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CATCH ME IF YOU CAN: A SPATTIAL MODEL FOR A
BRAKE-DRIVEN GENE DRIVE REVERSAL

VINCENT CALVEZ, FLORENCE DEBARRE, AND LEO GIRARDIN

ABSTRACT. We consider a reaction—diffusion system modeling the co-invasion of a gene
drive (an allele biasing inheritance, increasing its own transmission to offspring) and a
brake (an “antidote” to a gene drive) in a population carrying a wild-type allele. We
successfully prove that, whenever the drive fitness is at most 50% of the wild-type one
while the brake fitness is close to the wild-type one, co-extinction of the brake and the
drive occurs in the long run. On the contrary, if the drive fitness is at least 50% of the
wild-type one, then co-extinction is impossible. Based on numerical experiments, we
argue in favor of a global co-extinction conjecture provided the drive fitness is at most
50% of the wild-type one. The proof relies upon the study of a related predator—prey
system with strong Allee effect on the prey.

1. INTRODUCTION

With the development of CRISPR-Cas9 genetic engineering, population management
using gene drives has become a realistic possibility. The technique consists in artificially
biasing the inheritance of a trait of interest in a target population [5]. Such biased inheri-
tance is due to the presence of an artificial self-replicating element expressing a DNA-cutting
enzyme (the Cas9 endonuclease), such that initially heterozygous individuals (i.e. carrying
the drive construct on one chromosome and a wild-type sequence on the homologous chro-
mosome) produce almost exclusively drive-carrying gametes instead of 50% of drive-carrying
gametes, as expected under Mendelian segregation (see Figure. The proportion of drive-
carrying gametes depends on the conversion efficiency, perfect conversion meaning that an
initially heterozygous individual produces 100% of drive-carrying gametes. Thanks to its
supra-Mendelian transmission to offspring, a drive can spread in a population even if it con-
fers a significant fitness cost [11]. Potential applications for human health and agriculture
include the modification of mosquito populations to make them resistant to malaria or the
eradication of agricultural pest species [§].
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FIGURE 1.1. Perfect gene conversion: a heterozygous individual only pro-
duces gametes carrying the gene drive allele.

However, while very promising, the technique is not risk-free. A drive could have off-target
effects, or spread in a non-target population. For instance, a drive can be introduced on
an island to eradicate a local rat population, but the dispersal of drive-carrying individuals
to the mainland or to another island would also threaten those populations [4]. The effects
of population modification using a drive may also have unexpected consequences on other
species, e.g., predators or competitors. More generally, it is important to be able to control
the spread of a drive, and to stop it if necessary. To this end, a “brake” construct was
proposed, that does not contain the cas9 gene (and is hence unable to convert a wild-type
allele), but that is able to target the very cas9 sequence contained in a drive construct, and
therefore to convert a drive allele into a brake allele in a (drive/brake) heterozygote [16].
The construct has been shown to not only stop a drive, but also in some cases lead to the
recovery of the original wild-type population [13].

Most models of gene drive consider well-mixed populations (except meta-population and
partial differential equations models, |2, @, [11]). Here we consider the influence of space
and limited dispersal, and ask whether a brake construct is able to stop the spatial spread
of a drive. More precisely, we introduce a minimalist PDE model of two interacting sub-
populations combining spatial diffusion and Mendelian population genetics. The two sub-
populations refer to the frequency of individuals carrying respectively the gene drive allele
and the brake allele embedded in a wild-type population. The case of a single sub-population
of gene drive was addressed in [I1]. It was shown that the spatial invasion of the gene drive
allele was successful up to a level of approximately 70% of fitness cost, see below for details.
In the present work, we ask whether the brake, even if lately introduced (with a spatial
delay with respect to the gene drive invasion) can catch up the invasion and hinder the gene
drive propagation. Using phase plane analysis and techniques from reaction—diffusion PDE;,
we give a positive answer to this question, under some conditions on the model parameters.
We even prove that the gene drive frequency may be eventually reduced to zero everywhere,
provided that the fitness cost of the drive is above 50%, and that the fitness cost of the
brake is small enough.

1.1. The model. We adopt the following set of notations:

N € N is the spatial dimension (typically N € {1,2,3});

n € [0, 4+00) is the total population density;

u € [0,1] and v € [0,1] (0 < u+ v < 1) are the respective frequencies in the
population n of the gene drive allele D and the brake allele B (so that the frequency
of the wild-type allele O is exactly 1 — u — v);

a € (0,1) and b € (0,1) are the respective selective disadvantage (i.e., decreased
survival) of the homozygous individuals DD and BB compared to the wild-type,
with the assumption a > b, which is biologically relevantﬂ

1Depending on the construct, the brake could just convert a drive without affecting its effect on fitness
(b close to a, b < a), or at the other extreme the brake could carry a cargo gene restoring wild-type fitness
(b close to 0).
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e h € [0,1] is the dominance of the brake allele B on the wild-type allele O (in
particular, B is dominant if h = 1, recessive if h = 0 and additive if h = 1/2).

Following the biological literature [I1], 2], we assume that:

(1) the conversion efficiency of the drive (conversion OD — DD) and of the brake
(conversion DB — BB) are perfedﬂ;

(2) gene conversion takes place early in development (e.g., an individual born as OD
becomes DD and has the fitness of a DD individual)El;

(3) gametes mate randomly (i.e. according to a uniform law).

