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CATCH ME IF YOU CAN: A SPATIAL MODEL FOR A

BRAKE-DRIVEN GENE DRIVE REVERSAL

LÉO GIRARDIN, VINCENT CALVEZ, AND FLORENCE DÉBARRE

Abstract. Population management using artificial gene drives (alleles biasing inheri-

tance, increasing their own transmission to offspring) is becoming a realistic possibility
with the development of CRISPR-Cas genetic engineering. A gene drive may however

have to be stopped. “Antidotes” (brakes) have been suggested, but have been so far

only studied in well-mixed populations. Here, we consider a reaction–diffusion system
modeling the release of a gene drive (of fitness 1 − a) and a brake (fitness 1 − b, b ≤ a)

in a wild-type population (fitness 1). We prove that, whenever the drive fitness is at

most 1/2 while the brake fitness is close to 1, coextinction of the brake and the drive
occurs in the long run. On the contrary, if the drive fitness is greater than 1/2, then

coextinction is impossible: the drive and the brake keep spreading spatially, leaving in

the invasion wake a complicated spatio-temporally heterogeneous genetic pattern. Based
on numerical experiments, we argue in favor of a global coextinction conjecture provided

the drive fitness is at most 1/2, irrespective of the brake fitness. The proof relies upon the
study of a related predator–prey system with strong Allee effect on the prey. Our results

indicate that some drives may be unstoppable, and that, if gene drives are ever deployed

in nature, threshold drives, that only spread if introduced in high enough frequencies,
should be preferred.

1. Introduction

With the development of CRISPR-Cas9 genetic engineering, population management us-
ing gene drives has become a realistic possibility. The technique consists in artificially biasing
the inheritance of a trait of interest in a target population [7]. Such biased inheritance is
due to the presence of an artificial self-replicating element expressing a DNA-cutting enzyme
(the Cas9 endonuclease), such that initially heterozygous individuals (i.e. carrying the drive
construct on one chromosome and a wild-type sequence on the homologous chromosome)
produce almost exclusively drive-carrying gametes instead of 50% of drive-carrying gametes,
as expected under Mendelian segregation (see Figure 1.1). The proportion of drive-carrying
gametes depends on the conversion efficiency, perfect conversion meaning that an initially
heterozygous individual produces 100% of drive-carrying gametes. Thanks to its supra-
Mendelian transmission to offspring, a drive can spread in a population even if it confers a
significant fitness cost [3, 16, 17]. Potential applications for human health and agriculture
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2 A BRAKE TO REVERSE A GENE DRIVE INVASION

include the modification of mosquito populations to make them resistant to malaria or the
eradication of agricultural pest species [12].
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Figure 1.1. The presence of a brake induces rock-paper-scissors dynamics.
The drive wins over the wild-type allele due to gene conversion (such that
individuals born as heterozygotes only produce drive-carrying gametes).
The brake wins over the drive due to gene conversion and better fitness.
The wild-type allele wins over the brake because of greater fitness.

However, while very promising, the technique is not risk-free. A drive could have off-target
effects, or spread in a non-target population. For instance, a drive can be introduced on an
island to eradicate a local rat population, but the dispersal of drive-carrying individuals to
the mainland or to another island would also threaten those populations [6, 15]. The effects
of population modification using a drive may also have unexpected consequences on other
species, e.g., predators or competitors. More generally, it is important to be able to control
the spread of a drive, and to stop it if necessary. To this end, a “brake” construct was
proposed, that does not contain the cas9 gene (and is hence unable to convert a wild-type
allele), but that is able to target the very cas9 sequence contained in a drive construct, and
therefore to convert a drive allele into a brake allele in a (drive/brake) heterozygote [21].
The construct has been shown to not only stop a drive, but also in some cases lead to the
recovery of the original wild-type population [18].

Most models of gene drive consider well-mixed populations (except meta-population and
partial differential equations (PDE) models, [2, 13, 16]). Here we consider the influence of
space and limited dispersal, and ask whether a brake construct is able to stop the spatial
spread of a drive. More precisely, we introduce a minimalist PDE model of two interacting
sub-populations combining spatial diffusion and Mendelian population genetics. The two
sub-populations correspond to the subset of the gene pool with the drive allele, and to the
subset with the brake allele (the rest consisting of the wild-type allele). The case of a single
sub-population of gene drive was addressed in [16]. It was shown that the spatial invasion
of the gene drive allele was successful up to a fitness cost a ' 0.7 associated with the drive
allele (see below for details). In the present work, we ask whether the brake, even if lately
introduced (with a spatial delay with respect to the gene drive invasion), can catch up the



A BRAKE TO REVERSE A GENE DRIVE INVASION 3

invasion and stop the spatial propagation of the gene drive. Using phase plane analysis and
techniques from the theory of reaction–diffusion equations, we show that the drive can be
stopped under some conditions on the model parameters. More precisely, we prove that
the gene drive frequency will be eventually reduced to zero everywhere, provided that the
fitness cost of the drive a is above 0.5 (i.e., the fitness associated with the drive allele is
1− a < 0.5) and that the fitness cost of the brake is small enough.

1.1. The model. We adopt the following set of notations:

• N ∈ N is the spatial dimension (typically N ∈ {1, 2, 3});
• n ∈ [0,+∞) is the total population density;
• u ∈ [0, 1] and v ∈ [0, 1] (0 ≤ u + v ≤ 1) are the respective frequencies in the

population n of the gene drive allele D and the brake allele B (so that the frequency
of the wild-type allele O is exactly 1− u− v);
• a ∈ (0, 1) and b ∈ (0, 1) are the respective selective disadvantage (i.e., decreased

survival) of the homozygous individuals DD and BB compared to the wild-type,
with the assumption a ≥ b, which is biologically relevant1;
• h ∈ [0, 1] is the dominance of the brake allele B on the wild-type allele O (in

particular, B is dominant if h = 1, recessive if h = 0 and additive if h = 1/2).

We assume that:

(A1) the conversion efficiency of the drive (conversion OD → DD) and of the brake
(conversion DB → BB) are perfect2;

(A2) gene conversion takes place early in development (e.g., an individual born as OD
becomes DD and has the fitness of a DD individual)3;

(A3) individuals mate randomly (random union of gametes, according to a uniform law).

Then, following the biological literature [17, 18], the spatially homogeneous, next-generation
discrete system reads:

1− ug+1 − vg+1 =
(1− ug − vg) (1− ug − vg + (1− hb) vg)

1−
(
au2g + bv2g + 2bugvg

)
− 2 (1− ug − vg) (aug + hbvg)

,

ug+1 =
ug ((1− a)ug + 2 (1− a) (1− ug − vg))

1−
(
au2g + bv2g + 2bugvg

)
− 2 (1− ug − vg) (aug + hbvg)

,

vg+1 =
vg ((1− b) vg + 2 (1− b)ug + (1− hb) (1− ug − vg))

1−
(
au2g + bv2g + 2bugvg

)
− 2 (1− ug − vg) (aug + hbvg)

.

The first line corresponds to the frequency dynamics of the wild-type allele, the second line to
the drive, and the last line to the brake. For each equation, the numerator on the right-hand
side corresponds to the amount of corresponding alleles produced, while the denominator
corresponds to the total amount of alleles (i.e., the “mean fitness” in the population). It
can be verified that this denominator is exactly such that the first equation is true (in other
words, such that the sum of the three frequencies remains identically equal to 1 as time goes
on). Since the first equation is redundant, we get rid of it hereafter.

These equations can be understood as follows.

