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The viscosity of suspensions of large (≥ 10µm) particles diverges at high solid fractions due

to proliferation of frictional particle contacts. Reducing friction, to allow or improve flowability,

is usually achieved by tuning the composition, either changing particle sizes and shapes or by

adding lubricating molecules. We present numerical simulations that demonstrate a complementary

approach whereby the viscosity divergence is shifted by driven flow tuning, using superimposed

shear oscillations in various configurations to facilitate a primary flow. The oscillations drive the

suspension towards an out-of-equilibrium, absorbing state phase transition, where frictional particle

contacts that dominate the viscosity are reduced in a self-organizing manner. The method can allow

otherwise jammed states to flow; even for unjammed states, it can substantially decrease the energy

dissipated per unit strain. This creates a practicable route to flow enhancement across a broad

range of suspensions where compositional tuning is undesirable or problematic.

Teaser “Driven tuning dramatically enhances flowability in a broad class of suspended granular materials.”

INTRODUCTION

Densely packed suspensions arise widely in industry and manufacturing, where reliable, predictable and prescribable

flow properties are essential [1]. A major limiting factor in their processability is the very steep increase of viscosity

upon increasing the volume fraction of solid material ϕ towards the jamming transition [2]. This is particularly evident

in the non-Brownian regime (particle size ≥ 10 µm) where frictional particle contact interactions reduce the jamming

density ϕm [3–5] and increase dissipation in process flows, resulting in high energy costs.

Empirical strategies that reduce the viscosity and/or net dissipation include tuning the physical properties of

the particles —for example their size, shape and polydispersity— or modifying their interactions through chemical

additives known as plasticizers, emulsifiers or friction modifiers. These lubricate interparticle contacts and reduce

the suspension viscosity by raising ϕm. Often, though, end-use requirements leave little room for manoeuvre in the

formulation. In calcium phosphate cements for bone injection [6, 7], for example, chemistry and biology both constrain

the use of molecular additives. There is therefore a practical need for methods of dense suspension flow control that

do not require changes to formulation.

Two recent experiments suggest a possible route towards this goal, achieving driven viscosity reduction by superim-

posing an oscillatory cross shear (OCS) on a primary desired flow. Using OCS, Blanc et al [8] demonstrated a two-fold

increase in the sedimentation velocity of an intruder in a granular suspension of rate-independent rheology, while Lin et

al [9] measured a two decade viscosity drop in one of shear-thickening rheology. The latter effect was argued to be

a consequence of the fragility of shear-induced particle contacts [9, 10], suggesting that good flowability might be

achieved only when the OCS is sufficiently fast to keep the microstructure in a load-incompatible state [10, 11]. In

this limit, the reduction in primary flow viscosity (unless this is infinite) might easily be outweighed by the high

energy cost of implementing fast OCS, particularly for rate-independent suspensions [8] whose primary viscosity drop
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FIG. 1. Viscosity and dissipation reduction under superimposed primary and oscillatory flows. A: [i] Simulation snapshot

showing primary (blue) and cross shear (red) flow directions; [ii] and [iii] Example flow paths explored for different values of

parameters ωpri and ω (values given in Insets) with δ = 0; B: Contour map showing viscosity in primary flow direction as a

function of ωpri and ω , for δ = 0 and ϕ = 0.55; C: Viscosity as a function of oscillation rate ωγ/γ̇ at various volume fractions ϕ

with amplitude γ = 1% and ωpri = 0, the simple OCS (SO) protocol; D: Viscosity divergence as a function of ϕ under steady

shear (SS) and high frequency SO with friction coefficient µs = 1. Inset: difference between SS and SO viscosities; E: Viscosity

divergences for particles with lower friction coefficient µs show diminishing viscosity reduction; F: Dissipation per unit strain

W (rescaled by the ϕ-dependent steady shear dissipation WSS) as a function of oscillation rate for the same simulations as in

C, for [i] ϕ = 0.54 and [ii] ϕ = 0.57 showing contributions in xy and zy. Green areas in [i] and [ii] highlight the region in which

both viscosity and dissipation reduction are achieved. [iii] Dissipation in the (ωγ/γ̇, ϕ) plane, highlighting in white the region

for which dissipation may be reduced by at least 5% with SO.

is much less than in shear-thickening ones [9]. More generally, it is not clear how far the benefits of OCS depend on

the underlying suspension rheology: the short-range repulsions that prevent frictional particle contacts at low stresses

in thickening suspensions [12–14] may or may not play a major role during OCS-assisted viscosity reduction.