Then the spatially homogeneous, next-generation discrete system reads:
(1 —ug —vg) (1 —ug —vg + (1 — hb)vy)
1 — (au2 4 bv2 + 2bugvg) — 2 (1 — ug — vy) (aug + hbvg)’
ug (1 —a)ug+2(1 —a) (1 —uy —vy))
1 — (au2 4 bv2 + 2bugvg) — 2 (1 — ug — vy) (aug + hbvg)’
0y (1= B) vy +2(1 = b)uy + (1= hb) (1 - u, — v,)
1— (au2 + bv2 + 2bugvg) — 2 (1 — ug — vy) (aug + hbvg)”

I —ugyr —vg41 =

Ug41 =

Vg+1 =

The first line corresponds to the frequency dynamics of the wild-type allele, the second line to
the drive, and the last line to the brake. For each equation, the numerator on the right-hand
side corresponds to the amount of corresponding alleles produced, while the denominator
corresponds to the total amount of alleles (i.e., the “mean fitness” in the population). It
can be verified that this denominator is exactly such that the first equation is true (in other
words, such that the sum of the three frequencies remains identically equal to 1 as time goes
on). Since the first equation is redundant, we get rid of it hereafter.
These equations can be understood as follows:

e Wild-type alleles (first equation) are carried (i) by all of the gametes produced by
OO homozygotes (initially in frequency (1 — u, — vy)?, and with fitness 1), and
(1) by half of the gametes of OB heterozygotes (in frequency 2v4(1 —uy, — vg), and
with fitness (1 — hb)). Note that since gene conversion is assumed to be perfect, no
wild-type alleles are produced by initially OD individuals.

e Drive alleles (second equation) are carried (i) by all of the gametes produced by
DD homozygotes (initially in frequency u? and who have a fitness (1 — a)), but
also (ii) by all of the gametes produced by initially OD heterozygotes (initially in
frequency 2uy(1—ugy —vy)), who were immediately converted into DD homozygotes,
and hence have fitness (1 — a). Since gene conversion is assumed to be perfect, no
drive alleles are produced by initially DB individuals.

e Brake alleles (third line) are carried (i) by all of the BB homozygotes (initially in
frequency vg, and who have a fitness (1 —0)), (ii) by all of the gametes produced by
initially DB heterozygotes (in frequency 2ugv,), who were immediately converted
into BB homozygotes, and hence have fitness (1 — b), and finally (7) by half of the
gametes produced by OB heterozygotes (in frequency 2v,(1 — uy, — v,), and with
fitness (1 — hd)).

Next, we take the spatial diffusion of the individuals of the population n into account
and assume:

2This is merely for algebraic convenience and the general case will be discussed below in Subsection
3With late gene conversion (typically in the gonads), an OD-born individual would have the fitness of
an OD. In both cases though, only D gametes are produced by this individual.
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(4) the time scale of the diffusion mechanism and the maturation time between two
generations are of the same order;
each sub-population diffuses at the same rate.

5 h sub lation diff t th t

We are now in position to perform a classical first-order approximation and obtain the
following reaction—diffusion PDE system:

ou _ (1—a)ut+2(1—a)(l—u-—n0v) B
ot Au—2V(logn) - Vu=u (1—(au2—|—bv2—|—2buv) —2(1 —u—v) (au + hbv) 1)
o B I-bv+2(1-but(l-hb)(1-u—v)

ot Av 2V(logn) Vv=v (1_ (au2+bv2+2buv) —2(1—u—11) (au—l—hbv)

The transport term 2V (logn) is the signature of gene flow in populations which are not
homogeneous in size. This is an easy consequence of the reformulation of the problem by
means of frequencies rather than population densities. To make this connection clear, we
point out that the diffusion operator % — A for the population density un is related to the
diffusion—transport operator % — A —2V(logn) for the frequency wu:

0 (un) _ Ou on
5 —A(un)—an—kau—(Au)n—(An)u—QVern
ou on
=n at—Au—QV(logn)-Vu} —u[at—An].

We shall address two types of questions in our discussion:

(1) what is the transient behaviour of each sub-population?
(2) what is the final outcome of the model?

In the latter, we can handle the a prior:i unknown transport term 2V(logn), under some
mild assumption. However, we were not able to handle this transport term to discuss the
former question, simply because this transport term may have an impact on the propagation
speeds, although it should not modify the relative speed. This is the reason why we may
sometimes restrict to homogeneous populations in some parts of the discussion, although
we are aware that it is a serious restriction.

For well-posedness purposes, we assume that n is positive everywhere in time and space. It
might asymptotically vanish but we further require some minimal regularity: we assume that
V(logn) is uniformly Hélder-continuous with an exponent larger than 3 (for instance, uni-
formly Lipschitz-continuous). These mathematical assumptions should not be understood
as being too restrictive: they are satisfied, for instance, in a large class of reaction-diffusion
problems with initial conditions bounded above and below by positive constants.

For ease of reading, we define the scalar parabolic operator

0
@7§7A72V(10gn)'v

as well as the reaction functions

w(u,v) =1 — (au® 4+ bv® + 2buv) — 2 (1 — u — v) (au + hbv)

_ l-a)u+2(1-a)(l—u—v)
g (u,v) = <(1—b)v+2(1—b)u+ 1—hb)(1—u—v))’
fluv) =

1 (u, v) 1
U, v) —
w (U, ’U) g ) 1)/
so that the system finally reads:

(1.1) P (Z) - (z) o f (u,v).
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Here, the fact that the 2x2 linear parabolic operator on the left-hand side is the same on both
lines is of the utmost importance. Mathematically, it is a necessary and sufficient condition
to apply several theorems of the standard parabolic theory, in particular a generalized
maximum principle due to Weinberger [I5] that we will indeed use extensively. Biologically,
it means that the individuals carrying the allele D and those carrying the allele B move in
space similarly: the gene under consideration does not affect the motility of the individuals
carrying it.

Since u and v are frequencies, they satisfy u +v < 1 (with 1 — (u + v) the frequency of
the wild-type allele O). Therefore it is natural to define the triangle

T:{(u,u)e[o,l}2 |u+v§1}.

It is of course the maximal closed invariant subset of the phase plane we are interested in
(the invariance will be verified rigorously later on).