1Depending on the construct, the brake could just convert a drive without affecting its effect on fitness

(b close to a, b ≤ a), or at the other extreme the brake could carry a cargo gene restoring wild-type fitness

(b close to 0).
2This is merely for algebraic convenience and the general case will be discussed below in Subsection 4.2.
3With late gene conversion (typically in the germline), an OD-born individual would have the fitness of

an OD. In both cases though, only D gametes are produced by this individual.
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• Wild-type alleles (first equation) are carried (i) by all of the gametes produced by
OO homozygotes (initially in frequency (1 − ug − vg)

2, and with fitness 1), and
(ii) by half of the gametes of OB heterozygotes (in frequency 2vg(1− ug − vg), and
with fitness (1− hb)). Note that since gene conversion is assumed to be perfect, no
wild-type alleles are produced by initially OD individuals.
• Drive alleles (second equation) are carried (i) by all of the gametes produced by
DD homozygotes (initially in frequency u2g and who have a fitness (1 − a)), but
also (ii) by all of the gametes produced by initially OD heterozygotes (initially in
frequency 2ug(1−ug−vg)), who were immediately converted into DD homozygotes,
and hence have fitness (1 − a). Since gene conversion is assumed to be perfect, no
drive alleles are produced by initially DB individuals.
• Brake alleles (third line) are carried (i) by all of the BB homozygotes (initially in

frequency v2g , and who have a fitness (1− b)), (ii) by all of the gametes produced by
initially DB heterozygotes (in frequency 2ugvg), who were immediately converted
into BB homozygotes, and hence have fitness (1− b), and finally (iii) by half of the
gametes produced by OB heterozygotes (in frequency 2vg(1 − ug − vg), and with
fitness (1− hb)).
• Since only ratios of fitness appear in the equations, the assumption that the wild-

type fitness is unitary is done without loss of generality.

Next, we take the spatial diffusion of the individuals of the population n into account
and assume:

(A4) the time scale of the diffusion mechanism and the maturation time between two
generations are of the same order;

(A5) each sub-population diffuses at the same rate.

We are now in position to perform a classical first-order approximation [16] and obtain the
following reaction–diffusion PDE system:
∂u

∂t
−∆u− 2∇(log n) · ∇u = u

(
(1− a)u+ 2 (1− a) (1− u− v)

1− (au2 + bv2 + 2buv)− 2 (1− u− v) (au+ hbv)
− 1

)
,

∂v

∂t
−∆v − 2∇(log n) · ∇v = v

(
(1− b) v + 2 (1− b)u+ (1− hb) (1− u− v)

1− (au2 + bv2 + 2buv)− 2 (1− u− v) (au+ hbv)
− 1

)
,

where in general u, v and n are functions of time t and space x. Note that in this system
there is no equation on the total population density n, which is therefore entirely unknown
at this point.

The transport term 2∇(log n) is the signature of gene flow in populations which are
not homogeneous in size. This is a consequence of the reformulation of the problem by
means of frequencies rather than population densities. To make this connection clear, we
point out that the diffusion operator ∂

∂t −∆ for the population density un is related to the

diffusion–transport operator ∂
∂t −∆− 2∇(log n) for the frequency u:

∂ (un)

∂t
−∆ (un) =

∂u

∂t
n+

∂n

∂t
u− (∆u)n− (∆n)u− 2∇u · ∇n

= n

[
∂u

∂t
−∆u− 2∇(log n) · ∇u

]
+u

[
∂n

∂t
−∆n

]
.

We shall address two types of questions in our study. (i) How do the allelic frequencies
evolve when all three genotypes asymptotically coexist? (ii) Under which assumptions is
the wild-type restored spatially uniformly?
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For (i), we will mainly be interested in the propagation speeds of u and v. Since these
speeds are strongly impacted by the a priori unknown transport term 2∇ (log n), we will
simplify this part of the discussion by assuming that n is spatially homogeneous, so that the
transport term vanishes. We are aware this is a very serious restriction but cannot properly
conclude without it. On the contrary, for (ii), where we are interested in spatially uniform
convergence, the transport term does not matter that much and we can easily handle it,
under a mild assumption:

(A6) ∇ (log n) is well-defined and uniformly Hölder-continuous with an exponent larger
than 1

2 (for instance, uniformly Lipschitz-continuous).

This mathematical assumption should not be understood as being too restrictive: it is
satisfied if, for instance, n solves a generic population dynamics reaction-diffusion equation
with initial condition bounded above and below by positive constants. Of course it is satisfied
if n is spatially homogeneous, so that we will in any case assume that the above assumption
(A6) is satisfied.

For ease of reading, we define the scalar parabolic operator

P =
∂

∂t
−∆− 2∇(log n) · ∇

as well as the reaction functions

w (u, v) = 1−
(
au2 + bv2 + 2buv

)
− 2 (1− u− v) (au+ hbv) ,

g (u, v) =

(
g1 (u, v)
g2 (u, v)

)
=

(
(1− a)u+ 2 (1− a) (1− u− v)

(1− b) v + 2 (1− b)u+ (1− hb) (1− u− v)

)
,

f (u, v) =

(
f1 (u, v)
f2 (u, v)

)
=

1

w (u, v)
g (u, v)−

(
1
1

)
,

so that the system finally reads:

(1.1) P

(
u
v

)
=

(
u
v

)
◦ f (u, v) .

Here, the fact that the 2×2 linear parabolic operator on the left-hand side is the same on both
lines is of the utmost importance. Mathematically, it is a necessary and sufficient condition
to apply several theorems of the standard parabolic theory, in particular a generalized
maximum principle due to Weinberger [20] that we will indeed use extensively (it is recalled
in Appendix A). Biologically, it means that all individuals move in space similarly: the gene
under consideration does not affect the motility of the individuals carrying it.

Since u and v are frequencies, they should satisfy u+v ≤ 1 (with 1−(u+ v) the frequency
of the wild-type allele O). Therefore it is natural to define the triangle

T =
{

(u, v) ∈ [0, 1]
2 | u+ v ≤ 1

}
.

We will indeed verify later on that it is an invariant subset of the phase plane.

1.2. Results. These results and the discussions of Subsection 4.1 are summarized in Fig-
ure 1.2. Numerical simulations are run in GNU Octave [5] (semi-implicit finite difference
scheme with Neumann boundary conditions, see Appendix B).
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b

a

a = b

(0, 0) 1
2

1

a < 1
2 : coexistence and

coinvasion (Theorem 1.1,

Figure 1.3, Section 4.1.1)

a > 1
2 , b > b?:

conjecture of coextinction

(Figure 1.4, Section 4.1.2

on the case b ' a, h ' 1)

a > 1
2 , b < b?:

coextinction (Theorem 1.2)

b > a: biologically unrealistic range

Figure 1.2. Possible behaviors investigated in the forthcoming pages, de-
pending on the values of (a, b). The parameter h has a fixed arbitrary value
in this diagram. The threshold b? depends on a and h and its graph as a
function of a is unknown.

1.2.1. Coexistence. Our first result deals with the case of coexistence. For technical reasons
that will be discussed below, the statement is restricted to spatially homogeneous solutions,
i.e. we consider the solutions of the system of ODE with the righ-hand-side of (1.1) only.

In the case where the selective disadvantage of the drive compared to the wild-type is less
than a half (a < 1/2), we establish that both sub-populations of drive and brake persist in
the long term, as measured by their frequencies which are positive at arbitrary large times.
The mathematical statement is as follows.

Theorem 1.1. Let (u, v) be a spatially homogeneous solution of (1.1) with n spatially
homogeneous and initial condition in the interior of T.

If a < 1
2 , then coextinction of (u, v) cannot occur. More precisely,

lim sup
t→+∞

(u (t) + v (t)) > 0.
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In view of numerical experiments, we expect damped oscillations converging to a coex-
istence state or sustained oscillations approaching a periodic limit cycle or a heteroclinic
cycle (see Subsection 2.3 below).

Concerning the spatially heterogeneous problem, describing the invasion of the drive
and the brake in a territory occupied by the wild-type allele, we explain in Subsection 4.1
why we expect that the brake always catches up with the drive and that, afterwards, both
populations persist in the wake of the joint invasion front. We give evidence that this claim
is true if a ≤ 1/4 and the total population n is spatially homogeneous, based on Ducrot–
Giletti–Matano [4]. We believe it remains true even if 1/4 < a < 1/2. Figure 1.3 is a
numerical illustration of this claim. Indeed, we observe that the brake catches up with the
drive, even if it starts with a space and time delay. However, the drive is “strong” enough to
persist, resulting in a joint invasion front followed by a complicated spatio-temporal pattern.

1.2.2. Coextinction. Our second result deals with the case of coextinction. Here we are able
to handle spatially heterogeneous solutions and the transport term 2∇ (log n).

