-
verse FFT (IFFT) algorithms, respectively. An N -order
FFT/IFFT approximately require 4N log2(N) arithmetic op-
erations [15], whereas, N -order DHT/IDHT nearly requires
2N log2(N) arithmetic operations [16]. Considering the
complexity incurred owing to IFFT/FFT and IDHT/DHT,
LACO-OFDM and LDHTS-ACO-OFDM require CLACO =
4N log2(N)[3L − 1] and CLDHTS = 2N log2(N)[3L −
1] + (N/2L−2)[log2(N) − L] + 6

∑L−1
l=1 (N/2l) log2(N/2

l)
operations, respectively. We introduce relative gain parame-
ter, G(N,L) =

[
1−

(
CLDHTS/CLACO

)]
× 100%, which is

illustrated in Fig. 6 and indicates that LDHTS-ACO-OFDM is
appreciably less complex than LACO-OFDM. Moreover, the
gain increases with an increase in number of superimposed
layers, approaching ≈ 43% for {L, log2(N)} = 5. The
complexity of LACO-OFDM is evaluated considering the most
recent article [5]. However, an implementation with lower
order IDFT/DFT is presented in [4]. It should be recognized
that an implementation of LDHTS-ACO-OFDM with lower
order IDHT/DHT is likewise feasible.

IV. CONCLUSIONS

In this letter, a spectrally augmented variant of DHTS-
ACO-OFDM, i.e., LDHTS-ACO-OFDM is proposed. LDHTS-
ACO-OFDM stack layers of DHTS-ACO-OFDM, where each
superimposed layer modulates the empty subcarriers left by the
preceding layer. Unlike other O-OFDM schemes, where half
of the subcarriers are sacrificed to integrate HS, in LDHTS-
ACO-OFDM, all the subcarriers can be modulated. Moreover,

log2(N)
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G
(N

,
L
)
(%
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30

35

40

45

50
Relative Complexity Gain

L = 2
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Fig. 6: Gain in complexity of LDHTS-ACO-OFDM over LACO-OFDM.

LDHTS-ACO-OFDM is less complex than LACO-OFDM,
while it manifests lower PAPR and maintains 3 dB BER
improvement over LACO-OFDM in a dispersive channel.
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