1.2. Results.

1.2.1. Coexistence. Our first result deals with the case of coexistence. For technical reasons
that will be discussed below, the statement is restricted to spatially homogeneous solutions,
i.e. we consider the solutions of the system of ODE with the righ-hand-side of only.

In the case where the selective disadvantage of the drive compared to the wild-type is less
than a half (a < 1/2), we establish that both sub-populations of drive and brake persist in
the long term, as measured by their frequencies which are positive at arbitrary large times.
The mathematical statement is as follows.

Theorem 1.1. Let (u,v) be a spatially homogeneous solution of with initial condition
in the interior of T.
If a < %, then co-extinction of (u,v) cannot occur. More precisely,

limsup (u (t) +v (¢)) > 0.
t—+o0

In view of numerical experiments, we expect damped oscillations converging to a coex-
istence state or sustained oscillations, periodic or approaching the concatenation of three
heteroclinic orbits (see Subsection below).

Concerning the spatially heterogeneous problem, describing the invasion of the drive
and the brake in a territory occupied by the wild-type allele, we explain in Subsection 4.1
why we expect that the brake always catches up with the drive and that, afterwards, both
populations persist in the wake of the joint invasion front. We give evidence that this claim
is true if @ < 1/4 and the total population n is spatially homogeneous, based on Ducrot—
Giletti-Matano [3]. We believe it remains true even if 1/4 < a < 1/2. Figure is a
numerical illustration of this claim. Indeed, we observe that the brake catches up with the
drive, even if it starts with a space and time delay. However, the drive is “strong” enough to
persist, resulting in a joint invasion front followed by a complicated spatio-temporal pattern.

1.2.2. Coextinction. Our second result deals with the case of coextinction. Here we are able
to handle spatially heterogeneous solutions.

We assume that the initial frequencies (ug, vo) are distributed such that some individuals
carrying the brake allele have been released somewhere, whereas the gene drive allele has not
completed its invasion in the whole space yet (only individuals carrying the wild-type allele
are present far away in space). If the drive pays a sufficient fitness cost (a > 1/2), and if the
selective disadvantage of the brake is not too large (b < b*(a)), then the drive goes extinct
everywhere, followed by the complete extinction of the brake as well. The threshold for the
brake b*(a) appears for technical reasons at several steps of our argument. Consequently,
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an explicit value is not straightforward to obtain, and might not be informative. We believe
that this is only a technical restriction, and that the result should remain true for relatively
large values of b. The mathematical statement is as follows.

Theorem 1.2. Let (u,v) be the solution of with initial condition (ug,vo) € € (RN, T)
satisfying
vo #0 and lim  (ug,vo) () = (0,0).

llzll—+oc

There exists b*(a) € (0,a) such that, if a > 1 and b < b*(a), then co-extinction occurs:

t_lgnoo <ms€uR]%V u(t,z) + zsg}g v (t,x)) = 0.

It is important to notice that the convergence to zero of both u and v is uniform in space,
that is, we rule out the possibility of a persistent wave of u followed or replaced by a wave
in v.

We performed numerical experiments to explore the possible behaviours for relatively
large values of b. We observed complete extinction for values of b up to a (Figure , and
even beyond (Figure (A)) However, if the selective disadvantage of the brake is too large,
then it does not succeed in blocking the invasion of the drive. Nevertheless, the case b > a
is beyond the scope of our assumptions and does not correspond to an interesting case in
the context of the biological problem.

To complete the numerical investigation, we give some evidence in Subsection [£.1] sup-
porting the conjecture that the co-extinction of u and v occurs for all b < a.

1.3. Structure of the paper. Section 2 is devoted to some technical preliminaries and
contains in particular an elementary proof of Theorem Section 3 contains the proof of
Theorem [T.2} Section 4 is where possible extensions are discussed and where the aforemen-
tioned conjecture is explained.

2. PRELIMINARIES

2.1. Well-posedness.
Proposition 2.1. The function w satisfies

mgxw:land mTinwzl—a>0.

Therefore the system is well-posed in T.

Proof. The function u ~ w (u,0) coincides with u — 1 — au? — 2au (1 — u), that is u —
1—a+a(l—u)’, whose minimum and maximum in [0,1] are respectively 1 —a > 0 and
1. Since the bound w < 1 in T is obvious, this directly shows that the maximum of w in T
is indeed 1. It only remains to confirm that the minimum is indeed 1 — a. We prove this
claim in two steps: first, we prove that the minimum of w on 0T is 1 — a; second, we prove
that there is no critical point of w in the interior of T.

The function v + w (0,v) coincides with v — 1 — bv? — 2hbv (1 —v), that is v — 1 +
(2h — 1) bv? —2hbo. Tts derivative with respect to b is 2b{v(h—1)+h(v—1)} < 0. Therefore,
its minimum in [0, 1] is attained at v =1 and is 1 — b > 0.

The function u — w (u, 1 — u) coincides with u — 1 —au2 —b (1 — u)* — 2bu (1 — u), that
is urs 1 —b— (a—0b)u?, whose minimum in [0,1] is 1 —a > 0.

Therefore the minimum of w on 9T is indeed 1 —a > 0.
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(E) Space-time representation of the solution (u,v)

FIGURE 1.2. Numerical solution of (1.1 in the case a = 0.45 < 1/2, and

b =0.35 < a, h = 0.5, and n is spatially homogeneous (i.e. the drift
term V logn vanishes). (A-B-C-D) are successive snapshots of the drive u
(blue) and the brake v (red) from the time ¢ = 80 at which the brake v is

released on the left-hand-side of the domain. (E) is the superposition of
many snapshots, in order to visualize the spatio-temporal dynamics.
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FIGURE 1.3. Same as in Figure but with a = 0.55 and b = 0.45.
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(A) @ =0.55, b = 0.65 (B) a=0.55,b=08

FIGURE 1.4. Further numerical investigation for a relatively large disad-
vantage of the brake b > a > 1/2. Uniform coextinction remains true for
values of b larger than a, but no too large. Joint persistence of both species
associated with complicated spatio-temporal behaviours were observed for
intermediate values of b (a = 0.55,b = 0.75, result not shown).