In this article, we present numerical simulations showing that the viscosity drop induced by OCS is generic to

suspensions with friction-dominated stress. This includes noninertial flows of most dense suspensions of super-micron

sized particles [5]. The transverse flow oscillations directly inhibit particle contacts without requiring short-range

repulsions, enhancing lubrication and shifting ϕm to higher values. Consequently, the viscosity reduction increases

with increasing ϕ, so that near jamming the saving in primary flow dissipation outweighs the cost of OCS at any

primary flow rate, giving a net reduction in the energy expended per unit strain in the primary direction. We then

show that the reduction in particle contacts stems from an OCS-induced ‘random organization’ mechanism [15–17];

this leads us to an enhanced version of the flow protocol that can reduce the dissipation further. Guided by these

results, we argue that driven viscosity control should extend flowability and reduce the associated energy cost across

a broad class of materials including slurries, muds, cement and other immersed granular systems.
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RESULTS AND DISCUSSION

We study a suspension of nearly-hard, athermal spheres subject to short-range hydrodynamic and contact interac-

tions with static friction coefficient µs as described in Methods below. This numerical model (and similar ones [18, 19])

is known to yield accurate predictions for the rheology of non-Brownian hard sphere suspensions. The suspension

shows rate-independent rheology, well described under steady simple shear by the viscous number formalism (see [20]

and SI). A snapshot of the simulated system is shown in Fig 1A[i].

Manipulating suspension viscosity using superimposed oscillations

From the argument that fragility makes contact stresses in suspensions susceptible to driven perturbations [9], it

follows that the addition of any arbitrary oscillating flow might lead to viscosity reduction. This hypothesis is in

line with experimental [21, 22] and theoretical [23] works that propose applied and endogenous noise, respectively,

as sources of opening and closing granular contacts and consequent unjamming. To test this, we first explore a

generalization of OCS comprising primary steady shear with rate γ̇ and superimposed oscillatory shears in both the

primary and cross shear directions, leading to an overall strain in xy as γpri(t) = γ sin(ωprit + δ) + γ̇t, and in zy as

γOCS(t) = γ sin(ωt). For simplicity we keep γ = 1% in each case, which Ref [9] found to be an optimal amplitude

for viscosity reduction. The remaining dimensionless control parameters are then ωpriγ/γ̇, ωγ/γ̇ and the phase shift

δ. This protocol gives strain paths such as those illustrated in Figs. 1A[ii] and [iii]. A characteristic viscosity is

computed as ηr = σxy/ηγ̇ averaged over ∼ 10/γ̇ time units, with η the solvent viscosity and σxy the xy component

of the stress. We find that δ has very little effect on the viscosity (see SI), and present a contour map of ηr in the

(ωpriγ/γ̇, ωγ/γ̇) plane at δ = 0 and ϕ = 0.55 in Fig. 1B. At fixed δ, viscosity minima are obtained as ωpriγ/γ̇ → 0

and ωγ/γ̇ ≳ 6. In this limit, i.e. with cross shear oscillations only, we obtain a viscosity drop comparable to that

for a thickening suspension [9]. This suggests that OCS – by keeping frictional particle contacts open – effectively

brings the suspension to a low-friction state. We similarly find a maximal rate of viscosity reduction when ωγ/γ̇

is close to unity. Contrary to the hypothesis made above, however, our results show that the orientation of the

oscillatory flow is crucial: at this strain amplitude, any oscillatory component along the primary flow direction makes

no useful contribution to improving flowability. If the shear is constrained to a single direction and the amplitude of

the oscillations is very small compared to the primary flow, the net displacements of the particles over large strains

are, for rate-independent flow, the same as for steady shear. This is not the case when the oscillations are applied

transverse to the primary flow.

