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PARATUCK-3 Semi-Blind Receivers for Three-Hop
Cooperative MIMO Relay Systems

Pedro M. R. de Oliveira and C. Alexandre Rolim Fernandes

Abstract— In this paper, it is considered a three-hop one-
way AF cooperative communication system, using a Khatri-Rao
Space-Time (KRST) coding at the source. It is shown that the
third-order tensor of signals received at the destination node
satisfies a PARATUCK-3 tensor model. This tensorial modeling
enables a joint semi-blind estimation of the transmitted symbols,
the relay-destination channel and a global channel that contains
the gains of the other channels. Two non-iterative estimation
algorithms based on the Kronecker product are then proposed.
The performance of these receivers is evaluated by means of
computational simulation results.

Keywords— Cooperative Systems, MIMO, PARATUCK-3, Kro-
necker Product, Semi-Blind Receivers.

I. INTRODUCTION

Aiming to provide a considerable increase in the received
power and a better signal quality, the concept of cooperative
communications relay systems was developed, in which at
least one relay node is used to assist the communication
between the source node and the destination node [1]. A coop-
erative communication can be done according to several pro-
tocols, that are classified in fixed (Amplify-and-Forward (AF),
Decode-and-Forward (DF), Compress-and-Forward (CF), and
others) and adaptive (selective decode-and-forward, incremen-
tal relaying, and others). In particular, multi-hop systems have
the advantage of needing less transmission power than two-
hop networks, as the distance between the source and the
destination is divided in several smaller links.

Moreover, Multiple-Input Multiple-Output (MIMO) systems
provided a great advance in the wireless communication field,
due to its considerable increase in both the coverage area
and the capacity. This technology quickly developed and is
an important research field nowadays, being present in several
standards (WIMAX-IEEE 802.16, WLAN-IEEE 802.11N, and
many others) [2].

On the other hand, due to its advantages in exploring the
multidimensional nature of a problem, tensor decompositions
are applied in several areas, including digital signal processing
[3], [4], [5] and telecommunications [6], [7], [8]. Also, tensor
analysis has shown to be an efficient approach for channel
and/or symbol estimation in cooperative MIMO systems [9],
[10], [11], [12], [13].

In [9], it was proposed three semi-blind receivers in a two-
hop MIMO AF relaying system using the Khatri-Rao Space-
Time (KRST) coding [14]. These receivers combine two tensor
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models (PARAllel FACtor - PARAFAC and PARATUCK-
2), that enables the joint estimation of the symbols and the
channels of the source-relay and relay-destination links. Also
in a two-hop MIMO AF relaying system, in the work [10] a
Nested-PARAFAC tensor model is formulated and two itera-
tive semi-blind receivers are proposed, jointly estimating the
symbol and the channels of the communication links. In [12]
a Tensor Space-Time (TST) coding is used in MIMO wireless
communication systems, while in [11] this TST coding is used
with a Nested Tucker decomposition in a MIMO relaying
system. A blind receiver based on a generalized PARATUCK-2
decomposition is proposed in [13] for Space-Time Frequency
(STF) MIMO systems.

Due to its simplicity, in this work it is considered an AF
relaying system. More specifically, it is considered a three-hop
scenario, with a multiple-antenna source node, two multiple-
antenna AF relay nodes and a multiple-antenna destination
node. This scenario is an one-way half-duplex relaying system,
where the source node transmits to the destination during three
consecutive transmission phases.

This work proposes two semi-blind receivers based on the
Kronecker product, that jointly estimate the symbol and the
channels in a three-hop AF MIMO relay-assisted system.
We consider a transmission scheme using a simplified KRST
coding [14] at the source node, combined with an AF coding
scheme at the relay nodes. We show that the third-order
tensor of signals received by the destination node satisfies a
PARATUCK-3 decomposition [15]. This tensorial modeling
enables a semi-blind estimation of symbols and channels with
the use of a few pilot symbols. We propose two non-iterative
receivers algorithms that are based on the Kronecker product.
In the first one, Singular-Value Decomposition (SVD) is used
to jointly estimate the symbol, the channel of the last hop link
and a global channel that contains information of the other
links. The second one, is based on an estimation algorithm
proposed in [16], in which a rearrangement of the Kronecker
product matrix is done in order to achieve a rank-1 matrix.
The symbols and the matrix of the last hop are estimated
using the SVD of this rank-1 matrix, and a the so-called global
channel is estimated as the first algorithm. These algorithms
have the advantage of being non-iterative, providing a good
performance. Also, the multi-hop cooperative systems pro-
vides an additional advantage due to its transmission power
gain, as previously described.