Next, straighforward algebra shows that any critical point (u*,v*) € R? satisfies

<a— (1a— h)b a(_2f51—_1§lgb> (Z:> - (l?b)

The determinant of the 2 x 2 matrix above is —a (a — b) — (1 — h)? b2, which vanishes if and
only if @ = b and A = 1, but in such a case the system reduces to u* 4+ v* = 1 so that there
are no critical points in int (T). If @ > b or h < 1, the 2 X 2 matrix is invertible and Cramer’s
rule yields
(", 0) = 1 (a(2h —Db—hb(a—(1— h)b))
’ —a(a—b)—(1—h)*p? ahb—(a—(1-h)b)a
1 (b(l —h)(a — hb))

ala—0b)+ (1—h)*b? a(a —b)
This point is in int (T) if and only if b(1 — h)(a — hb) < (1 — h)?b?, that is if and only if
a — hb < (1 — h)b, that is if and only if a < b. Hence it is not in int (T).

Therefore the minimum of w in T is attained only on the boundary and is 1 —a > 0. O

Proposition 2.2. Any solution of with initial condition in € (RN,T) is valued in T
at all times t > 0.

Proof. To show that T is an invariant region of the phase space, we use Weinberger’s max-
imum principle [15]. Indeed, the triangle T is a convex invariant set satisfying the so-called
slab condition. Therefore we only have to verify that the reaction term is inward-pointing
on the boundary of T, namely:

(g) o f (u,0) - ((1)) > 0 for all u € [0, 1],
(S) o f(0,) - <(1)> >0 for all v € [0, 1],
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U 1
<l—u> of(u,l—wu)- <1> <0 for all w € [0, 1].
These three conditions are trivially verified (the left-hand side being always zero). O

2.2. The propagation of the gene drive alone. In what follows, we fix v = 0 and we
briefly review some results described in [11] about the dynamics of the gene drive invasion.
If v = 0, then (|1.1)) reduces to

Pu = ufi(u,0)
—au?+ (3a — 1) u — (2a — 1)
u 2
l—a+a(l—u)
au (1 —u) (u - —2‘1;1)

l—a+a(l—u)?

Ifa < %, this is a monostable equation. Additionally, a bit of algebra shows that this
is an equation of KPP type if and only if a < i, the KPP property being here understood
in the following weak sense: the maximal growth rate per capita corresponds to sparse
populations, namely

f1(0,0) = max_fi(u,0).
u€(0,1]

If a > %, this is a bistable equation with stable steady states 0 and 1 and unstable

intermediate steady state 6§ = % € (0,1). All known results on bistable equations, and
in particular [6], can therefore be applied to this case.
In particular, the sign of the following quantity plays a crucial role:

/1au(1u)(u2‘f:1) V1i—a ( a ) 1 1-a
d arctan
0

u =
l—a+a(l—u)’ a’/? 1—a

2 a

(the calculation of the integral is not detailed here). Since this is positive if a = %, negative
if a = 1 and since

0 ( ( a ) a a (2a — 1) a®/?

— [ @ — arctan 7(177) ) <0,

da 1-a 2 1—a da (1 —a)/?
there exists a unique ag € (%, 1) such that the integral is positive if a € [%,ao), zero if
a = ap and negative if a € (ag, 1]. It satisfies the numerical approximation ag ~ 0.6965.

As a consequence, in the simplified case where & = 9, — A (i.e. the total population

n is constant), solutions u that are initially compactly supported will always go extinct if
a € (ap, 1] and will spread and invade if a € [0,a0). If a € (%,a0), it is also necessary that
the initial condition is favorable enough (i.e. larger than Q%f in a wide region — see the

role of the initial data in the emergence of a wave in the bistable case [I], and in particular
the existence of bubble-like solutions that can prevent the propagation).

2.3. Basic phase-plane analysis: spatially uniform stationary states. Similarly to
Subsection if u =0, (1.1) reduces to
(1—=v)(h(l —v)+v(l—h))

1— b2 — 2hbu(1l — )

Pv=—-bv

The right-hand side has exactly the sign of —v(1—v), whence this is a “backward-monostable”
equation, where 0 is stable and 1 is unstable.
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Again similarly, if u + v = 1, the equation satisfied by u reduces to
(I-u)(1-=b+(a—0b)u)
1—b—(a—0b)u?
and this is also a “backward-monostable” equation.
All this shows that, regarding the diffusionless system,

e (0,0) is a stable node if @ > 1 and is a saddle of a < %;
e (1,0) is a saddle;
e (0,1) is a saddle.

Moreover,

Pu=—u

20— 1 _(1=b+a—0b)(2a—1)+(1—hb)(1—a)
fz( a 70) a(l—a—a(l—Qaa—_l)z) .

Since this quantity is obviously positive if a > %,
node. Of course, when a < 3, (2“;1,0) ZT.

This implies that, for the trajectories we have in mind (i.e. contained in the interior of
T), convergence to (1,0), (0,1) or (22-1,0) is impossible and convergence to (0,0) is possible

if and only if a > % Consequently, Theorem is proved.
Any stationary state in the interior of T is a solution of the following algebraic system:

{gl (ua U) = gZ(u’ 1}),

g1 (u,v) = w(u,v),

in such a case (

2‘1(1_1,0) is an unstable

which can be solved explicitly (g1 — g2 is a first-order polynomial while w — g7 is a second-
order polynomial). We do not perform this resolution here, as it is tedious and useless. We
simply point out that:

e on one hand, the proof of Theorem [I.2] will imply directly the nonexistence of such
a coexistence state when a > % and b < b*;

e on the other hand, when a < %, the flow is rotating anticlockwise on the bound-
ary of T, whence by classical phase-plane arguments (e.g. the Poincaré-Bendixson
theorem) there exists such a coexistence state. Numerically, we observe that this
stationary state is unique and is a stable or unstable spiral (see Figure .