We assume that the initial frequencies (u0, v0) are distributed such that some individuals
carrying the brake allele have been released somewhere, whereas the gene drive allele has
not completed its invasion in the whole space yet (only individuals carrying the wild-type
allele are present far away in space). Note that we do not need to assume that the brake is
released in a particular region of space – say, the region of space already colonized by the
gene drive. If the selective disadvantage of the drive is sufficient (a > 1/2) while that of
the brake is not too large (b < b?), then the drive goes extinct everywhere, followed by the
complete extinction of the brake as well. The threshold for the brake b?(a, h) appears for
technical reasons at several steps of our argument. Consequently, an explicit value is not
straightforward to obtain, and might not be informative. As explained below, we believe
that this is only a technical restriction, and that the result should remain true in the whole
range b ∈ (0, a). The mathematical statement is as follows.

Theorem 1.2. Let (u, v) be the solution of (1.1) with initial condition (u0, v0) ∈ C
(
RN ,T

)
satisfying

v0 6= 0 and lim
‖x‖→+∞

(u0, v0) (x) = (0, 0) .

There exists b? ∈ (0, a) depending on a and h such that, if a > 1
2 and b < b?, then

coextinction occurs:

lim
t→+∞

(
sup
x∈RN

u (t, x) + sup
x∈RN

v (t, x)

)
= 0.

It is important to note that the convergence to zero of both u and v is uniform in space,
that is, we rule out the possibility of a persistent wave of u followed or replaced by a wave
in v.

We performed numerical experiments to explore the possible behaviours when b varies in
the range (0, a). We observed complete extinction for values of b up to a (Figure 1.4) 4. To
complete the numerical investigation, we give some evidence in Subsection 4.1 supporting
the conjecture that the coextinction of u and v occurs for all b ≤ a.

4We actually observed that the extinction threshold is larger than a but smaller than 1 (Figure 1.5).
Nevertheless, the case b > a is beyond the scope of our assumptions and does not correspond to an relevant
case in the context of the biological problem.
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(e) Space-time representation of the solution (u, v)

Figure 1.3. Numerical solution of (1.1) in the case a = 0.45 < 1/2, b =
0.35 < a, h = 0.5, n spatially homogeneous (i.e. the drift term ∇ log n
vanishes). (A-B-C-D) are successive snapshots of the drive u (blue) and the
brake v (red) from the time t = 80 at which the brake v is released on the
left-hand-side of the domain. (E) is the superposition of many snapshots,
in order to visualize the spatio-temporal dynamics. We observe a small,
stable, composite wave followed by spatio-temporal oscillations.



A BRAKE TO REVERSE A GENE DRIVE INVASION 9

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(a) t = 80

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(b) t = 100

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(c) t = 120

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(d) t = 140

time

space

0

0.2

0.4

(u
,v

)

0.6

0.8

1

40
20

0

60
80

100 0

50

100

150

200

(e) Space-time representation of the solution (u, v)

Figure 1.4. Same as in Figure 1.3, but with a = 0.55 and b = 0.45. We
observe invasion of the drive by the brake, up to extinction of the drive,
followed by the retraction of the brake, up to complete extinction (meaning
restauration of the wild-type).
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(a) a = 0.55, b = 0.65
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(b) a = 0.55, b = 0.8

Figure 1.5. Further numerical investigation for a larger disadvantage of
the brake b > a > 1/2 (biologically unrealistic range). Uniform coextinction
remains true for values of b larger than a (A), but no too large (B). Joint
persistence of both species associated with complicated spatio-temporal be-
haviours were observed for intermediate values of b (a = 0.55, b = 0.75,
result not shown).

1.3. Structure of the paper. Section 2 is devoted to some technical preliminaries and
contains in particular an elementary proof of Theorem 1.1. Section 3 contains the proof
of Theorem 1.2. In Section 4, possible extensions are discussed and the aforementioned
conjecture is explained. Readers not interested in the mathematical proofs can safely skip
Sections 2 and 3.

2. Preliminaries

2.1. Well-posedness. In this subsection we briefly verify that the model is well-posed
mathematically (the denominator w(u, v) has constant sign) and biologically (the allelic
frequencies u and v remain nonnegative and always satisfy u+ v ≤ 1, namely (u, v) ∈ T).

Proposition 2.1. The function w satisfies

max
T

w = 1 and min
T
w = 1− a > 0.

Therefore the system (1.1) is well-posed in T.

Proof. The function u 7→ w (u, 0) coincides with u 7→ 1 − au2 − 2au (1− u), that is u 7→
1 − a + a (1− u)

2
, whose minimum and maximum in [0, 1] are respectively 1 − a > 0 and

1. Since the bound w ≤ 1 in T is obvious, this directly shows that the maximum of w in T
is indeed 1. It only remains to confirm that the minimum is indeed 1 − a. We prove this
claim in two steps: first, we prove that the minimum of w on ∂T is 1− a; second, we prove
that there is no critical point of w in the interior of T.

The function v 7→ w (0, v) coincides with v 7→ 1 − bv2 − 2hbv (1− v), that is v 7→ 1 +
(2h− 1) bv2−2hbv. Its derivative with respect to b is 2b{v(h−1)+h(v−1)} ≤ 0. Therefore,
its minimum in [0, 1] is attained at v = 1 and is 1− b > 0.

The function u 7→ w (u, 1− u) coincides with u 7→ 1− au2− b (1− u)
2− 2bu (1− u), that

is u 7→ 1− b− (a− b)u2, whose minimum in [0, 1] is 1− a > 0.
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Therefore the minimum of w on ∂T is indeed 1− a > 0.
Next, straighforward algebra shows that any critical point (u?, v?) ∈ R2 satisfies(

a a− (1− h) b
a− (1− h) b (2h− 1) b

)(
u?

v?

)
=

(
a
hb

)
.

The determinant of the 2× 2 matrix above is −a (a− b)− (1− h)
2
b2, which vanishes if and

only if a = b and h = 1, but in such a case the system reduces to u? + v? = 1 so that there
are no critical points in the interior of T. If a > b or h < 1, the 2 × 2 matrix is invertible
and Cramer’s rule yields

(u?, v?) =
1

−a (a− b)− (1− h)
2
b2

(
a(2h− 1)b− hb (a− (1− h)b)

ahb− (a− (1− h)b) a

)
=

1

a (a− b) + (1− h)
2
b2

(
b(1− h)(a− hb)

a(a− b)

)
This point is in the interior of T if and only if b(1− h)(a− hb) < (1− h)2b2, that is if and
only if a− hb < (1− h)b, that is if and only if a < b. Hence it is not in the interior of T.

Therefore the minimum of w in T is attained only on the boundary and is 1− a > 0. �

Proposition 2.2. Any solution of (1.1) with initial condition in C
(
RN ,T

)
is valued in T

at all times t ≥ 0.

Proof. To show that T is an invariant region of the phase space, we use Weinberger’s max-
imum principle [20]. Indeed, the triangle T is a convex invariant set satisfying the so-called
slab condition. Therefore we only have to verify that the reaction term is inward-pointing
on the boundary of T, namely:(

u
0

)
◦ f (u, 0) ·

(
0
1

)
≥ 0 for all u ∈ [0, 1],(

0
v

)
◦ f (0, v) ·

(
1
0

)
≥ 0 for all v ∈ [0, 1],(

u
1− u

)
◦ f (u, 1− u) ·

(
1
1

)
≤ 0 for all u ∈ [0, 1].

These three conditions are trivially verified (the left-hand side being always zero). �

2.2. The propagation of the gene drive alone. In what follows, we fix v = 0 and we
briefly review some results described in [16] about the dynamics of the gene drive invasion.

If v = 0, then (1.1) reduces to

Pu = uf1(u, 0)

= u
−au2 + (3a− 1)u− (2a− 1)

1− a+ a (1− u)
2

=
au (1− u)

(
u− 2a−1

a

)
1− a+ a (1− u)

2 .