Simple OCS (SO): viscosity reduction using transverse oscillations

In what follows we therefore revert to the purely transverse case with ωpri = 0, leading to γpri(t) = γ̇t, and

γOCS(t) = γ sin(ωt) (see Fig. 2A [Inset]), hereafter called the “simple OCS” protocol, SO. (This is to distinguish it

from an alternative protocol introduced below.) In Fig. 1C we report the viscosity ηr under this protocol at γ = 1%

as a function of the reduced frequency ωγ/γ̇, while in Fig. 1D we compare, as a function of volume fraction ϕ, the

steady shear viscosity (obtained when ωγ/γ̇ = 0) to the limiting viscosity under SO (obtained when ωγ/γ̇ ≥ 10). The

viscosity drop increases rapidly with ϕ, reaching a decade at ϕ = 0.56 and actually diverging between ϕ = 0.57− 0.58

(Fig. 1D Inset). This reveals that as well as reducing the viscosity, the effect of SO is to slightly delay the jamming

transition from ϕm ≈ 0.58 for steady shear to ϕm,SO ≈ 0.60 at ωγ/γ̇ = 10. Though small in absolute terms, shifts

of jamming by a couple of percent can have dramatic consequences for formulation and processing [24], as discussed

further below.

This shift of jamming under SO naturally raises the question of the sensitivity of the viscosity reduction to particle

friction, which may stem from e.g. surface roughness [25]. It is expected that in the absence of ordering, which

we do not observe in our binary system, the random close packing density ϕRCP ≈ 0.64 is an upper limit for both
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FIG. 2. Revealing random-organization at work during oscillatory shear. A: Origin of the viscosity drop at ϕ = 0.54 with

SO. The contact stress contribution is strongly suppressed with increasing oscillation rate. Inset: schematic of the SO strain

profile; B: The cumulative pair correlation function G(h) under steady shear and ωγ/γ̇ = 10, demonstrating a room-making

process; Inset: Around 20 cycles are needed to minimize the number of particle contacts C: Proportion of particles following

an irreversible trajectory under successive periods of oscillatory shear (in the absence of primary shear) as a function of the

number of cycles, starting from presheared configurations at several volume fractions. The steady decrease of the irreversibility

is a signature of random organization.

ϕm and ϕm,SO. Furthermore, it is established that the jamming point ϕm approaches ϕRCP as surface friction µs is

decreased [26, 27]. As ϕm < ϕm,SO, it follows that ϕm < ϕm,SO < ϕRCP and the window between ϕm and ϕm,SO

consequently vanishes in the limit of low friction (as µs → 0). The performance of SO thus diminishes as friction

decreases. We demonstrate this in Fig. 1E in the limits of steady shear and SO with ωγ/γ̇ = 10. As a result,

suspensions of rough particles, which are typically the most problematic in terms of processing [18], are best placed to

benefit from driven flow control. In the context of friction-driven shear thickening of colloids, this result thus confirms

that SO can be successful in reducing the viscosity of a thickened sample, as demonstrated by Ref [9], but that it

would fail to reduce the viscosity of a non-thickened sample, i.e. one at which the applied stress lies below the onset

stress [5, 12, 28, 29].

SO-enabled reductions in energy dissipation

The ability to control suspension viscosity during flow is itself desirable for mitigating instabilities [30] and, for

example, when pumps are desired to operate within narrow bounds. Often, though, rheological tuning has a some-

what different objective: to minimize the energy cost of processing. For 0.58 < ϕ < 0.60, oscillatory cross shear

triumphs: it permits flow at finite dissipation rates not otherwise possible. Below jamming (ϕ < ϕm) however,

its benefits are less obvious. The energy dissipation is given per unit volume and per unit primary strain as

W = limT→∞

(∫ T

0
dtσ : γ̇

)
/(γpri(T ) − γpri(0)). Figs. 1F[i]-[ii] show this quantity (rescaled by the ϕ−dependent

steady shear dissipation WSS) as a function of oscillation rate for our SO protocol, separating out the primary (σxyγ̇)

and cross flow (σzyγ̇
OCS) contributions. The primary dissipation decreases in line with the viscosity, but the direct

cost of the cross shear increases as (ωγ/γ̇)2. Summing these, we identify oscillation rates ωγ/γ̇ for which W is usefully

decreased, highlighted green in Figs. 1F[i]-[ii], and outlined in white in Fig. 1F[iii]. This operating window, although

it grows as the density approaches ϕm, remains narrow at lower densities. We show below that it can be extended

significantly by a simple modification to the oscillatory protocol.