2.4. Brake with small selective disadvantage: predator—prey regime. In what fol-
lows it is convenient to understand b as a parameter and to add a subscript b to every object
that depends on it. In particular, we rewrite the term f, (u,v) as

(2.1)

_wo (u,v " b v(w+2h(l—u—0))
fo (u,v) = wy (u,v) [fo( ’ )+w0(uvv) (v(v+2h(1uv))(v+2u+h(1uv))>}
with

wo (u,v) =1 — au® — 2au (1 —u — v)
= 1+au2—2au—|—2auv,
(l-a)u+2(1-a)(l—-u—v)
go(u,v)< v+2u+ (1 —u—v)

<2(1—a)—(11—f)uu—2(1—a)v>7
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=&

(B) a=0.4,b=0.1, h=0.8.

FIGURE 2.1. Oscillating trajectories of the homogeneous system with ten
random initial conditions and a < % Depending on the value of h, the
oscillations are either nonperiodic and sustained or damped. For interme-
diate values of h (not illustrated here), we find a mixture of nonperiodic
sustained, periodic sustained and damped oscillations, depending on the
initial condition. In all cases, the solutions spend a very long time in the

neighborhood of v = 0 (final time of the simulation 7" = 1000).
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o) = s () - ()

wo (u, v

1 (—(2a—1)+(3a—1)u—au2—2U(1—a—|—au)>
wo (u, ) u(l+2a — au — 2av)

B 1 (a(l—u)(u—@)—Zv(l—a—i—au))‘

wo (u, ) u(1+ 2a — au — 2av)

Proposition 2.3. There exists by € (0,1] such that, ifb € [0751] , then has a predator—
prey structure where u is the prey and v is the predator, namely

&,fb,l <0 and aufb’z >01inT.

Proof. First, we study the case of b = 0.
By straightforward algebra and definition of 6,

Ovfon (u,v) = wo(jy)Q(—(1—a+au)w0(u,v)—(a(l—u) (u—10)—2v(1 —a+au))au)
- wo(zv)z (—2a(2a—1)u* — (1 —a))
< B min <2a(2a— 1)2’2—1—(1—@)).

wo (u, v)* #€[0,1]

On one hand, if a > %, the minimum above is 1 — a. On the other hand, if a < %, the
minimum above is —2a (1 — 2a) + 1 —a = 4a® —3a +1 > 0. In all cases, since wg < 1 in T,

2
Oy fo,1 (u,v) < ——————= min (1 —a,4a® —3a—|—1) < —2min (1 —a,4a® —3a+1) < 0.
wo (u, v
Similarly,
wo (u,v)(1+2a(1—uv—v))+2au(l+au+2a(l—u—v))(l—u—wv
o (u0) — Mo (1) (1 20 )+ 2au 1+ au -+ 2a ) )
’U)Q(U,U)
1—
= a221—a>0.
wO(u7v)

Thus (|1.1)) in the limiting case b = 0 has indeed the claimed predator—prey structure.
Finally, thanks to the smooth convergence of f, to fo as b — 0 and the preceding uniform
estimates, the existence of b1 > 0 as in the statement is immediate. (]

3. PROOF OF THEOREM

In this subsection we assume a > % so the drive has a bistable dynamic. We denote

_ 2a-—1
0= a

Interestingly, when b < by, the system under consideration has the structure of a predator—
prey system with Allee effect on the prey. Such systems have been studied in the literature
but, apart from numerical simulations that show an incredibly wide and complicated variety
of behaviors, almost nothing is known [7}, 10} 14, among others]. Fortunately, the analysis of
our particular case is indeed possible, thanks to a very simple phase-plane structure (that
can easily be observed numerically).

its intermediate steady state.



14 A BRAKE TO REVERSE A GENE DRIVE INVASION

We will use as in Subsection the subscripts b. In order to study more precisely the
role of b in f;, we define additionally

(u) ° ( (v+2h (1 — Jv_t;)Q)h—(l(;fz_uqﬁ)h (1—u-— v)))

=
( (v+2h (1 — u(v—j;)Q)h (1(v_f2_u12)h (1—u-— v)))
(

u (2h — 2hu + (1 — 2h) v)
1—2h)v? + (Bh—1)v—h—2huv — (2—h)u
u(v+2h(1—u—v))
T \(v=1(1-2h)v+h)—uRhv+2—-h))"

Thus the reaction term of (|1.1)) reads

u wo (u,v) [ (u bu
3.1 = —— e — .
-1 ()t = S [ () o oo+ iyt
Remark. The function r satisfies, in T, r; > 0 with equality if and only if v = 0 or

(u,v) = (1,0) and r, < 0 with equality if and only if (u,v) = (0,1). This is mostly
obvious but we point out that (1 — 2h)v + h = h(1 —v) + v(1 — h) > 0 cannot vanish if
€ (0,1).

3.1. Three geometric lemmas.

Lemma 3.1. There exists by € (0,1] such that, if b € [0,52], then for all i > 0 and all
u € [0,1] such that p(u—0) <1—u,

(3.2) ((u (u“_ 9)) o f (u, p (u — 9))) : (_“1) <0.

Proof. Let
C={(u,u) €0,400) x [0,1] | p(u—0)<1—u}.
In view of (3.1), (3.2) is equivalent to

() tomton st () (2)

Straightforward algebra and the definition of 6 lead to
u 1 u(u—0)
—0)) - = - (1 2
(" g) oot (1)) =~ (bt 2am)
whence (3.2)) is actually equivalent to
_ pry (u, p(u—=10))\ (1
u(1+a+2au)+b<r2(u’ﬂ(u9)) 1 <0.