If a ≤ 1
2 , this is a monostable equation. Additionally, a bit of algebra shows that this

is an equation of KPP type if and only if a ≤ 1
4 , the KPP property being here understood

in the following weak sense: the maximal growth rate per capita corresponds to sparse
populations, namely

f1(0, 0) = max
u∈[0,1]

f1(u, 0).
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If a > 1
2 , this is a bistable equation with stable steady states 0 and 1 and unstable

intermediate steady state θ = 2a−1
a ∈ (0, 1). All known results on bistable equations, and

in particular [8], can therefore be applied to this case.
In particular, the sign of the following quantity plays a crucial role:∫ 1

0

au (1− u)
(
u− 2a−1

a

)
1− a+ a (1− u)

2 du =

√
1− a
a3/2

arctan

(√
a

1− a

)
− 1

2
− 1− a

a

(the calculation of the integral is not detailed here). Since this is positive if a = 1
2 , negative

if a = 1 and since

∂

∂a

(
a 7→ arctan

(√
a

1− a

)
−
(

1− a

2

)√ a

1− a

)
= − (2a− 1) a3/2

4a (1− a)
3/2

< 0,

there exists a unique a0 ∈
(
1
2 , 1
)

such that the integral is positive if a ∈
[
1
2 , a0

)
, zero if

a = a0 and negative if a ∈ (a0, 1]. It satisfies the numerical approximation a0 ' 0.6965.
As a consequence, in the simplified case where P = ∂t − ∆ (i.e. the total population

n is spatially homogeneous), solutions u that are initially compactly supported will always
go extinct if a ∈ (a0, 1] and will spread and invade if a ∈ [0, a0). If a ∈

(
1
2 , a0

)
, it is also

necessary that the initial condition is favorable enough (i.e. larger than 2a−1
a in a wide

region – see the role of the initial data in the emergence of a wave in the bistable case [1],
and in particular the existence of bubble-like solutions that can prevent the propagation).

2.3. Basic phase-plane analysis: spatially uniform stationary states. This subsec-
tion is devoted to the stability analysis of spatially homogeneous solutions. Interestingly,
tedious computations of Jacobians are unnecessary.

2.3.1. Boundary stationary states. Similarly to Subsection 2.2, if u = 0, (1.1) reduces to

Pv = −bv (1− v) (h(1− v) + v(1− h))

1− bv2 − 2hbv(1− v)
.

The right-hand side has exactly the sign of−v(1−v), whence this is a “backward-monostable”
equation, where 0 is stable and 1 is unstable.

Again similarly, if u+ v = 1, the equation satisfied by u reduces to

Pu = −u (1− u) (1− b+ (a− b)u)

1− b− (a− b)u2

and this is also a “backward-monostable” equation.
These observations together with the stable and unstable manifold theorems show that,

regarding the diffusionless system,

• (0, 0) is a stable node if a > 1
2 and is a saddle if a < 1

2 ;
• (1, 0) is a saddle;
• (0, 1) is a saddle.

Now we turn to the stability of
(
2a−1
a , 0

)
(which is relevant only if a > 1

2 so this is
assumed below without loss of generality). As (u, v)→ (0, 0),(

2a−1
a + u
v

)
◦ f
(

2a− 1

a
+ u, v

)
∼
(

2a−1
a ∂uf1

(
2a−1
a , 0

)
2a−1
a ∂vf1

(
2a−1
a , 0

)
0 f2

(
2a−1
a , 0

) )(
u
v

)
with ∂uf1

(
2a−1
a , 0

)
> 0 (see Subsection 2.2) and

f2

(
2a− 1

a
, 0

)
=

(1− b+ a− b) (2a− 1) + (1− hb) (1− a)

a
(

1− a− a
(
1− 2a−1

a

)2) > 0.
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Hence ( 2a−1
a , 0) is an unstable node.

All this implies that, for the trajectories we have in mind (i.e. contained in the interior
of T), convergence to (1, 0), (0, 1) or ( 2a−1

a , 0) is impossible and convergence to (0, 0) is

possible if and only if a ≥ 1
2 . Consequently, Theorem 1.1 is proved.

2.3.2. Interior stationary states. Any stationary state in the interior of T is a solution of
the following algebraic system: {

g1(u, v) = g2(u, v),

g1(u, v) = w(u, v),

which can be solved explicitly (g1 − g2 is a first-order polynomial while w − g1 is a second-
order polynomial). We do not perform this resolution here, as it is tedious and useless. We
simply point out that:

• on one hand, the proof of Theorem 1.2 will imply directly the nonexistence of such
a coexistence state when a > 1

2 and b < b?;

• on the other hand, when a < 1
2 , the flow is rotating anticlockwise on the bound-

ary of T, whence by classical phase-plane arguments (e.g. the Poincaré–Bendixson
theorem) there exists such a coexistence state. Numerically, we observe that this
stationary state is unique and is a stable or unstable spiral, depending on the pa-
rameters (see Figure 2.1).

2.4. Brake with small selective disadvantage: predator–prey regime. In what fol-
lows, we prove that the expected predator–prey structure is indeed true close to b = 0. In
order to do so, it is convenient to understand b as a parameter and to add a subscript b to
every object that depends on it. In particular, we rewrite the term fb (u, v) as
(2.1)

fb (u, v) =
w0 (u, v)

wb (u, v)

[
f0 (u, v) +

b

w0 (u, v)

(
v (v + 2u+ 2h (1− u− v))

v (v + 2u+ 2h (1− u− v))− (v + 2u+ h (1− u− v))

)]
with

w0 (u, v) = 1− au2 − 2au (1− u− v)

= 1 + au2 − 2au+ 2auv,

g0 (u, v) =

(
(1− a)u+ 2 (1− a) (1− u− v)

v + 2u+ (1− u− v)

)
=

(
2 (1− a)− (1− a)u− 2 (1− a) v

1 + u

)
,

f0 (u, v) =
1

w0 (u, v)
g0 (u, v)−

(
1
1

)
=

1

w0 (u, v)

(
− (2a− 1) + (3a− 1)u− au2 − 2v (1− a+ au)

u (1 + 2a− au− 2av)

)
=

1

w0 (u, v)

(
a (1− u) (u− θ)− 2v (1− a+ au)

u (1 + 2a− au− 2av)

)
.

Proposition 2.3. There exists b1 ∈ (0, 1] such that, if b ∈
[
0, b1

]
, then (1.1) has a predator–

prey structure where u is the prey and v is the predator, namely

∂vfb,1 < 0 and ∂ufb,2 > 0 in T.
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(a) a = 0.4, b = 0.1, h = 0.2.
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(b) a = 0.4, b = 0.1, h = 0.8.

Figure 2.1. Oscillating trajectories of the homogeneous system with ten
random initial conditions and a < 1

2 . Depending on the value of h, the
oscillations are either damped (A) or sustained (B). For intermediate values
of h (not illustrated here), we find a mixture of both, depending on the
initial condition. In all cases, the solutions spend a very long time in the
neighborhood of u = 0 (final time of the simulation T = 1000). We refer
to Hastings et al. [9] for a discussion about the relevance of long transient
regimes in biology.
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Remark. The condition b ≤ b1 is necessary. The predator-prey structure fails if b is too
large (see below Subsection 4.1).

Proof. First, we study the case of b = 0.
By straightforward algebra and definition of θ,

∂vf0,1 (u, v) =
2

w0 (u, v)
2 (− (1− a+ au)w0 (u, v)− (a (1− u) (u− θ)− 2v (1− a+ au)) au)

=
2

w0 (u, v)
2

(
−2a (2a− 1)u2 − (1− a)

)
≤ − 2

w0 (u, v)
2 min
z∈[0,1]

(
2a (2a− 1) z2 + (1− a)

)
.

On one hand, if a ≥ 1
2 , the minimum above is 1 − a. On the other hand, if a < 1

2 , the

minimum above is −2a (1− 2a) + 1− a = 4a2 − 3a+ 1 > 0. In all cases, since w0 ≤ 1 in T,

∂vf0,1 (u, v) ≤ − 2

w0 (u, v)
2 min

(
1− a, 4a2 − 3a+ 1

)
≤ −2 min

(
1− a, 4a2 − 3a+ 1

)
< 0.

Similarly,

∂uf0,2 (u, v) =
w0 (u, v) (1 + 2a (1− u− v)) + 2au (1 + au+ 2a (1− u− v)) (1− u− v)

w0 (u, v)
2

≥ 1− a
w0 (u, v)

2 ≥ 1− a > 0.

