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ABSTRACT 

 

WAAM (Wire+Arc Additive Manufacturing) allows manufacturing mechanical components by adding successive layers of molten 

metallic wire using electrical arc. The WAAM process, compared to other processes using metallic powders, presents some advantages 

such as: high deposition rate (2-4kg/hour), manufacturing of large scales components and cheaper industrial installations. WAAM is then 

an interesting candidate for manufacturing components often CNC machined. However, the main disadvantages of this process are: high 

surface roughness requiring a post machining, strains and stresses states generated during the deposition process [1]. A better 

understanding of the relation between the welding parameters and the state of stresses can contribute to minimize residual stresses, 

eventually in relation with a deposition strategy [2]. As a first approach, the effects of the first deposition of molten metal on the base 

plate is investigated. This work focuses on finite element method, based on Code Aster solver, with a nonlinear thermo-mechanical model. 

Concerning the thermal aspects, the GMAW heat input is modeled by a Gaussian distribution [3]. The temperature fields are used to solve 

the mechanical problem. The material behavior laws are assumed to be elastoplastic with different hardening configurations: no hardening, 

linear isotropic or kinematic hardening and non-linear isotropic hardening. Based on the results from these elastoplastic models, the 

influence of the hardening is presented. 
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INTRODUCTION 

Almost one century ago, in 1920, R. Baker patented a technique for manufacturing decorative objects in a 

similar way to the WAAM one [4]. Nowadays, WAAM technology has greatly improved to the point that metal 

manufacturers have a growing interest in this revolutionary manufacturing process. However, despite some 

interesting advantages, WAAM application fields still remain little diversified or limited to prototyping level. 

Indeed, WAAM manufactured parts can present structural defects partly due to the residual stresses resulting of 

the deposition thermal cycles. These residual stresses also contribute in the generation of significant distortions 

which may lead to inaccurate deformed parts. An example of this problem is given in figure 1. This sample was 

manufactured in our lab with sixteen layers of G3Si1 steel [5]. The deformation of the baseplate is mainly due 

to thermal effect. It appears from the first layer and the maximal out-of-plane displacement of the base plate 

edges can be up to 5 mm. 

 
Fig. 1 WAAM sample obtained with CMT process in LMGC facility. The thickness of the baseplate is 3 mm and 16 layers 

of G3Si1 steel were used to manufacture the sample: (a) front view, (b) side view. 

(a) (b) 



The main objective of this scientific research is to understand residual stresses induced by WAAM process 

in order to lower it [6]. A Finite Element Analysis (FEA) associated to an experimental procedure are set up to 

get both distortions and residual stresses state. The present analysis is based on a thermomechanical weak 

coupling which considers only the influence of the thermal loading on the mechanical phenomena. The analysis 

is performed in two sequential steps.  First, a thermal simulation is run in order to determine the temperature 

field generated by the welding torch. Secondly, this temperature field is used as an input data for the mechanical 

calculation of stress and strain states.  

The numerical analysis is performed on a Stainless Steel (SS) 316L plate modelled in 2D under plane stress 

assumption (100 mm / 60 mm). The thermo-mechanical simulation is done with SalomeMeca software (Code 

Aster). The thermomechanical model is described in the first part of this work. Then, the results obtained at the 

end of each numerical analysis are presented. Finally, the influence of the hardening (linear, non-linear, 

isotropic, kinematic) on the numerical results, residual stresses and distortions, is discussed.  

MODELLING 

The WAAM technology uses a GMAW (Gas Metal Arc Welding) process for the deposition of metallic wire. 

GMAW is an electric arc-based welding process [7]. The heat generated from the electric arc allows melting 

the metallic wire. Modelling completely this process is extremely complicated as it involves electromagnetic, 

fluid flow (in the molten metal pool), heat transfers, metallurgical transformations and mechanical phenomena. 

The driving physic is the heat generated by the electrical arc. This study is limited to the effect of the deposition 

thermal cycle on the generation of strain and stress states in both the deposit and plate. Indeed, this process 

generates high thermally-induced residual stresses causing the formation of residual stresses and distortions. 