Clearly, this is true for all g > 0 and all w € [0, 1] if b = 0. Hence from now on we focus on
the case b > 0. In such a case, requiring (3.2)) for all (u,u) € C is equivalent to requiring

o ) ()
(yu)€C u(l4a+2ap)

S| =
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In view of the signs of r1 and ro in T, the right-hand side is positive, so that the above

inequality reduces to
pri(u,p(u—20))\ (1
ra (u e (u—) )\ -1
> sup

1
b (1,u)eC u(l+a+2ap)

> 0.

It only remains to verify the finiteness of this supremum.
Let (u,u) € C. From

pry (u, g (u = 0)) = (= 2h (1 + 1)) pu® + (2h + 2hp — p6) pu
and
—ry (u, o (u— 0)) = — (= 2h (4 1)) pu® — (p (4hpb + 3h + 200 — 1 — 2ub) +h — 2) u
— (,u292 + b — 2hp260% — 3huf — h),

it follows

(‘izl(g’:’ﬂ”(g“__;))))) : (_11> =((1 = 2h)u*0 — (h +2h0 — 1)+ 2 — h) u

— ((1 = 2n)p?6% + (1 — 3h)ub — h),

which reads, as a polynomial of p,

(li’;l(gz’ﬂﬂ(g“—;’))))) . (11) — (1= 2h) 0 (u—0) P+((3h — 18 — (200 + h — 1) u) (2 — ) uth.

On one hand, if h > 2

5, the above second-order polynomial of u is bounded above by
some constant, whence

sup (antn—on ) (1)

(p,u)eC U (1 +a+ 20‘:“‘)

< +o00.
On the other hand, if h < %, then we use p (u —60) <1 — u and obtain

/ﬂ“l(uaﬂ(u_g)), 1 _ —u — — —1Du —h)u

<((1-0u—h(u—0)p+(2—h)u+h,

(s =ay)- ()

whence

sup < 400
(1yu)eC u(l+a+2ap)
is again true.
The proof is ended with
-1

pry (g (u—60))) (1

- . T2 (uaM(U—9>) -1

by = min | 1, sup

(p,u)eC u(l +a+2aﬂ)

O

By very similar considerations, we can also prove the following lemma. For the sake of
brevity, we do not detail the proof.
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Lemma 3.2. There exists by € (0,1] such that, if b € [0,bs], then for allv € [0,1— 6],

((z>°f”<9’“))'<(1)) <0,

Next, using the fact that (6,0) is an unstable node (see Subsection, we can prove the

following similar lemma.
Lemma 3.3. There ezists 7 € (0, 1%9) such that, for all n € (0,7) and all p > 0:

(1) for allu € [0 —n,0 +n],

u . w min (1, %)
= _ . <
() e e-rsa))(:9) 0
(2) the straight lines of equation v = p(u—6) and v =min (1, %) (u — 0 + n) intersect
at © = min (9+17,9+ %) with

(min <9—|—7],9—|—n) ,u<min <0—|—?7,9—|—77> —9>> €int(T).
n—1 n—1

These lemmas will be used to construct a family of convex sets, illustrated in Figure [3.1

3.2. Main proof. We are now in position to prove the main theorem.
Theorem 3.4. Assume b < min 51,52,53).
Let (u,v) be the solution of with initial condition (ug,vo) € € (RN, T) satisfying
vo#£0 and lim  (ug,vo) () = (0,0).

llzll—+o0
Then co-extinction occurs, namely

I t,z) + t,x)) =0.
i (vt g ot

Proof. First, for all p > 0, we define the line segment
Sy = {(@,5) €T | 5= p(i—0)}.
For all t > 0, we define the curve
Gy ={(u,v)(t,2) [zeRN} CT.
For all t > 0 and p > 0, we define the (Euclidean) distance between G; and S,
d(t,p) = dist (G¢,S,) .

By standard parabolic estimates and the fact that (0,0) is a solution of (1.1, the as-
sumptions imply
lim (u,v) (t,z) = (0,0) for all ¢ > 0.

llzll—oo
Consequently, for all ¢ > 0 and p > 0, there exists z;,, € RY such that
d(t, p) = dist ((u,v) (¢, 2e,) ,Sp) -
Now, let
T=sup{t>0]G:N(6,1] x[0,1] # 0}
and let us show that T" < +o00. Without loss of generality, we restrict the analysis to the

case T > 0.
For all ¢t € [0,T], we can define

pe =1inf{p >0 | d(t, p) = 0}
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0.8 [ J

0.6 [ J

0.4 F 1

0.2 | 1

0(4 L 1 1 1
0 0.2 0.4 0.6 0.8 1

FIGURE 3.1. Examples of sets C, with p € {0.5,1,1.5,2}. (The value

n= 1% was chosen here for graphic clarity and was not numerically checked.)

and, by continuity, we find

d (tv ,ut) = dist ((u7 U) (tv xt7ﬂt) 7SH1,) =0.

Next, by virtue of Weinberger’s maximum principle [I5] applied in the convex invariant
set T satisfying the so-called slab condition, for all ¢ € (0,7, (u,v) (t,2¢,,) € int (T). This
directly implies that for all ¢ € (0,T], p: > 0.

However, in view of Lemma and Lemma for any n € (0,7) and any p > 0, the
convex set satisfying a slab condition

Co={@neT o2p@-0),52min(1L)@—0+n)}

is again an invariant set for lb Now we define Ty = min (1, %) and fix € (0,7) so small
that

GTo C CMTO'

Applying again Weinberger’s maximum principle, we find that for all (¢,t) € [T, T}Z such
that ¢’ > ¢t > Ty, (u,v) (¢',zp ,,,) € int (Cp,). Hence the family (Cur)y>1, 1s decreasing with
respect to the inclusion, or in other words the family (s1),> 5, is increasing.