Thus (1.1) in the limiting case b = 0 has indeed the claimed predator–prey structure.
Finally, thanks to the smooth convergence of fb to f0 as b→ 0 and the preceding uniform

estimates, the existence of b1 > 0 as in the statement is immediate. �

3. Proof of Theorem 1.2

In this section, we prove the main result of the paper. In the whole section, we assume
a > 1

2 so the drive has a bistable dynamic and we denote θ = 2a−1
a its intermediate steady

state.
Interestingly, when b ≤ b1, the system under consideration has the structure of a predator–

prey system with Allee effect on the prey. Such systems have been studied in the literature
but, apart from numerical simulations that show an incredibly wide and complicated variety
of behaviors, almost nothing is known (e.g., [10, 14, 19]). Fortunately, the analysis of our
particular case is indeed possible, thanks to a very simple phase-plane structure (that can
easily be observed numerically). More precisely, the very natural idea of the proof is the
following: first, use phase-plane analysis and Weinberger’s maximum principle [20] to show
that u becomes uniformly smaller than its extinction–persistence threshold θ in finite time,
so that u goes extinct independently of the dynamics of v; next, use the predative structure
and scalar comparison arguments to show that when its prey u goes extinct, the predator v
goes extinct as well 5.

5Although this is indeed the main idea, it turns out that technical obstacles arise and therefore we will
also show in the first step that v becomes uniformly smaller than a constant smaller than 1.
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We will use as in Subsection 2.4 the subscripts b. In order to study more precisely the
role of b in fb, we define additionally

r(u, v) =
1

v

(
u
v

)
◦
(

v (v+2u+ 2h (1− u− v))
v (v+2u+ 2h (1− u− v))− (v + 2u+ h (1− u− v))

)
=

(
u (v+2u+ 2h (1− u− v))

v (v+2u+ 2h (1− u− v))− (v + 2u+ h (1− u− v))

)
=

(
u (v+2u+ 2h (1− u− v))

(1− 2h) v2 + (3h− 1) v − h+ 2 (1− h)uv − (2− h)u

)
=

(
u (v + 2u+ 2h (1− u− v))

− (1− v) ((1− 2h) v + h)− u (2 (1− h) (1− v) + h)

)
.

Thus the reaction term of (1.1) reads

(3.1)

(
u
v

)
◦ fb (u, v) =

w0 (u, v)

wb (u, v)

[(
u
v

)
◦ f0 (u, v) +

bv

w0 (u, v)
r (u, v)

]
.

Remark. The function r satisfies, in T, r1 ≥ 0 with equality if and only if u = 0 and r2 ≤ 0
with equality if and only if (u, v) = (0, 1). This is mostly obvious but we point out that
(1− 2h)v + h = h(1− v) + v(1− h) ≥ 0 cannot vanish if v ∈ (0, 1).

3.1. Geometric lemmas on the phase-plane structure. The following lemmas basi-
cally state that, when b is small enough, the flow in the interior of T rotates anticlock-
wise around the repulsive node (θ, 0). Lemma 3.1 is concerned with the region {u > θ};
Lemma 3.2 is concerned with the line segment {u = θ}; Lemma 3.3 is concerned with the
region

{
u < θ, v ≥ 1+a

2a (θ − u)
}

; Lemma 3.4 is concerned with the instability of (θ, 0).

Lemma 3.1. There exists b2 ∈ (0, 1] such that, if b ∈
[
0, b2

]
, then for all µ ≥ 0 and all

u ∈ [θ, 1] such that µ (u− θ) ≤ 1− u,

(3.2)

((
u

µ (u− θ)

)
◦ fb (u, µ (u− θ))

)
·
(
µ
−1

)
≤ 0.

Proof. Let

C = {(µ, u) ∈ [0,+∞)× [θ, 1] | µ (u− θ) ≤ 1− u} .
In view of (3.1), (3.2) is trivial if µ = 0 and is otherwise equivalent to((

u
u− θ

)
◦ f0 (u, µ (u− θ)) +

b (u− θ)
w0 (u, µ (u− θ))

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

))
·
(

1
−1

)
≤ 0.

Straightforward algebra and the definition of θ lead to(
u

u− θ

)
◦ f0 (u, µ (u− θ)) ·

(
1
−1

)
= − u (u− θ)

w0 (u, µ (u− θ))
(1 + a+ 2aµ)

whence (3.2) is actually equivalent to

−u (1 + a+ 2aµ) + b

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
≤ 0.

Clearly, this is true for all µ ≥ 0 and all u ∈ [θ, 1] if b = 0. Hence from now on we focus on
the case b > 0. In such a case, requiring (3.2) for all (µ, u) ∈ C is equivalent to requiring

1

b
≥ sup

(µ,u)∈C

max

(
0,

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

))
u (1 + a+ 2aµ)

.
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In view of the signs of r1 and r2 in T, the right-hand side is positive, so that the above
inequality reduces to

1

b
≥ sup

(µ,u)∈C

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
u (1 + a+ 2aµ)

> 0.

It only remains to verify the finiteness of this supremum.
Let (µ, u) ∈ C. From

µr1 (u, µ (u− θ)) = (µ+2− 2h (µ+ 1))µu2 + (2h+ 2hµθ − µθ)µu

and

−r2 (u, µ (u− θ)) =− (µ+2− 2h (µ+ 1))µu2

− (µ (4hµθ + 3h+ 2hθ − 1− 2µθ−2θ) + h− 2)u

−
(
µ2θ2 + µθ − 2hµ2θ2 − 3hµθ − h

)
,

it follows(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
=
(
(1− 2h)µ2θ − (h+ 2hθ − 1−2θ)µ+ 2− h

)
u

−
(
(1− 2h)µ2θ2 + (1− 3h)µθ − h

)
,

which reads, as a polynomial of µ,(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
= (1− 2h) θ (u− θ)µ2+((3h− 1) θ − (2hθ + h− 1−2θ)u)µ+(2− h)u+h.

On one hand, if h > 1
2 , the above second-order polynomial of µ is bounded above by

some constant, whence

sup
(µ,u)∈C

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
u (1 + a+ 2aµ)

< +∞.

On the other hand, if h ≤ 1
2 , then we use µ (u− θ) ≤ 1− u and obtain(

µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
≤ (1− 2h) θµ (1− u) + ((3h− 1) θ − (2hθ + h− 1−2θ)u)µ+ (2− h)u+ h

≤ ((1+θ)u− h (u− θ))µ+ (2− h)u+ h,

whence

sup
(µ,u)∈C

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
u (1 + a+ 2aµ)

< +∞

is again true.
The proof is ended with

b2 = min

1,

 sup
(µ,u)∈C

(
µr1 (u, µ (u− θ))
r2 (u, µ (u− θ))

)
·
(

1
−1

)
u (1 + a+ 2aµ)


−1 .

�
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Lemma 3.2 and Lemma 3.3 below are proved by similar (and simpler) considerations. For
the sake of brevity, we do not detail the proofs. Note that Lemma 3.3 holds true for any
admissible value of b.

Lemma 3.2. There exists b3 ∈ (0, 1] such that, if b ∈
[
0, b3

]
, then for all v ∈ [0, 1− θ],((

θ
v

)
◦ fb (θ, v)

)
·
(

1
0

)
≤ 0.

Lemma 3.3. For all µ ≤ − 1+a
2a and all u ∈ [0, θ] such that −µ (θ − u) ≤ 1− u,((
u

µ (u− θ)

)
◦ fb (u, µ (u− θ))

)
·
(
µ
−1

)
≥ 0.

Next, using the fact that (θ, 0) is an unstable node (see Subsection 2.3), we can prove the
following similar lemma.

Lemma 3.4. There exists η ∈
(
0, 1−θ4

)
such that, for all η ∈ (0, η) and all µ > 0:

(1) for all u ∈ [θ − η, θ + η],((
u

min
(
1, µ2

)
(u− θ + η)

)
◦ fb

(
u,min

(
1,
µ

2

)
(u− θ + η)

))
·
(

min
(
1, µ2

)
−1

)
≤ 0.

(2) the straight lines of equation v = µ (u− θ) and v = min
(
1, µ2

)
(u− θ + η) intersect

at

u =

{
θ + η if µ ≤ 2,

θ + η
µ−1 if µ > 2,

and the intersection point is in the interior of T.

These lemmas will be used to construct a family of convex sets, illustrated in Figure 3.1.

3.2. Main proof. We are now in position to prove the main theorem, Theorem 1.2, whose
statement is recalled and precised below.