Neither metallurgical transformations are taken into consideration as the latent heat of phase change is generally 

smaller than the latent heat of fusion nor the effect of microstructure changes on the residual stresses that is 

assumed to be secondary. 
A thorough thermal approach should include the arc plasma heat transfers and molten metal flows in the weld 

pool [8]. The weld pool surface is subjected to the action of arc pressure, gravity and surface tension and it is 

assumed to be in a static equilibrium. The effect of electromagnetic forces is neglected as the welding intensity 

is below 200 A [9]. The convection effects in the molten pool is considered by increasing the thermal 

conductivity value. An equivalent heat source is used for modelling the heat transfer between the arc plasma 

and the metallic work piece. Finally, half part of the work piece is considered since the weld is symmetrical 

along the joint centerline. 

GENERAL ASSUMPTIONS 

The thermal and mechanical studies have been performed under the following assumptions: 

• 2D geometry with symmetry axis, 

• heat conduction transfer with temperature dependent thermophysical properties, 

• Lagrangian reference coordinate system with a moving heat source, 

• a Gaussian mathematical expression describes the heat source, 

• the convection effect in the weld pool is modelled with an increased value of thermal conductivity, 

• the mechanical problem is solved once the thermal analysis has been done (weak coupling), 

• material mechanical properties are also temperature dependent, 

• no metallurgical transformations, 

• 2D plane stress assumption, 

• no transverse displacement along the symmetry axis (Ox) and no displacement (in both directions) 

along the (Oy) axis at x=0 mm (see Fig. 2), 

• the two other boundaries are condition-free. 



 
Fig. 2 Studied geometry: a thin plate of size 100 x 30 x 3 mm with prescribed displacements on its left (black triangles). 

HEAT CONDUCTION AND THERMOPHYSICAL PROPERTIES  

Let’s consider a domain Ω defined by the top plate face. The considered geometry is 2-Dimensional as the plate 

thickness is lower than the two other dimensions. The heat transfer through the thickness is neglected. The plate 

is scanned with a mobile heat source (GMAW torch) on its center so half part of the domain is investigated. A 

Lagrangian reference coordinate system (O,x,y) is defined from a corner of the domain on the symmetry axis. 

The applied thermal loading Q is a heat source defined with a Gaussian mathematical formulation (Eqn. (3)). 

The temperature field T(x,y,t) is the solution of equation system defined with the heat conduction equation with 

no internal heat production (Eqn. (1)), associated boundary conditions and initial condition (Eqn. (2)).  

 ρ(T)cp(T)
∂T

∂t
=λ(T)∇²(T)+Q 

(1) 

Where 

ρ is the densité (kg m-3), 

cp is the specific heat (J kg-1 K-1), 

λ is the thermal conductivity (W m-1 K-1) and, 

Q is the heat source (W m-2). 

This nonlinear second-order PDE (Partial Differential Equation) cannot be solved uniquely without defining 

the boundary conditions and an initial condition. The associated boundary and initial conditions are: 

 

 -λ
∂T

∂n
=h(T-T0)+εσ(T4-T0

4)+q(x,y,t) 
(2) 

Where 

n is the outside normal, 

q is the surface source (W m-2), 

h is the convective exchange coefficient (W m-2 K-1), 

σ is the Stefan-Boltzman constant (σ = 5.68 108 J K-4 m-2 s-1), 

ε is the metal emissivity  and, 

T0 is the ambient temperature (K) considered as initial condition T(x,y,t=t0)=T0 . 

The absorbed heat (from the electric arc) is modelled with an equivalent heat source described with a 

Gaussian mathematical expression as follows: 

 
q(x,y,t)=

3ηUI

πR0e
exp(-3

(x-x0-Vst)
2+y²

R0
2

) 
(3) 

Where 

η is the process efficiency,  

U is the welding voltage (V),  

I is the welding intensity (A), 

R0 is the Gaussian distribution of the heat source (m), 

e is the thickness of the plate (m) and, 

Vs is the welding velocity (m s-1). 

 

The thermophysical properties of SS 316L are assumed to be temperature dependent (see Table 2 in 

appendices) The enthalpy formulation is employed to solve the heat equation problem.  

SalomeMeca software offers the possibility of using an enthalpic formulation for the heat conduction 

equation. The enthalpy function β(T) is defined as the product of the density ρ with the specific heat Cp.  The 



enthalpic formulation is especially useful when important amount of latent heat is considered such as fusion 

phenomena. The enthalpic formulation provides a smoother and monotonic temperature dependent variable than 

the specific heat Cp which exhibits an important peak nearby the temperature of fusion. This huge change in Cp 

values is generally the cause of either numerical convergence problems or the latent heat of fusion is not 

considered according the chosen time step of the simulation. The enthalpy function is defined as follows: 

 
β(T)= ∫ ρCp(u)du

T

T0

 
(4) 

Let’s remember that the thermal conductivity is multiplied by 2 in the molten pool. This value is set to 60 

W.m-1K-1 as it is shown in table 1. This numerical artifice is often used to reproduce the convection in the molten 

pool in order to get a suitable weld pool length. 