Assuming by contradiction that T'= 400, we can define

poo = lm g € (pry, +00].
Then, by standard parabolic estimates, the family

((t, @) = (u,v) (E+ 1,2+ Tnp,)) pen
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converges locally uniformly up to extraction to an entire solution (us, vso) of (1.1]) valued
in C,_ and satisfying (uoo,voo) (0,0) €S,,.., where, obviously,

={(w,0)eT|a<0,9>(a—0+n)}

and

= {0} x [0,1-6].
Applying again Weinberger’s maximum principle and using the fact that (6,0) ¢ C,__, w
find that necessarily po = +o0o. However, by the scalar comparison principle and the
predator-prey structure (see Proposition , Uso 18 a subsolution for the bistable equation

Pu=1ufp1(1,0)

satisfying ueo < 6 with us(0,0) = 6. This directly implies uo, = 6, and then back to the
system vy, = 0, which is a contradiction.

Therefore T' < 400, that is (u,v) enters in finite time the domain Co,. Again by Wein-
berger’s maximum principle applied this time to the convex set given by Lemma it
actually enters in finite time the interior of C.,. Repeating the comparison with the scalar
bistable equation

Pu = ufp1(4,0),
it follows that uw — 0 uniformly in space asymptotically in time.

Quite interestingly, the convergence of v to 0 does not follow from classical predator—prey
considerations. Indeed, in our case, (0,1) is a steady state, and moreover it is a saddle that
attracts the solutions (%, ) such that % + v = 1. Fortunately, (u,v) does not belong to this
special “wild-type free” class of solutions and, with some additional care, we will be able to
conclude as expected.

In view of the convergence of u, the function

€t sup (max u(t’, x))
t/>t z€RN

converges monotonically to 0. Thanks to the predator—prey structure, it follows just as
before that, for all ¢y > 0, v is in [tg, +00) x RY a subsolution for the equation

Do =0fpa(e(to),d).

The Taylor expansion of f;, o and the predator—prey structure bring forth the existence of a
positive constant C' > 0 such that

b(=h+ (2h—1)v) (1 —v)

[ 1 — 2hbu + (2h — 1) bo?
< {b(—h—l—@h—l)v)(l—v)
- 1 —2hbv + (2h — 1) bv?

Now, thanks to wy <1 and —h + (2h — 1) v <0,

b(—h+(2h—1)v) (1_1))
= 2hbot @h= 1z = (= @h=1u)d—v).

Pv < w + O0ufp,2(0,v)e (to) + 0 (¢ (to))

+ Ot (to)

If h =1, we find
b(—=h+ (2h—1)v) (1 —v)
1—2hbv+ (2h — 1) %2 —

—b(1—v)>.

IfhE( )Weﬁnd

1
27

b(—h+ (2h—1)v) (1 —v)
1— 2hbv + (2h — 1) bv? <=b(1—-h)(1-v).
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If h e (0, %), we find

b(=h+(2h—1)v) (1 —v)
< — 1—wv).
T 2hbot @h= 1 per = R —Y)
If h =0, we find
b(—=h+ (2h—1)v) (1 —wv)
< —bv(l—-w).
—oho t @Dz = =)
Hence the function v = 1 — v satisfies

20> (1=10)(F(0) - Ce (to)),

where
bz? ifh=1,
1-— if 11
Fizeo]m 0 —M2 fhe(wl)
bhz 1fh€(0,5)

bz(1—2) ifh=0.

In both cases, we can Lipschitz-continuously extend F in [—1,1] as an even nonnegative
nonzero function which is increasing in (0, %) and maps [O, %] onto [O, F (%)} . Assume that
to is so large that Ce (to) < F (3) and let 29 € (0, 3) be the root of F(z) = Ce(to) > 0.

To conclude, we distinguish two cases, depending on whether h = 0 or not.

On one hand, if A > 0, the reaction term (1 — ) (F (0) — Ce (tp)) has in [—zp,1] a
bistable structure: its only zeros are —zy, +2¢ and 1 with negative derivative at —zy and 1
and positive derivative at +z¢. By taking t; large enough, we can further assume that

1
/ (1—2) (F(2) — Ce (t))dz > 0.
—2
By well-known results on bistable equations, this condition implies that the solution of

{% =(1—-2)(F(2) - Ce(ty))

2(tg, ) = 0 (tg,x) for all z € R
converges uniformly in space to 1 as t — +oc0. Here,

lim v (tp,x) =0
llzll—oo
(established at the beginning of the proof) is crucial. Finally, by the comparison principle,
0 converges uniformly to 1, or in other words v converges uniformly to 0.
On the other hand, if h = 0, then (1 —0) (F (0) — Ce (t9)) has in [—zg, 1] one more zero,
say z1, which is in (z9,1). The steady states zp and 1 are unstable whereas 0 and z; are
stable. By arguments similar to the previous case, we obtain

lim inf o(¢,x) > 2.
t—+00 zERN

But z; depends continuously on #3 and converges to 1 as to — +o0o. Passing to the limit,
we deduce

lim inf o(¢,z) > 1,
t—+00 geRN

whence v converges uniformly to 0 indeed. ([l

4. DISCUSSION

4.1. On different choices of selective disadvantages. In what follows, we give some
evidence arguing in favor of co-extinction when a > % (and b < a), versus the existence of
a joint front with complex spatio-temporal dynamics when a < %, see also Figure
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4.1.1. Monostable drive and brake with small selective disadvantage. In this subsection we
assume a < % so that the drive has a monostable dynamic and b < b; so that we are in
the predator—prey regime (see Proposition . We recall that, by Subsection global
convergence to (0,0) for the diffusionless system cannot occur if a < %, as it is a saddle. As
showed previously by Figure[2.1] the system is oscillating with either damped oscillations and
eventually convergence to a coexistence state or sustained oscillations, possibly approaching
the heteroclinic orbits along the boundary. What about the reaction—diffusion system? In
particular, is the monostable drive fast enough to persist ahead of the oscillating front?