Theorem. Assume b ≤ min
(
b1, b2, b3

)
.

Let (u, v) be the solution of (1.1) with initial condition (u0, v0) ∈ C
(
RN ,T

)
satisfying

v0 6= 0 and lim
‖x‖→+∞

(u0, v0) (x) = (0, 0) .

Then coextinction occurs, namely

lim
t→+∞

(
sup
x∈RN

u (t, x) + sup
x∈RN

v (t, x)

)
= 0.

Proof. First, for all µ ≥ 0, we define the line segment

Sµ = {(ũ, ṽ) ∈ T | ṽ = µ (ũ− θ)} .
For all t ≥ 0, we define the spatial image

It =
{

(u, v) (t, x) | x ∈ RN
}
⊂ T.

For all t ≥ 0 and µ ≥ 0, we define the (Euclidean in R2) distance between It and Sµ

d (t, µ) = dist (It,Sµ) .

By standard parabolic estimates and the fact that (0, 0) is a solution of (1.1), the as-
sumptions imply

lim
‖x‖→∞

(u, v) (t, x) = (0, 0) for all t ≥ 0.
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Consequently, for all t ≥ 0 and µ ≥ 0, there exists xt,µ ∈ RN such that

d(t, µ) = dist ((u, v) (t, xt,µ) ,Sµ) .

Now, let

T = sup {t ≥ 0 | It ∩ (θ, 1]× [0, 1] 6= ∅}
and let us show that T < +∞. Without loss of generality, we restrict the analysis to the
case T > 0.

For all t ∈ [0, T ], we can define

µt = inf {µ ≥ 0 | d (t, µ) = 0}

and, by continuity, we find

d (t, µt) = dist ((u, v) (t, xt,µt) ,Sµt) = 0.

Next, by virtue of Weinberger’s maximum principle [20] applied in the convex invariant
set T satisfying the so-called slab condition, for all t ∈ (0, T ], (u, v) (t, xt,µt) ∈ int (T). This
directly implies that for all t ∈ (0, T ], µt > 0.

However, in view of Lemma 3.1 and Lemma 3.4, for any η ∈ (0, η) and any µ > 0, the
convex set satisfying a slab condition

Cµ =
{

(ũ, ṽ) ∈ T | ṽ ≥ µ (ũ− θ) , ṽ ≥ min
(

1,
µ

2

)
(ũ− θ + η)

}
is again an invariant set for (1.1). Now we define T0 = min

(
1, T2

)
and fix η ∈ (0, η) so small

that

IT0 ⊂ CµT0 .

Applying again Weinberger’s maximum principle, we find that for all (t, t′) ∈ [T0, T ]
2

such
that t′ > t > T0, (u, v)

(
t′, xt′,µt′

)
∈ int (Cµt). Hence the family (Cµt)t≥T0

is decreasing with

respect to the inclusion, or in other words the family (µt)t≥T0
is increasing.

Assuming by contradiction that T = +∞, we can define

µ∞ = lim
t→+∞

µt ∈ (µT0 ,+∞] .

We extend naturally the definition of Cµ and Sµ to the case µ =∞:

C∞ = {(ũ, ṽ) ∈ T | ũ ≤ θ, ṽ ≥ (ũ− θ + η)} and S∞ = {θ} × [0, 1− θ] .

Then, by standard parabolic estimates, the family

((t, x) 7→ (u, v) (t+ n, x+ xn,µn))n∈N

converges locally uniformly up to extraction to an entire solution (u∞, v∞) of (1.1) valued in
Cµ∞ and satisfying (u∞, v∞) (0, 0) ∈ Sµ∞ . Applying again Weinberger’s maximum principle
and using the fact that (θ, 0) 6∈ Cµ∞ , we find that necessarily µ∞ = +∞. However, by the
scalar comparison principle and the predator-prey structure (see Proposition 2.3), u∞ is a
subsolution for the bistable equation

Pũ = ũfb,1 (ũ, 0)

satisfying u∞ ≤ θ with u∞(0, 0) = θ. This directly implies u∞ = θ, and then back to the
system v∞ = 0, which contradicts (u∞, v∞) ∈ C∞.

Therefore T < +∞, that is (u, v) enters in finite time the domain C∞. By Lemma 3.2
and again by Weinberger’s maximum principle applied this time to C∞, it actually enters in
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Figure 3.1. Each colored polygon is the boundary of a set Cµ (from right
to left: µ = 0.5, 1, 2,+∞,− 1

2

(
1+a
2a + 1

θ

)
).

(The value η = θ
10 was chosen here for graphic clarity and was not analyti-

cally or numerically checked.)

finite time the interior of C∞. By Lemma 3.3 and again by Weinberger’s maximum principle,
it actually enters in finite time the interior of the convex set

C− 1
2 ( 1+a

2a + 1
θ ) =

{
(ũ, ṽ) ∈ T | ṽ ≤ −1

2

(
1 + a

2a
+

1

θ

)
(ũ− θ) , ṽ ≥ (ũ− θ + η)

}
.

Here we use the inequality θ−1 > 1+a
2a which implies the inequality − 1

2

(
1+a
2a + 1

θ

)
< − 1+a

2a .

Therefore we have in finite time, say T̃ ≥ T , both u < θ and

v <
θ

2

(
1 + a

2a
+

1

θ

)
=

4a2 − (1− a)

4a2
< 1.

Repeating the comparison with the scalar bistable equation

Pũ = ũfb,1 (ũ, 0) ,

with this time x 7→ u
(
T̃ , x

)
as initial condition, it follows that u → 0 uniformly in space

asymptotically in time.
In view of the convergence of u, the function

ε : t 7→ sup
t′≥t

(
max
x∈RN

u(t′, x)

)
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converges monotonically to 0. Thanks to the predator–prey structure, it follows just as
before that, for all t0 ≥ 0, v is in [t0,+∞)× RN a subsolution for the equation

P ṽ = ṽfb,2 (ε (t0) , ṽ) .

The Taylor expansion of fb,2 and the predator–prey structure bring forth the existence of a
positive constant C > 0 such that, for large values of t0,

Pv ≤ v
[
b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
+ ∂ufb,2(0, v)ε (t0) + o (ε (t0))

]
≤ v

[
b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
+ Cε (t0)

]
.

Now, thanks to wb ≤ 1 and −h+ (2h− 1) v ≤ 0,

b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
≤ −b (h− (2h− 1)v) (1− v) .

If h = 1, we find

b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
≤ −b (1− v)

2
.

If h ∈
(
1
2 , 1
)
, we find

b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
≤ −b (1− h) (1− v) .

If h ∈
(
0, 12
)
, we find

b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
≤ −bh (1− v) .

If h = 0, we find

b (−h+ (2h− 1) v) (1− v)

1− 2hbv + (2h− 1) bv2
≤ −bv (1− v) .

Hence the function v̂ = 1− v satisfies

P v̂ ≥ (1− v̂) (F (v̂)− Cε (t0)) in [t0,+∞)× RN ,

where

F : z ∈ [0, 1] 7→


bz2 if h = 1,

b (1− h) z if h ∈
(
1
2 , 1
)

bhz if h ∈
(
0, 12
)

bz (1− z) if h = 0.

In all cases, F is increasing in
(
0, 12
)

and maps
[
0, 12
]

onto
[
0, F

(
1
2

)]
. Assume that t0 is so

large that Cε (t0) < F
(
1
2

)
and let z0 ∈

(
0, 12
)

be the root of F (z) = Cε(t0) > 0. Assume

further that t0 is so large that t0 ≥ T̃ and z0 < 1− 4a2−(1−a)
4a2 , so that

min
x∈RN

v̂ (t0, x) > z0.

To conclude, we distinguish two cases, depending on whether h = 0 or not.
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On one hand, if h > 0, the reaction term (1− v̂) (F (v̂)− Cε (t0)) has in [z0, 1] a monos-
table structure: its only zeros are z0 and 1 with negative derivative at 1 and positive
derivative at z0. Again by standard comparison, this implies that the solution of{

Pz = (1− z) (F (z)− Cε (t0))

z(t0, x) = v̂ (t0, x) > z0 for all x ∈ R

converges uniformly in space to 1 as t → +∞. Finally, by the comparison principle, v̂
converges uniformly to 1, or in other words v converges uniformly to 0.