The temperature range of fusion for the SS 316L is fixed to occur between 1400°C and 1500°C with a latent 

heat value of 2.0 109 J.m-3[10]. The enthalpy curve for the SS 316L is presented in Fig. 3. 

 
Fig. 3 Evolution of the Enthalpy with regards to the temperature for SS 316L. 

MECHANICAL MODEL 

A transient mechanical analysis is performed in order to calculate the strain and stress responses to the thermal 

cycle previously presented. Let’s remember that the thermal analysis results are used as thermal loading into 

the mechanical analysis. The thermal and mechanical analysis are performed in a one-way manner (weak 

coupling). A nonlinear static solver is used. The material behavior law is assumed to be elastoplastic. The 

influence of viscous phenomena is neglected. Four different types of hardening are investigated in order to 

observe their effect on the final strain and stress fields: 

• Linear isotropic hardening 

• Non-linear isotropic hardening 

• Zero hardening (perfectly elastoplastic) 

• Linear kinematic hardening 

All these analyses are run under large deformations assumption with the “PETIT_REAC” solver 

of SalomeMeca/Code_Aster software. "PETIT_REAC" solver is based on a geometry update (position of 

nodes) at each Newton iteration. So, several geometry updates are performed for each time step of the 

mechanical calculation. Apart this geometry update, the solver works like for the small deformations [11] [12]. 

The “PETIT_REAC” solver is well suited for large deformations if rotation motions are small, the elastic strain 

is lower than the plastic strain, the material behavior law is isotropic and for smaller Newton iterations. 

Governing equations 

At each time step, the mechanical problem must verify the equilibrium equation: 
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 div(σ)+fvolume=0. (5) 

Furthermore, under small deformations hypothesis, the strain tensor is defined according to the 

displacements: 

 ∆ε=
1

2
(∇Ωi(∆u)+∇Ωi

T (∆u)), 

 
(6) 

With Ωi the updated configuration. 

 

Under the assumption of small strains and considering an elastoplastic model, the strains decomposition at 

any time is formulated as follows: 

 ε(t)=εe(t)+εth(t)+εp(t), (7) 

With 

 εe(t)=A-1(T(t))σ(t), (8) 

and 

 εth(t)=α(T(t))(T(t)-Tref)Id. (9) 

A is the elasticity tensor which depends on the temperature at time t. The coefficient α is the average 

coefficient of thermal expansion depending in terms of a reference temperature Tref for which the thermal 

expansion is zero. 

Finally, the discretized relation is: 

 ∆ε=∆εp+∆(A-1σ)+∆εth (10) 

Mechanical properties 

The mechanical analysis is strongly nonlinear due to both the transient thermal loading and the temperature 

dependence of the SS 316L mechanical properties. SS 316L yield strength and Young modulus decrease with 

the increase of temperature as it is shown in Table 2 and Fig. 13 in appendices. In order to cancel the stress in 

the molten pool, both yield strength and Young modulus have been fixed to low values (beyond T=1400°C). 

Moreover, in order to cancel the cumulative plastic strains in the molten pool, a multiplicative function 

describing the hardening restoration is defined as follow [14]: 

 
Fig. 4 Multiplicative function of hardening restoration for SS 316L. 

Boundary Conditions 

The plate is fixed on one side along the (Oy) direction as it is shown in Fig. 5 (full black triangles). All the 

nodes have a prescribed displacement in both x and y direction (DX=0 and DY=0). Furthermore, the welding 

line, (Ox direction), has prescribed displacement in the y direction (DY=0) in order to satisfy the symmetry 

condition. 
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Fig. 5 Mechanical boundary conditions. 