The rest of this paper is organized as follows. In Section
II, the notations used are defined and two important matrix
properties are recalled. In Section III, the system model for
the present scenario is described. In Section IV, two non-
iterative receivers algorithms are proposed. In Section V the
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Fig. 1: MIMO cooperative system model.

computational simulation results are presented and finally, the
Section VI presents the conclusion of this work, as well as the
prospects for future works.

II. NOTATIONS

Scalars, vectors, matrices, and tensors are represented, re-
spectively, by lower-case (a, b, c, ...), boldface lower-case (a,
b, c, ...), boldface capital (A, B, C, ...), and calligraphic (A,
B, C, ...) letters.

The transpose, the Hermitian transpose, the Moore-Penrose
pseudo-inverse, the conjugate, the mth row and the nth

column of A ∈ CM×N , are respectively represented by AT ,
AH , A†, A∗, Am. and A.n. The ||·||F represents the Frobenius
norm, ⊗ represents the Kronecker product and � represents the
Khatri-Rao (column-wise Kronecker) product. The operator
diag(a) generates a diagonal matrix with the vector argument
a forming its diagonal, Dm(A) represents the diagonal matrix
with the mth row of A forming its diagonal, the operator
vec(·) vectorizes its matrix argument by stacking its columns,
while the operator unvec(·) unvectorizes its vector argument
to the original matrix. The operator SV D(A) computes the
singular-value decomposition of its matrix argument A

In this work, it were used the two following properties

vec(ABCT ) = (C⊗ A)vec(B). (1)

Dp(A)⊗Dp(B) = Dp((AT � BT )T ). (2)

Given a third-order tensor A ∈ CM×N×P , with scalars
am,n,p, its horizontal, lateral and frontal slices are respectively
represented by Am.. ∈ CN×P , A.n. ∈ CP×M and A..p ∈
CM×N . Given a matrix A ∈ CI×J , aij represents its ijth

element.

III. SYSTEM MODEL

For the present work, it is considered a three-hop one-way
cooperative MIMO AF relay system, with a source (S) node,
a destination (D) node and two relays (R1 and R2) nodes,
as illustrated in Figure 1, where MX denotes the number of
antennas at node X (e.g, MS denotes the number of antennas
at node S). All the channels are assumed to be invariant
during the total transmission time and to undergo frequency
flat fading. The transmitted symbols are QAM-modulated.

Consider that H(SR1) ∈ CMR1
×MS , H(R1R2) ∈ CMR2

×MR1

and H(R2D) ∈ CMD×MR2 are MIMO channel matrices of the
source-relay1, relay1-relay2 and the relay2-destination links,
respectively. S ∈ CN×MS is the matrix with the information
symbols multiplexed to the MS antennas during N consecutive
symbol periods. A simplified KRST coding [14] is used at the
source to introduce time redundancy:

X..p = Dp(G0)ST ∈ CMS×N (3)

where p = 1, ..., P , X..p is the transmitted signal, G0 ∈
CP×MS is the coding matrix of the source node, and P is
the number of transmission blocks. The signal received by the
relay R1 during the pth transmission block is given by

Ỹ
(SR1)

..p = H(SR1)X..p + V(SR1)
..p ∈ CMR1

×N , (4)

where V(SR1)
..p ∈ CMR1

×N is the Additive White Gaussian
Noise (AWGN) matrix during the pth transmission block in
the SR1 link. Considering G1 ∈ CP×MR1 the coding matrix
of the relay1 node, the amplified signal Dp(G1)Ỹ

(SR1)

..p ∈
CMR1

×N is transmitted by the relay R1 to the relay R2.
The signal received by the relay R2 during the pth trans-

mission block can then be written as

Ỹ
(SR1R2)

..p = H(R1R2)Dp(G1)Ỹ
(SR1)

..p + V(R1R2)
..p ∈ CMR2

×N .
(5)

where V(R1R2)
..p ∈ CMR2

×N is the noise matrix during the
pth transmission block in the R1R2 link. Then, considering
G2 ∈ CP×MR2 the coding matrix of the relay2 node, the
amplified signal Dp(G2)Ỹ

(SR1R2)

..p is transmitted by the relay
R2 to the destination.