On the other hand, if h = 0, then (1− v̂) (F (v̂)− Cε (t0)) has in (z0, 1) one more zero,
say z1. The steady states z0 and 1 are unstable whereas z1 is stable. By arguments similar
to the previous case, we obtain

lim
t→+∞

inf
x∈RN

v̂(t, x) ≥ z1.

But z1 depends continuously on t0 and converges to 1 as t0 → +∞. Passing to the limit,
we deduce

lim
t→+∞

inf
x∈RN

v̂(t, x) ≥ 1,

whence v converges uniformly to 0 indeed. �

4. Discussion

In this last section, we discuss the results and suggest new directions of research. More
precisely, we discuss different parameter ranges (Subsection 4.1, Subsection 4.2), a different
PDE model (Subsection 4.3) and biological implications (Subsection 4.4)

4.1. On different choices of selective disadvantages. In what follows, we give some
evidence arguing in favor of coextinction when a > 1

2 (and b ≤ a), versus the existence of a

joint front with complex spatio-temporal dynamics when a < 1
2 , see also Figure 1.5.

4.1.1. Monostable drive and brake with small selective disadvantage. In this subsection we
assume a ≤ 1

2 so that the drive has a monostable dynamic and b ≤ b1 so that we are in
the predator–prey regime (see Proposition 2.3). We recall that, by Subsection 2.3, global
convergence to (0, 0) for the diffusionless system cannot occur if a < 1

2 , as it is a saddle. As
showed previously by Figure 2.1, the system is oscillating with either damped oscillations
eventually converging to a coexistence state or sustained oscillations approaching a periodic
limit cycle or the heteroclinic cycle on the boundary. What about the reaction–diffusion
system? In particular, is the monostable drive fast enough to persist ahead of the oscillating
front?

First, since v 7→ f2(1, v) is

v 7→ 2(1− b)− b(1− h)v

1− a+ (2h− 1)bv2 + 2(a− b)v
− 1

and is therefore decreasing with respect to v, the nonlinearity vf2(1, v) has a KPP structure.
Hence (1.1) is a particular case of the more general framework investigated by Ducrot–

Giletti–Matano [4], provided that a ≤ 1
4 (the prey follows KPP-like dynamics), and the

drift term due to a heterogeneous population size is neglected, i.e. P = ∂t −∆. However,
regarding the part of their analysis we are interested in here, we believe the KPP condition
and the absence of drift could be relaxed. In any case, the following discussion can be
rigorously justified when a ≤ 1

4 and n is spatially homogeneous following the arguments in
[4].
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This boils down to the comparison between the spreading speed c of u invading the wild-
type type 0 alone (cf. Subsection 2.2) and the spreading speed of v invading the gene drive

u ∼ 1 separately, namely 2
√
f2(1, 0) = 2

√
1+a−2b
1−a .

In the case a ≤ 1
4 , the sole gene drive verifies a KPP condition ensuring that the prop-

agation occurs at the explicit speed 2
√
f1(0, 0) = 2

√
1− 2a. It is immediate to see that

2
√

1− 2a < 2
√

1+a−2b
1−a , so that u is unable to evade, and will eventually be caught up by v.

In the case a ∈
(
1
4 ,

1
2

)
, the spreading speed c can be estimated by comparison with a

well-chosen KPP equation, namely with a KPP equation whose reaction term is larger than
or equal to u 7→ uf1(u, 0) in [0, 1]. It can be verified easily that the minimal KPP reaction
term satisfying this condition is exactly defined in [0, 1] as

u 7→ u max
z∈[u,1]

f1(z, 0).

Denoting

α = max
u∈[0,1]

f1(u, 0),

the KPP speed associated with this reaction term is exactly 2
√
α, so that the spreading

speed c of u invading 0 satisfies c ≤ 2
√
α. To estimate α itself, we use the fact that, since

u 7→ f1(u, 0) is not decreasing, α is exactly such that the second-order polynomial equation
in the variable u

α
(

1− a+ a (1− u)
2
)

= a (1− u) (u− θ)

admits a positive double root. After some algebra, we find that the corresponding discrim-

inant vanishes if and only if α = 1−
√
a

2
√
a

, whence the estimate c ≤ 2
√
α finally reads

c ≤

√
2

1−
√
a√

a
.

Subsequently, we consider the quantity

2

√
1 + a− 2b

1− a
−

√
2

1−
√
a√

a
.

It turns out that there exists a1,b ∈
(
0, 12
)
, increasing with respect to b ∈ [0, a] and satisfying

a1,a = 1
9 , such that this quantity is positive if and only if a > a1,b. Consequently, if

1
2 ≥ a ≥ 1

4 > a1,b, we expect that u is never able to evade v and a joint invasion front is
observed.

Due to the diffusion and possible instabilities, we cannot really expect simple sustained
or damped oscillations in the wake of the joint invasion front. Numerically, we observe very
complicated spatio-temporal patterns (see Figure 4.1).

4.1.2. Brake and drive with the same large selective disadvantage. When b is close to a > 1
2 ,

the dynamics are more complicated.
In the limiting case a = b with h = 1, the following properties can be established (quite

directly). Of course they persist in a neighborhood of a = b, h = 1.

(1) The dynamics in T are no longer of predator–prey type. The system remains preda-
tive outside of the neighborhood of (0, 0) delimited by the graph of

u 7→ 1

2

(
2− u−

√
(2− u)

2
+ 4 (u− θ)

)
,



24 A BRAKE TO REVERSE A GENE DRIVE INVASION

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(a) t = 240

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(b) t = 280

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(c) t = 320

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

space

(u
,v

)

(d) t = 360

Figure 4.1. Further numerical snapshots of the solution of (1.1) in the
case a = 0.45, and b = 0.35, h = 0.5, and n is spatially homogeneous, see
Figure 1.3.

but inside this neighborhood, the system is now cooperative. Even though (0, 0)
might be globally attractive inside the cooperative region (and this should actually
be easy to establish), general solutions of the reaction–diffusion system might never
enter uniformly this region. In order to prove such a property, we need a Lyapunov
function or a family of contractant sets, as in the proof of Theorem 1.2. We did not
manage to perform such a construction.

(2) If in addition a < 2
3 , then there is a (unique) spatially uniform interior stationary

state at

(u?, v?) =

(
a

4(1− a)
,

2− 3a

4(1− a)

)
.

In view of Figure 4.2, this steady state is, regarding the diffusionless system, an un-
stable spiral. This is one of the main obstacles encountered when trying to construct
a Lyapunov function or a family a contractant sets.

Because of these obstacles, we did not manage to find an analytical proof of the coex-
tinction. Nevertheless, in view of numerical experiments, it remains conjectured to hold
true.
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(a) a = 0.6, b = 0.6, h = 1.
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(b) a = 0.6, b = 0.6, h = 0.1.

Figure 4.2. Trajectories of the diffusionless system with twenty random
initial conditions and b = a > 1

2 . When h = 1, there is a coexistence
state that is an unstable spiral. In both cases, (0, 0) seems to be globally
attractive.
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4.2. On imperfect conversion efficiencies. When the conversion efficiencies of the drive
and the brake are no longer assumed to be perfect, the system reads instead

Pu = u

(
(1− a)u+ (1− cB) (1− hBDb) v + (2cD (1− a) + (1− cD) (1− hDOa)) (1− u− v)

wcD,cB (u, v)
− 1

)
,

Pv = v

(
(1− b) v + (2cB (1− b) + (1− cB) (1− hBDb))u+ (1− hb) (1− u− v)

wcD,cB (u, v)
− 1

)
.

Here cD, cB , hDO and hBD are all in [0, 1] and are respectively the conversion efficiency of
the drive, the conversion efficiency of the brake, the dominance of D on O and the dominance
of B on D. The normalizing mean fitness wcD,cB (u, v) is, similarly to the numerator, a mere
algebraic modification of the perfect case.

It is therefore quite clear that the various uniform estimates on the reaction term we
derived near the limit b ∼ 0 should remain true for values of (cD, cB) close enough to (1, 1)
and up to a slight modification of the threshold a = 1

2 . Hence both Theorem 1.1 and
Theorem 1.2 are expected to remain true in this framework. We leave this extension for
future work.