RESULTS AND DISCUSSION 

CALCULATED TEMPERATURE FIELD 

The average electric parameters are U=12 V; I=120 A. The process efficiency is fixed to η=0.8 as it is classical 

for a GMAW process. The welding speed is set to 𝑉𝑠=5 mm s-1. The last parameters which are required in the 

Gaussian heat flux expression are chosen equal to R0=3 mm for the Gaussian distribution and e=3 mm for the 

plate thickness. The Gaussian radius was roughly estimated in order to get a weld pool half-width of about 2 

mm as observed experimentally. The total simulation duration is about 36.8 s defined as 0.8 s for the initiation 

followed of 16 s for the heat flux to scan the 80 mm of the plate and 20 s of cooling. The meshgrid used for the 

thermal simulation consists in 12090 quadrangle elements defined with 11546 nodes. The minimum element 

size is 0.2 mm in the weld bead and increases progressively far from the weld bead zone. The calculation is 

performed with a direct solver. The total CPU time consumed is 3725 s (~1h) for a time step of 0.04 s with a 

smaller time step of 0.008 s at the initiation of the heat source. The results of the thermal simulation are presented 

in Fig. 6 and 7.  

In Fig. 6, the calculated temperature field is presented at time t=8 s. The shape of the molten pool is delimited 

with the black line corresponding to the isotherm T=1400°C. The molten pool exhibits a classic elongated shape. 

Its dimensions are 5 mm long by 2 mm half-width. The part of the plate in front of the source is not yet affected 

by the heating and it remains equal to the initial temperature. The thermal gradient in front of the heat source is 

important as it is commonly observed in welding experiment. This is due to the low thermal diffusivity (ratio λ 

/ (ρ.Cp) ) of SS 316L which takes values between 3,89x10-6 m2 s-1 to 5,64x10-6 m2 s-1 between 20°C and 1200°C. 

The heat propagates slower than the heat source motion so a high thermal gradient is produced in front of the 

heat source. At the rear of the heat source, the heat propagates towards the width by conduction. The boundary 

located at x=0 mm is slightly heated by conduction as the heat source started 10 mm further. A maximum 

temperature of 1790°C is reached inside the molten pool. The isotherm defining the weld pool shape exhibits a 

perpendicular tangential derivative on the symmetry axis. This behaviour is due to the symmetry condition 

imposed on this boundary (homogenous Neumann condition). The computation of Biot number (Bi = h.L/λ with 

h the convective exchange coefficient, L is a characteristic length and λ is the thermal conductivity) leads to a 

value between 0,003 and 0,0015 in the temperature range 20°C-1200°C (with h= 15 W m-2 K-1 and L is equal 

to the plate thickness). For Biot values inferior to 0.1, it can be assumed that the temperature field is almost the 

same through the plate thickness.  

 
Fig. 6 Temperature field (°C) at time t= 8 s. The weld pool shape is defined by the melting isotherm Tf=1400°C (black 

line). 



The temporal evolution of the temperature at time t=8 s on the symmetry axis (see Fig. 7.a) is reported in 

Fig. 7.b. The temperature history is divided in four parts. Firstly, the temperature remains equal to the initial 

condition till the heat source comes over its position. Secondly, the heating rate increases hugely, about     

1275°C s-1, as the temperature rises from 20°C to 1790°C in about 1.5 s. Then the material cools down quickly 

from 1790°C to 1400°C with a cooling rate similar to the heating rate. At 1400°C, the cooling rate slows down 

to 80°C s-1. This is due to the release of the latent heat of fusion. Once the material is totally solidified, the 

cooling rate decreases from 200°C s-1 (at t~11.5 s) to 10°C s-1 at the end of the computation (t~37 s). The plate 

has not reached the room temperature after 20 s of heat flux extinction. The average temperature of the plate is 

between 400°C and 500°C after 20 s of cooling time. At a cooling rate of 10°C s-1, it would take 40 to 50 more 

seconds to reach the room temperature. Experimentally, it is extremely difficult to get thermal data inside the 

weld pool and its vicinity. Nevertheless, the weld pool shape and temperature field are in good agreement with 

some data found in the literature [15].  

 
 

 

Fig. 7 Time evolution of the temperature (b) for an arbitrary point on the symmetry axis (a). 

 

This temperature results are used in the mechanical computation in order to predict the residual stresses 

generated by the heat flux passage. The effect of this thermal cycle on the residual stresses is presented in the 

next section. 

STRESS FIELDS 

For the mechanical computation, the mesh is composed by 7290 quadrangle elements and 6946 nodes. Like the 

thermal analysis, a mesh refinement is made in the weld bead zone with a mesh element size of 0.2 mm. The 

computation is performed with a direct solver. The CPU time consumed for each analysis is nearly the same, 

about 40 000 s (~11 h) for a time step of 5.10-4 s. 