Finally, we have that the signal received by the destination
during the pth transmission block is

Ỹ
(SR1R2D)

..p = H(R2D)Dp(G2)Ỹ
(SR1R2)

..p +V(R2D)
..p ∈ CMD×N ,

(6)
where V(R2D)

..p ∈ CMD×N is the noise matrix during the pth

transmission block in the R2D link.
Substituting (3), (4) and (5) into (6), we get:

Ỹ
(SR1R2D)

..p = H(R2D)Dp(G2)H(R1R2)Dp(G1)H(SR1)

Dp(G0)ST + H(R2D)Dp(G2)H(R1R2)Dp(G1)V(SR1)
..p +

H(R2D)Dp(G2)V(R1R2)
..p + V(R2D)

..p ∈ CMD×N . (7)

In other words

Ỹ
(SR1R2D)

..p = Y(SR1R2D)
..p + V(SR1R2D)

..p ∈ CMD×N , (8)

where Y(SR1R2D)
..p is the noiseless signal given by

Y(SR1R2D)
..p = H(R2D)Dp(G2)H(R1R2)Dp(G1)H(SR1)

Dp(G0)ST ∈ CMD×N , (9)

and V(SR1R2D)
..p is the global noise given by

V(SR1R2D)
..p = H(R2D)Dp(G2)H(R1R2)Dp(G1)V(SR1)

..p +

H(R2D)Dp(G2)V(R1R2)
..p + V(R2D)

..p ∈ CMD×N . (10)

In order to have a better presentation of the proposed algo-
rithms, from now on, we will ignore the noise component in
(8). Equation (9) corresponds to a PARATUCK-3 decomposi-
tion [15] that can be rewritten in scalar form as

y(SR1R2D)
mD,n,p =

MR2∑
mR2

=1

MR1∑
mR1

=1

MS∑
mS=1

h(R2D)
mD,mR2

g(2)p,mR2

h(R1R2)
mR2

,mR1
g(1)p,mR1

h(SR1)
mR1

,mS
g(0)p,mS

sn,mS
. (11)
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IV. SYMBOL AND CHANNELS ESTIMATION

Before presenting the proposed algorithms, we will develop
some mathematical expressions from the received signal ma-
trix (9). Applying Property (1) in (9) twice, we have:

y(SR1R2D)
p = (S⊗H(R2D))vec(Dp(G2)H(R1R2)Dp(G1)

H(SR1)Dp(G0)), (12)

y(SR1R2D)
p = (S⊗H(R2D))(Dp(G0)⊗Dp(G2))

vec(H(R1R2)Dp(G1)H(SR1)) ∈ CMDN×1, (13)

where y(SR1R2D)
p = vec(Y(SR1R2D)

..p ).
Now applying Property (2) in (13) we have:

y(SR1R2D)
p = (S⊗H(R2D))Dp((GT

0 �GT
2 )

T )

vec(H(R1R2)Dp(G1)H(SR1)) ∈ CMDN×1, (14)

Let us define G02 = (GT
0 �GT

2 ) ∈ CMR2
MS×P . We may then

write

y(SR1R2D)
p = (S⊗H(R2D))diag[vec(H(R1R2)Dp(G1)

H(SR1))]((GT
02)

T )p. ∈ CMDN×1, (15)

Applying Property (1) in (15) we get:

y(SR1R2D)
p = (S⊗H(R2D))diag[(H(SR1)

T

⊗H(R1R2))

vec(Dp(G1))](G02).p ∈ CMDN×1, (16)

which leads to

y(SR1R2D)
p = (S⊗H(R2D))diag[(H(SR1)

T

�H(R1R2))

(G1)p.](G02).p ∈ CMDN×1. (17)

Assuming that the rows of G1 are equal, i.e, (G1)p. = g1, for
p = 1, ..., P , we have:

y(SR1R2D)
p = (S⊗H(R2D))diag[(H(SR1)

T

�H(R1R2))g1]
(G02).p ∈ CMDN×1, (18)

By stacking the vectors y(SR1R2D)
p for p = 1, ..., P , we

get the mode-1 unfolded matrix of the third-order tensor
Y(SR1R2D) ∈ CMD×N×P :

Y(SR1R2D)
1 =

[
y(SR1R2D)
1 . . . y(SR1R2D)

P

]
, (19)

then

Y(SR1R2D)
1 = (S⊗H(R2D))diag[(H(SR1)

T

�H(R1R2))g1]

G02 ∈ CMDN×P , (20)

Let us assume that G02 has a right inverse, i.e. G02G†02 = I.
This means that the rank of G02 is equal to MR2

MS , which
implies P ≥MR2

MS , so

Y(SR1R2D)
2 G†02 = (S⊗H(R2D))diag[h(G)] ∈ CMDN×P ,

(21)

where

h(G) = (H(SR1)
T

�H(R1R2))g1 ∈ CMR2
MS×1. (22)

is the vectorized form of the so-called global channel H(G),
as it depends on both channel matrices H(SR1) and H(R1R2).