Random organization drives the viscosity reduction

The proposed modification exploits mechanistic insights, gleaned from our simulations, into how oscillatory cross

shear promotes flowability. To gain these insights, we start by decomposing the viscosity into its hydrodynamic

and frictional particle contact contributions, revealing that at ϕ = 0.54 the stress is dominated by friction for any



5

oscillatory frequency, Fig. 2A. Significantly, the effect of the cross shear oscillations is to decrease this frictional

part, while leaving the hydrodynamic part unchanged. The loss of friction parallels the shift of jamming to higher

ϕ (Fig. 1D), indicative of a shift from rolling to sliding contacts as ωγ/γ̇ is increased [5, 29]. Defining interparticle

gaps hij = 2(rij − ai − aj)/(ai + aj) with rij the centre-to-centre distance between particles i and j with radii ai

and aj respectively, we compute G(h), the average number of neighbours around a particle separated at most by

h, Fig. 2B. The loss of frictional particle contacts occurs by a ‘room-making’ process, whereby the mean distance

between nearest neighbours increases. Consequently, starting with a presheared sample there is a gradual decrease

of particle contacts over O(10) cycles after SO startup, Fig. 2B [Inset]. Strikingly, room-making does just enough

to hinder the stress-generating contacts. This is strongly reminiscent of ‘random organization’, whereby application

of oscillatory shear to a suspension of hard particles drives collective self-organization, leading to configurations that

minimize the number of particle contacts generated per cycle [15–17]. Below a critical volume fraction, the system

evolves to an ‘absorbing state’ for which configuration invariance is ensured under further oscillations. Though first

elaborated for dilute suspensions, a similar scenario applies at higher density where the absorbing state is defined not

by absence of collisions but absence of plastic rearrangements [31, 32].

Flow-induced random organization offers a natural explanation for the viscosity decrease upon increasing oscillation

frequency. Indeed, at high frequency the ‘primary’ and ‘secondary’ labels respectively assigned to steady shear and

oscillatory cross shear are misnomers. In fact we have a steady transverse flow that weakly perturbs an oscillatory flow,

for which the random organization effect is well established. This makes room around particles, thus decreasing the

contact stress, while the steady shear slowly consumes this room and simultaneously initiates new particle contacts.

At finite ‘primary’ flow, the absorbing state can never be reached but its proximity allows particles to avoid frictional

particle contacts at densities where these would otherwise cause large viscosities or jamming.

The largest ϕ at which absorbing states are obtained locates a nonequilibrium phase transition, where the self-

organization process is maximised [15, 16, 33]. To confirm the role of random organization, we determine the location

of this transition in our system. Starting from a presheared configuration, we apply an oscillatory shear at γ = 1%

with no primary flow, and measure the fraction of particles following irreversible, ‘active’, trajectories, which for these

purposes we define as those whose net displacement after a cycle stays below a threshold of 10−5ai. For ϕ ≤ 0.58,

this quantity approaches zero, indicating that the system evolves towards absorbing states, Fig. 2C. For an amplitude

γ = 1%, the absorbing state transition density is thus estimated as 0.58 < ϕ < 0.59. Since in practice the transition

is cut off by the primary flow, our precise definition of activity is not crucial here, although a more inclusive one (e.g.,

counting all particles that make frictional contact at any point during the cycle) would give a lower estimate for the

transition. Nonetheless, our results indicate that the random organization effect is indeed a strong one throughout

the density range where our SO protocol is effective.