4.3. On a slightly different model. When writing down the model, if we follow Nagylaki
[11] instead of following Tanaka et al. [16], we obtain a different system:

∂u

∂t
−∆u− 2∇(log n) · ∇u = wOOu (g1 (u, v)− w (u, v)) ,

∂v

∂t
−∆v − 2∇(log n) · ∇v = wOOv (g2 (u, v)− w (u, v)) ,

∂n

∂t
−∆n = (wOOw(u, v)− 1)n,

where wOO is the fitness of wild-type homozygous individuals (it can no longer be assumed
to be unitary without loss of generality). In short, the reaction term for u and v is multiplied
by wOOw (u, v) and an explicit equation on n appears.

It turns out that we can study the subsystem satisfied by (u, v) exactly as before (handling
n as data) and obtain exactly the same results provided wOO is a positive constant. The
only (very small) differences appear in the algebraic expression of three thresholds, namely:

(1) the KPP threshold for the sole drive becomes a = 1
3 ;

(2) the positivity threshold for the bistable speed of the sole drive becomes a = 2
3

(exactly);
(3) the cooperativity neighborhood when a = b, h = 1 is now delimited by the straight

line u+ v = θ.

Note that, in this model, our coextinction result implies that, asymptotically in time, the
population density n has an exponential growth with rate wOO − 1.

The more general case where the wild-type fitness wOO ≥ 0 is non-constant (for instance,
when it is a nonnegative function of (u, v, n) that accounts for an Allee effect or a saturation
effect) is left as an open problem. Nevertheless, let us point out that if the predator–prey
structure at b = 0 is preserved (e.g., wOO depends only on n), then the coextinction result
still holds true (namely, there are only wild-type individuals in the long run) and this might
simplify a lot the asymptotic population dynamics.

4.4. On biological implications. Whether the fitness cost associated to the drive allele,
a, is greater or lower than 1

2 , is critical for the outcome of the model. The a = 1
2 value is also

critical in a well-mixed population in the absence of brake: when a < 1
2 , only the drive-only

equilibrium (u = 1) is locally stable, but when a > 1
2 , the wild-type-only equilibrium (u = 0)
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becomes locally stable too: which equilibrium is eventually reached depends on the initial
frequency of drive in the population (bistability). This frequency has to be higher than a
threshold for the drive to fix. This bistability regime corresponds to what Tanaka et al. [16]
call “socially responsible drives”. [16] indeed showed that such drives could be stopped by
barriers of finite width. Our results confirm that drives in the bistability parameter range
(in our case, with a > 1

2 ) are more “socially responsible” than drives without threshold

(a < 1
2 ): in the former case, a brake can stop the spread of a drive, while in the latter case,

an indefinite co-invasion takes place, according to our model.
Should artificial gene drives be implemented in nature for the control of wild populations,

these results indicate that it would be preferable to design them so that they fall in the
bistability parameter range. Such drives would be more controllable than drives without
introduction thresholds. Having such control on parameters will obviously be much more
complicated empirically, than it is theoretically. In addition, in the bistability parameter
range, the threshold for successful drive introduction can be very high, meaning that very
high numbers of drive-carrying individuals would need to be reared.

Our macroscopic model ignores the effect of stochasticity by averaging all quantities.
The spatial spread of the drive and the brake in individual-based models modeling smaller
population sizes and possibly accounting for stochasticity remains to be investigated.

As our model uses a diffusion approximation, the location of the point of introduction
of the brake does not affect our results. With non-diffusive models, for instance individual-
based models, but also and more importantly in reality, this factor will probably affect the
efficiency of the control of a gene drive by a brake.
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Appendix A. Weinberger’s maximum principle

Below is recalled the main tool of the proof of Theorem 1.2. For clarity, we temporarily
get rid of all our notations and adopt the original ones from [20].

Theorem A.1 (Weak maximum principle). Let D be a C1,ν domain in Rn with ν ∈ (0, 1),
S be a closed convex subset of Rm, f (u, x, t) be Lipschitz-continuous in u ∈ S and uniformly
Hölder-continuous in x ∈ D and t ∈ [0, T ], with the property that for any outward normal
p at any boundary point u? of S,

p · f (u?, x, t) ≤ 0 for all (x, t) ∈ D × (0, T ] .

Let

L =
∂

∂t
−

n∑
i,j=1

aij (x, t)
∂2

∂xi∂xj
−

n∑
i=1

bi (x, t)
∂

∂xi

be uniformly parabolic with coefficients uniformly Hölder-continuous with Hölder exponent
greater than 1

2 .
If u is any solution in D × (0, T ] of the system

Luα = fα (u, x, t) for α = 1, 2, . . . ,m



28 A BRAKE TO REVERSE A GENE DRIVE INVASION

which is continuous in D× [0, T ], and if the values of u on D×{0}∪∂D× [0, T ] are bounded
and Hölder-continuous and lie in S, then u (x, t) ∈ S in D × (0, T ].

Theorem A.2 (Strong maximum principle). Let D be an arbitrary domain in Rn and S be
a closed convex subset of Rm such that every boundary point of S satisfies a slab condition.
Let f (u, x, t) be Lipschitz-continuous in u, and suppose that if p is any outward normal at
a boundary point u?, then

p · f (u?, x, t) ≤ 0 for all (x, t) ∈ D × (0, T ] .

Let

L =
∂

∂t
−

n∑
i,j=1

aij (x, t)
∂2

∂xi∂xj
−

n∑
i=1

bi (x, t)
∂

∂xi

be locally uniformly parabolic, and let its coefficients be locally bounded.
If u is any solution in D × (0, T ] of the system

Luα = fα (u, x, t) for α = 1, 2, . . . ,m

with u (x, t) ∈ S and if u (x?, t?) ∈ ∂S for some (x?, t?) ∈ D × (0, T ], then u (x, t) ∈ ∂S in
D × (0, t?].

Appendix B. Numerical scheme

The various numerical simulations presented earlier are all produced by the following
Octave code or slight variants of it.

clear

% Biological parameters

a = 0.6; % fitness cost of the gene drive, u

b = 0.1; % fitness cost of the brake, v

h = 0.5; % dominance rate of B over O in the heterozygous OB

% Parameters of the numerical scheme

T = 300; % final time

L = 1280; % length of the spatial domain

M = 160000; % number of time steps

N = 16000; % number of spatial steps

dt = T/M; % size of the time step

dx = L/N; % size of the spatial step

X = [0:N]*dx; % discretized spatial domain

A = spdiags([ones(N+1,1) -2*ones(N+1,1) ones(N+1,1)],[-1, 0, 1],N+1,N+1); % 1D discrete Laplacian

A(1,1) = A(1,1)+1; % Neumann boundary condition on the left

A(end,end) = A(end,end)+1; % Neumann boundary condition on the right

B = eye(NX+1)-(dt/dx^2)*A; % matrix for the semi-implicit scheme

% Initial conditions for the allelic frequencies

U = [zeros(8*N/20+1,1);0.99*ones(3*N/20,1);zeros(9*N/20,1)]; % u at t=0

V = [zeros(9*N/20+1,1);0.001*ones(N/20,1);zeros(10*N/20,1)]; % v at t=0

% Draw the initial conditions as functions of space

plot(X,U,’-b’,X,V,’-r’)

axis([0 N*dx 0 1.1])

xlabel(’$x$’,’fontsize’,10)

ylabel(’$(u,v)$’,’fontsize’,10)
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% Loop

for i=[1:M]

w = 1-(a*U.^2+b*V.^2+2*b*U.*V)-2*(1-U-V).*(a*U+h*b*V);

u = B\(U + dt*U.*(((1-a)*U+2*(1-a)*(1-U-V))./w-1));

v = B\(V + dt*V.*(((1-b)*V+2*(1-b)*U+(1-h*b)*(1-U-V))./w-1));

U = u;

V = v;

if mod(i,M/100)==0 % At T/100, 2*T/100, etc., draw the allelic frequencies

plot(X,U,’-b’,X,V,’-r’)

axis([0 N*dx 0 1.1])

xlabel(’$x$’,’fontsize’,10)

ylabel(’$(u,v)$’,’fontsize’,10)

drawnow;

endif

end
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