In the next two subsections, (21) will be used to jointly esti-
mate the symbol matrix S and the channels H(R2D) and H(G)

(i.e unvec(h(G))) by means of two non-iterative algorithms
based on the Kronecker product. We propose two different
semi-blind receivers to estimate these matrices. In this work,
we assume that the coding matrices G0, G1 and G2 are known
at the destination node.

A. Least-Squares Kronecker Factorization (LS-KF) Algorithm

Let us define W as

W = (S⊗H(R2D))diag(h(G)) ∈ CMDN×MR2
MS . (23)

The first step of the LS-KF algorithm consists in estimating
W from (21) by means of the Least Squares (LS) method.
Then, we estimate S and H(R2D) using several SVDs of the
columns of West (the LS estimate of W). This procedure,
denoted Kronecker Factorization (KF), is based on the fact
that unvec(W.j) = h(R2D)

.mr
ST
.ih

(G)
j , with j = (i − 1)MR2

+

mr, is a rank-1 matrix, which means that S.i and h(R2D)
.mr

,
with i = 1, ...,MS , mr = 1, ...,MR2 , are optimally estimated
as the first right- and left-singular vectors of unvec(West

.j ),
respectively.

At the end, we will have MS estimations of S and MR2

estimations of H(R2D) with scalar ambiguities in each column
of these matrices. We take the first of these estimations. We
cannot estimate these matrices without ambiguities, they are
inherent to the model. We can eliminate the ambiguities of S
assuming that we know its first row, this is possible by using
one pilot symbol by transmission stream. In the H(R2D) case,
we cannot eliminate its ambiguity, however, we assume that we
know its first row just to plot the simulation results. The global
channel matrix H(G) is estimated with ambiguities using the
first row of West. Such ambiguities cannot be eliminated,
once we do not have knowledge of the channels contained
in the global channel. The LS-KF algorithm is summarized in
Algorithm 1.

Algorithm 1 - (LS-KF)

West = Ỹ
(SR1R2D)

2 G†02;
for j = 1 to MR2

MS do
Z.j ← unvec(West

.j );

UΣVH ← SV D(Z.j);
Sest
.j ← D∗.1;

H(R2D)est

.j ← U.1;
end for
for i = 1 to MS do

for mr = 1 to MR2 do
j ← (i− 1)MR2 +mr;

h
(G)est

j ← w1,j

s1,ih
(R2D)est

1,mr

;

end for
end for
Sest ← Sest

1 ;

H(R2D)est ← H(R2D)est

1 ;
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B. Least-Squares Kronecker Rearrangement-Based (LS-KR)
Algorithm

In [16], it is proposed a rearrangement in a given Kronecker
product matrix in order to achieve a rank-1 matrix. Given a
matrix A = B⊗C ∈ CM1M2×N1N2 , where B ∈ CM1×N1 and
C ∈ CM2×N2 , we can see A as

A =


A11 A12 . . . A1N1

A21 A22 . . . A2N1

...
...

. . .
...

AM11 AM12 . . . AM1N1

 ,Aij ∈ CM2×N2 (24)

The rearrangement R(A) of the matrix A is given by

R(A) =


A1

A2

...
AN1

 ,Aj =


vec(A1j)

T

vec(A2j)
T

...
vec(AM1j)

T

 , j = 1, ..., N1 (25)

We note that R(A) ∈ CM1N1×M2N2 .
In the present case, we can estimate W, defined in the

previous subsection, by a least-squares algorithm. Once we
cannot assure that R(W) is a rank-1 matrix (due to the
presence of the global channel in its product), we cannot
estimate the matrices S and H(R2D) with a single SVD
(optimal case), so we will estimate them with several SVDs
using Wm defined as

Wm ←

 vec(W1m)T

...
vec(WNm)T

 , (26)

where Wnm is the nmth sub-block of W ∈ CMDN×MR2
MS .

This procedure, denoted by Kronecker Rearrangement (KR),
is based on the fact that Wm is a rank-1 matrix, which means
that S.m and H(R2D), with m = 1, ...,MS , are optimally
estimated as the first left- and right-singular vectors of W.m,
respectively.

At the end, there will be MS estimations of H(R2D). We
take the first of these estimations. The estimated parameters
have the ambiguities described in the previous subsection. The
LS-KR algorithm is summarized in Algorithm 2.