The longitudinal stress field and evolution along the longitudinal and transverse directions are presented 

respectively in Fig. 9, 10, 11 and 12. The presented results in Fig. 9, 11 and 12 is obtained at the final time of 

the mechanical computation then after 20 s of cooling. Fig. 10 presents the longitudinal stress evolution at time 

t=8 s along two longitudinal axis L1 and L2 (see Fig. 8) respectively situated at 1mm and 10 mm from symmetry 

axis (Ox). Let’s remember that the SS 316L is supposed to be elastoplastic with hardening. Four hardening 

cases have been investigated: perfectly plastic, linear isotropic, nonlinear isotropic and linear kinematic.  

(a) 
(b) 



 
Fig. 8 Position of observation lines: 2 lines L1 and L2 are parallel and respectively located at 1 m and 10 mm from to the 

symmetry axis (Ox). The third line L3 is located at y=50 mm and perpendicular to the symmetry axis (Ox). 

 

 
 

 

Fig. 9 Longitudinal stress (𝜎𝑥𝑥 for (a)) and transverse stress (𝜎𝑦𝑦 for (b)) fields at t=tfinal (~37 s) under elastoplastic behavior 

with linear isotropic hardening (Pa).  

 

The longitudinal stress (𝜎𝑥𝑥) field is tensile between the starting and ending points of the weld path as we can 

see in Fig. 9.a. The longitudinal stress has a homogenous value along the weld bead (around +200 MPa). This 

longitudinal stress field has a classic distribution. Inside the molten pool, the stress must be equal to zero as it 

is observed experimentally (a numerical artifice cancels the stress when the temperature is greater than 1400°C). 

Thus, during the solidification, the material shrinkage leads to tensile stress at the back of the weld pool as we 

can see in Fig. 9.a. 

Transverse stress (𝜎𝑦𝑦) is tensile in the domain defined by the weld bead and heat affected zone. The 

transverse stress is equal to zero on the free lateral boundary (y=30 mm). Another edge effect is visible on the 

fixed boundary (x=0 mm); the transverse stress is under compression due to the condition of prescribed 

displacements in both directions. 

 

 
 

 
Fig. 10 At t=8 s, along L1: (a) Longitudinal stresses (𝜎𝑥𝑥) field at t=8 s. (b): Evolution of the longitudinal stresses (𝜎𝑥𝑥) for 

four hardening configurations (left vertical axis in Pa) and temperature distribution (right vertical axis in °C).  
 

Fig. 10.a and 10.b present the longitudinal stress field when the heat source is located at x~50 mm (t~8 s). 

The evolution of longitudinal stress along L1 line is presented as well as the temperature history. In front of the 

heat source (x>50 mm), the zone is under compression due to dilatation effects because of the high temperature 

(a) (b) 

(a) (b) 

𝜎
𝑥

𝑥
 

𝜎𝑥𝑥 (Pa) 𝜎𝑦𝑦 (Pa) 

𝜎𝑥𝑥 (Pa) 



difference in few millimeters. The temperature rises suddenly from 20°C to 1700°C. The stress values are equal 

to zero inside the molten pool because the cut-off temperature imposed on the material properties for canceling 

the stress (Tcut-off = 1400°C). Once the temperature, at the back of the heat source, goes below Tcuf-off, the 

longitudinal stress goes from 0 MPa to reach 150-160 MPa. At x=10 mm, the longitudinal stress has not yet 

reached its maximum value as shown in Fig. 11.b (about 220 MPa at t=tfinal). 

  
 

 
Fig. 11 Evolution of longitudinal residual stress (𝜎𝑥𝑥) along L1 line (a) and L2 line (b) parallel to the weld bead and located 

respectively at 1 mm and 10 mm from the symmetry axis. 

 

As mentioned for the longitudinal stress field, the longitudinal stress is cancelled on the free boundary, at 

x=100 mm. The longitudinal stress is slightly tensile on the fixed boundary (x=0 mm) because of the boundary 

condition applied here: no displacement in both directions, see Fig. 11.a. The longitudinal stress reaches two 

peaks values (~220 MPa) at the beginning of weld path (x=10 mm) and at its end at x=90 mm this is due to the 

plate stiffness before the starting and after the ending points. The minimum value is reached at the plate middle 

with 160 MPa. At 10 mm from the symmetry axis, the longitudinal stress is still tensile and high with a 

homogenous value of 160 MPa between 30 mm < x < 80 mm, Fig. 11.b. All the studied hardening led to the 

same residual stress field and longitudinal distribution except for the nonlinear isotropic hardening case. The 

nonlinear isotropic hardening led to a narrower tensile zone for the longitudinal stress. Fig. 12.a shows that the 

longitudinal stress is tensile (about160 MPa) over 6-7 mm before decreasing and reaching a minimum value of 

-140 MPa at 12-13 mm from symmetry axis. The three other cases: perfectly plastic, linear isotropic and 

kinematic hardening led to a wider tensile zone, till 12 from symmetry axis and the minimum value is -200 MPa 

and it is reached about 20 mm from symmetry axis. The thermal loading is the same for the four studied cases. 