Alternating OCS (AO): separated flow phases reduce dissipation further

In the SO protocol above, particle contacts are eliminated by applying oscillatory cross shear concurrently with

the desired primary shear. A relatively high energy cost arises from the need to have sufficiently fast oscillations

to ensure that random organization can compete with the restoration of frictional particle contacts caused by the

primary shear. If this is indeed the mechanism, though, there is no strict requirement that we perform these flows

concurrently. Instead we can use alternating intervals of OCS without primary shear and of primary shear without

OCS. The former eliminates particle contacts; the latter restores them, but not before a finite strain has been achieved.

The cross shear dissipation can in principle be reduced to zero by having long intervals of very slow oscillations, creating

an optimization scenario different to that of SO.

We therefore now test a new flow protocol (“alternating OCS”, AO) that alternates an interval of n periods of

oscillation during a time αT with γ̇pri = 0 and γOCS(t) = γ sin(ωt) for ω = 2πn/(αT ), with an interval of primary

shear during a time (1−α)T with γ̇pri = γ̇/(1−α) and γ̇OCS = 0. Guided by our result in Fig 1B, the oscillations are
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min, respectively.

applied transverse to the primary flow, where we anticipate that their efficacy will be maximized. Averaged over one

cycle T , the shear rate in the primary direction is γ̇. The primary shear strain during each cycle is Γ, i.e. T = Γ/γ̇.

In the case of rate-independent dynamics as simulated above, the microstructure depends on the strain path only

(sketched in Fig. 3A [Inset]), not the rate at which it is followed. As a consequence, the viscosity depends on n, γ

and Γ, but not on α (as long as 0 < α < 1). We define the relative viscosity as ηr = σxy/(ηγ̇
pri). This viscosity is

averaged over the intervals of pure primary shear during the AO protocol, measured over a time period covering 30

strain units in the primary direction. It is reported as a function of n in Fig. 3A for ϕ = 0.56 and γ = Γ = 1%. The

viscosity drops rapidly with n and, remarkably, even n = 1 is sufficient to achieve a viscosity reduction of ≈ 96% in

this unjammed system. Interestingly, this viscosity reduction is already larger than that achieved with SO, as seen by

comparing the relative reductions in Fig. 3B (AO) and Fig. 1D [Inset] (SO). Finally, we find that the viscosity drop

is maximized with AO (as with SO [9]) for γ, Γ ≈ 1 − 5%, while for larger γ interparticle gaps close during cycles

allowing frictional particle contacts and a rapid viscosity increase. A viscosity transient for the AO protocol is given

in the SI.

Although α has no role in setting the viscosity, it is a crucial parameter when it comes to the dissipation, which

depends on the deformation rate. In Fig. 3C we show the work per unit primary strainW (rescaled by the ϕ−dependent

steady shear dissipation WSS) as a function of α for several values of n, for ϕ = 0.56. For n = 1 and for α values

between 0.58 and 0.9, the overall dissipation is reduced compared to steady shear, reaching a reduction of around
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45% at α ≈ 0.8. Dissipation is minimized when n = 1 for all ϕ, as the shear rate shoots up quickly with increasing

n, swamping any further viscosity reduction achieved for n > 1. To ease the comparison with the SO protocol, we

define an oscillatory frequency for AO as ω = 2πnγ/Γ (that is, a given frequency corresponds to the same number

of cross shear oscillations per unit strain in the primary direction for SO and AO). In Fig. 3D we show a map of the

relative dissipation W/WSS in the (ϕ, ω) plane, showing a wider area of reduced dissipation with AO compared to

SO (see Fig. 1F[iii]). The AO protocol therefore has clear advantages particularly in avoiding the need to precisely

tune the frequency of the driving oscillations. We finally present in Fig. 3E a comparison of the reduction in energy

dissipation achieved by the AO and SO protocols as a function of the volume fraction ϕ. For ϕ ≲ 0.54 there is no

further gain with AO compared to SO, but for larger volume fractions, where the viscosity reduction performance of

AO is markedly superior (Fig 3B), there is indeed an improvement in AO over SO. We quantify this improvement

in Fig. 3E [Inset], giving the ratio of the minimal dissipation for AO and SO (WAO
min/W

SO
min). This shows that close to

the steady shear jamming volume fraction the improvement of AO over SO can reach almost 40%, suggesting that

AO is likely the protocol of choice for dissipation reduction in very concentrated frictional suspensions.