First, since v — fa(1,v) is

2(1=05) = b(1 —h)v

1—a+ (2h — 1)bv? + 2(a — b)v
and is therefore decreasing with respect to v, the nonlinearity v fo(1, v) has a KPP structure.

Hence is a particular case of the more general framework investigated by Ducrot—
Giletti-Matano [3], provided that a < % (the prey follows KPP-like dynamics), and the
drift term due to a heterogeneous population size is neglected, i.e. & = 0; — A. However,
regarding the part of their analysis we are interested in here, we believe the KPP condition
and the absence of drift could be relaxed. In any case, the following discussion can be
rigorously justified when a < % and n is constant following the arguments in [3].

This boils down to the comparison between the spreading speed ¢ of u invading the wild-
type type 0 alone (cf. Subsection and the spreading speed of v invading the gene drive

u ~ 1 separately, namely 2,/ f5(1,0) = 2,/ 142=2b,

In the case a < %, the sole gene drive verifies a KPP condition ensuring that the prop-
agation occurs at the explicit speed 24/f1(0,0) = 24/1 — 2a. It is immediate to see that

2v1 —2a < 2,/42=20 56 that v is unable to evade, and will eventually be caught up by v.

l—a 7
In the case a € (i, %), the spreading speed c can be estimated by comparison with a
well-chosen KPP equation, namely with a KPP equation whose reaction term is larger than
or equal to u — uf1(u,0) in [0,1]. It can be verified easily that the minimal KPP reaction

term satisfying this condition is exactly defined in [0, 1] as

V=

U u max] f1(z,0).

z€[u,1
Denoting

= 0
« urél[%ﬁ] fl (ua )a

the KPP speed associated with this reaction term is exactly 2v/a, so that the spreading
speed ¢ of u invading 0 satisfies ¢ < 2y/a. To estimate « itself, we use the fact that it is a
double root of the second-order polynomial equation

oz(lfa+a(lfu)2):a(lfu)(u—ﬂ).

After some algebra, we find that the discriminant of this equation vanishes if and only if
a = =Y whence the estimate ¢ < 24/a finally reads

2v/a
1—+va
va o

c<4/2

Subsequently, we consider the quantity

1ta-20 [1-va
2 —4/2 .
1—a Vva
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FIGURE 4.1. Further numerical snapshots of the solution of (1.1) in the
case a = 0.45, and b = 0.35, h = 0.5, and n is spatially homogeneous, see

Figure [1.2]

It turns out that there exists a; , € (O7 %), increasing with respect to b € [0, a] and satisfying
a1,q = %, such that this quantity is positive if and only if a > a;;. Consequently, if
a > i > ayp, we expect that u is never able to evade v and a joint invasion front is
observed.

Due to the diffusion and possible Turing instabilities, we cannot really expect simple
sustained or damped oscillations in the wake of the joint invasion front. Numerically, we

observe very complicated spatio-temporal patterns (see Figure |4.1)).

4.1.2. Brake and drive with the same large selective disadvantage. When b is close to a > %,
the dynamics are more complicated.

In the limiting case a = b with h = 1, the following properties can be established (quite
directly). Of course they persist in a neighborhood of a = b, h = 1.

(1) The dynamics in T are no longer of predator—prey type. The system remains preda-
tive outside of the neighborhood of (0,0) delimited by the graph of

u,_>;<2_u—\/(2—u)2+4(u—9))»
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FIGURE 4.2. Trajectories of the diffusionless system with twenty random
initial conditions and b = a > % When h = 1, there is a coexistence
state that is an unstable spiral. In both cases, (0,0) seems to be globally

attractive.
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but inside this neighborhood, the system is now cooperative. Even though (0,0)
might be globally attractive inside the cooperative region (and this should actually
be easy to establish), general solutions of the reaction—diffusion system might never
enter uniformly this region. In other words, it is not sufficient anymore to prove
that v < 6 is satisfied in finite time. In order to prove that the solution enters
in finite time the cooperative region, we need a Lyapunov function or a family of
contractant sets, as in the proof of Theorem We did not manage to perform
such a construction.
(2) Ifa < %, there is a (unique) spatially uniform interior stationary state at

. e a 2—3a
(W' v) = (4(1—a)’4(1—a))'
In view of Figure [1.2] this steady state is, regarding the diffusionless system, an un-

stable spiral. This is one of the main obstacles encountered when trying to construct
a Lyapunov function or a family a contractant sets.

Because of these obstacles, we did not manage to find an analytical proof of the co-
extinction. Nevertheless, in view of numerical experiments, it remains conjectured to hold
true.

4.2. On imperfect conversion efficiencies. When the conversion efficiencies of the drive
and the brake are no longer assumed to be perfect, the system reads instead

u((l—a)u+(1—cB)(l—hBDb)v—i-(2cD(1—a)+(1—cD)(1—hDoa))(1—u—v) _1>
Wep cp (U,0) ’
<@v:v((1—[))’()—|-(2CB(1—[))—‘v‘(1—CB)(l—hBDb))’LL—‘r(l—hb)(l—u—v) _1).

Wep,cp (ua 7])

Py =

Here ¢p, ¢g, hpo and hgp are all in [0, 1] and are respectively the conversion efficiency of
the drive, the conversion efficiency of the brake, the dominance of D on O and the dominance
of B on D. The normalizing mean fitness we, ., (u, v) is, similarly to the numerator, a mere
algebraic modification of the perfect case.

It is therefore quite clear that the various uniform estimates on the reaction term we
derived near the limit b ~ 0 should remain true for values of (¢p, cp) close enough to (1,1)

and up to a slight modification of the threshold a = % Hence both Theorem and

Theorem [1.2] are expected to remain true in this framework. We leave this extension for
future work.
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