It seems that the nonlinear isotropic hardening leads to a narrower tensile zone (for 𝜎𝑥𝑥) and the compressive 

value is lower as well. 

 
 

 
Fig. 12 Evolution of longitudinal residual stress 𝜎𝑥𝑥 (a) and transverse residual stress 𝜎𝑦𝑦 (b) along a transverse line to the 

weld bead and located at x=50 mm. 
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Fig. 12.a presents a classical longitudinal stress distribution along a perpendicular direction to welding path. 

The weld bead and heat affected zones are tensile followed to a compression zone with a peak value of -200 

MPa. As the plate width is quite narrow, this compressive longitudinal stress remains quite high with a value of 

about -100 MPa on the lateral boundary (y=30 mm). The calculated transverse stress at the plate middle 

(y=50mm) is more than 10 times lower than the longitudinal one. At this position of the weld bead, the stress 

field looks like an uniaxial loading as it is shown in Fig. 9.b. The transverse stress is high at the beginning and 

end of the weld bead probably due to the plate stiffness. The 𝜎𝑥𝑥 and 𝜎𝑦𝑦 residual stresses fields along transverse 

axis are in accordance with strain gauges and neutron diffraction measurements [16]. 

CONLUSION AND PROSPECTS 

A thermo-mechanical analysis was conducted in order to appreciate the stress distribution induced by WAAM 

process. As a first approach, only the first weld bead is considered to evaluate the level of distortion and residual 

stresses that could affect the WAAM process during the successive deposition.  The thermo-mechanical 

simulations were done with SalomeMeca software (Code Aster). The thermo-mechanical model is elastoplastic 

type with different hardening configurations (linear, non-linear, isotropic, kinematic).  

The magnitude and distribution of residual stresses are very similar for all the types of hardening, both on 

longitudinal and transverse sections. Only the non-linear hardening presents some discrepancies.  

The obtained differences are probably due to the nonlinear mechanical management by the solver. 

Nevertheless, the global behavior and the maximal values of stresses are nearly the same for all the hardening 

configurations.  

The management of several layers deposition for thermomechanical analysis is in progress. It will be carried 

out in relation with an experimental study conducted in similar conditions. The experimental data obtained in 

our lab facility are both thermal data (temperature histories with thermocouples) and mechanical data 

(displacements and strains).  

APPENDICES AND ACKNOWLEDGEMENTS 

Table 1 Thermophysical properties of SS 316L [13]. 

Temperature (°C) Conductivity (𝑾 𝒎−𝟏 𝑲−𝟏) Enthalpy (𝑱 𝒎−𝟑) 

0  9.83108 

20 14  

100 15.2 1.36 109 

200 16.6 1.76 109 

300 17.9 2.19 109 

400 19 2.62 109 

500 20.6 3.06 109 

600 21.8 3.51 109 

700 23.1 3.96 109 

800 24.3 4.43 109 

900 26 4.92 109 

1000 27.3 5.42 109 

1100  5.92 109 

1200 29.9 6.44 109 

1300  6.97 109 

1400 60.0 9.51 109 

1500  1.01 1010 

 
 

 



Table 2 Mechanical properties of SS 316L [13]. 

Temperature 

(°C) 

Young 

Modulus E 

(106Pa) 

Yield Strength 

Re (106Pa) 

Coefficient of 

thermal 

expansion α (10-

5) 

Tangent 

modulus of 

elasticity ET 

(106Pa) 

20 197 000 287 1.55 2400 

100 191 500 237 1.60  

200 184 000 198   

300 176 500 172 1.71  

400 168 000 157 1.75  

500 160 000 151   

600 151 500 145 1.84  

700 142 500 136 1.87 2400 

800 130 000 127 1.90 2350 

900 108 000 115  1500 

1000 81 500 79 1.94 800 

1100 32 000 38  725 

1200 7 400 24  150 

1300  18  10 

1400  2 1.96  

 

 

 
Fig. 13 Traction curves of SS 316L [13]. 
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