C. Identifiability Conditions

Once the proposed algorithms are non-iterative, we do not
need to worry about the uniqueness conditions. Regarding the
identifiability issues, choosing a G1 matrix with equal rows,
G2 and G0 matrices such that G02 has a right inverse, will
assure that the algorithms will provide identifiable estimations.
P ≥MR2

MS is then a necessary condition.

V. SIMULATIONS RESULTS

In this section, simulation results that evaluate the perfor-
mance of the proposed receivers by means of Monte Carlo
samples are presented. The metrics of performance used are
both the Symbol Error Rate (SER) and the channels Normal-
ized Minimum Square Error (NMSE). The number of Monte
Carlo samples is equal to 15000. The coding matrices G0,
G1 and G2 are chosen to be i.i.d with zero mean complex

Algorithm 2 - (LS-KR)

West = Ỹ
(SR1R2D)

2 G†02;
for m = 1 to MS do

West
m ←

 vec(West
1m)T

...
vec(West

Nm)T

 ;

UΣVH ← SV D(West
m );

Sest
.m ← U.1;

H(R2D)est ← unvec(D∗.1);
end for
for i = 1 to MS do

for mr = 1 to MR2 do
j ← (i− 1)MR2 +mr;

h
(G)est

j ← w1,j

s1,ih
(R2D)est

1,mr

;

end for
end for
H(R2D)est ← H(R2D)est

1 ;

Gaussian distributions, however, G1 has equal rows and 16-
QAM is used. When stated otherwise, the number P of
transmission blocks is chosen to be 8, while the number of
symbols N is equal to 100. The number of antennas at the
source, at the relays and at the destination are chosen to be 2.
The total transmission power is equal to 1, and it is divided
by the source and the relays. The path-loss coefficient n is
chosen to be 4 and it is considered Rayleigh fading Channels.

Figure 2 shows how the SER behaves as the SNR increases
varying the number of antennas at the destination. We can see
that the LS-KR receiver provides a better SER if comparing
to the LS-KF receiver. This is due to the following reason.
When we estimate S via SVD taking only the first column of
the singular matrices, we are eliminating the noise subspace.
The optimal case would be to estimate the parameters using a
single SVD, once the LS-KF uses MR2MS SVDs and the
LS-KR uses only MS SVDs, we can see that the LS-KR
one uses less SVDs, being more close to the optimal case,
providing, this way, a better performance. Also, we can see
that as the number of antennas at the destination increases,
the receivers provide a smaller SER, this is a benefit of the
additional spatial diversity. Figure 3 shows how the NMSE
of the channels behaves as the SNR increases. We can see
that both receivers provide a better estimation of H(R2D) in
comparison to the global channel H(G). This occurs because
we cannot estimate the global channel via SVD, we can only
estimate it using the noisy matrix W. Also, we can see that
the LS-KR algorithm provides a better performance regarding
H(R2D) due to the reason explained before. The performance
regarding the global channel is practically the same, once it is
estimated for both algorithms using the same equation.

Comparing with the two-hop scenario, i.e, the scenario
which a single relay is used, Figure 4 shows how the SER
behaves as the SNR increases. In this figure, the receivers
used in the two-hop case are based on (4) and (5), being
very similar to the LS-KF and LS-KR algorithms. However,
due to lack of space we didn’t show the expressions of these
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Fig. 2: SER versus SNR.

Fig. 3: NMSE versus SNR.

algorithms. We can see in Figure 4 that the three-hop scenario
provides smaller SERs. This is expected, because, once we
use more relays, we will have shorter distances between the
nodes, needing less transmission power to communicate.

VI. CONCLUSION

The major contribution of this work is the proposal of
two semi-blind receivers for one-way three-hop cooperative
MIMO AF relay systems. It was shown that this transmission
scheme satisfies a PARATUCK-3 tensor model. The proposed
receivers use the KRST coding at the source and an AF
coding at the relays. One of these receivers is based on a
factorization of the Kronecker product, while the other is based
on a rearrangement of this Kronecker product. Simulation
results have shown that the three-hop scenario provides a
better performance, regarding the SER, compared to the two-
hop scenario, due to the path-loss gain. Simulation results
also showed that the LS-KR algorithm provides a better
performance than the LS-KF one.

In future works, we aim to analyze the complexity of the
proposed algorithms and generalize them for the case of K
relays. The development of a receiver based on the Alternating
Least Squares (ALS) algorithm is also a perspective.
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