CONCLUDING REMARKS

Our results show that non-steady deformation protocols can lead to substantial viscosity and energy dissipation

reductions in any friction-dominated suspension flow. The strategy is applicable for most flows involving granular

suspensions and related systems in which frictional particle contacts bear most of the stress in steady shear, including

Brownian suspensions under very large stresses [34]. Because of their simplicity, our protocols, or ones like them,

might be readily implemented as precision unblockers and flow controllers in industrial devices such as extruders or

mixers, or as dissipation regulators for active granular damping [35]. In particular, an extrusion nozzle might be

fitted with an internal coaxial cylindrical actuator that oscillates about its axis with a protocol specified to maximize

flowability according to our present results. Moreover, such implementations might be applied not only to minimize

viscosities, but to regulate them against a desired set point. We tested such a protocol numerically, with good success

(see SI). From a fundamental point of view, the relation to random organization opens new research directions. For

example, it suggests that protocols other than oscillatory flow that lead to a similar absorbing phase transition [36]

might also be good candidates for driven flow enhancement in complex fluids. It also suggests an unexpected link

between rheological properties and hyperuniformity [37, 38].

NUMERICAL METHOD

We simulate the trajectories of athermal, noninertial particles using a minimal model that comprises short-ranged

hydrodynamic lubrication and frictional surface contacts. Our simulations comprise O(103) particles with size ratio

1 : 1.4 in a periodic box. For a particle pair with positions x1, x2 and translational and rotational velocities U1, U2

and Ω1, Ω2, respectively, in a background flow described at x1 by U∞(x1) = E∞x1 +Ω∞ × x1, the hydrodynamic

forces F h
1 , F

h
2 and torques Γh

1 , Γ
h
2 are given by [39–41]:


F h
1

F h
2

Γh
1

Γh
2

 = RLub



U∞(x1)−U1

U∞(x2)−U2

Ω∞ −Ω1

Ω∞ −Ω2

E∞

E∞


+RStokes


U∞(x1)−U1

U∞(x2)−U2

Ω∞ −Ω1

Ω∞ −Ω2

 . (1)
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The matricesRLub andRStokes follow our earlier description [28], while the scalar resistances therein comprise only the

leading short-ranged diverging contributions, following Ref [42]. The hydrodynamic stress contribution for particle

1 resulting from its pairwise interaction with particle 2, with force F h
1 and particle-particle vector r is given by

Sh = 1
2 (F

h
1 r

T + (F h
1 )

Tr).

The leading terms of RLub diverge according to 1/h as particles 1 and 2 approach, with h the surface-surface

distance. Following experimental evidence that lubrication layers break down in suspensions under large stress [43],

and, equivalently, for large particles [5], we use a minimum hmin = 0.001a (with a the smaller particle radius), below

which hydrodynamic forces are regularised and particles may come into contact. For a particle pair with contact

overlap δ and centre-centre unit vector n, we compute the contact force and torque according to [44]:

F c
1 = knδn− ktu (2a)

Γc
1 = a1kt(n× u) (2b)

where u represents the incremental tangential displacement, reset at the initiation of each contact. kn and kt are

stiffnesses and a1 is the radius of particle 1. The tangential force component is restricted by a Coulomb friction

coefficient µs such that |ktu| ≤ µsknδ. For larger values of |ktu|, contacts enter a sliding regime. The contact

stress contribution is given by Sc = F c
1 r

T for particle-particle vector r and pairwise force F c
1 . The stress tensor is

σ = 2ηE∞ + 1
V (

∑
Sh +

∑
Sc) where η is the suspending fluid viscosity and the sums are over all relevant pairwise

interactions. Throughout the main text, we focus on the shear component in the primary flow direction, σxy.

Trajectories are computed from the above forces using two equivalent schemes. In the first, contact and hy-

drodynamic forces and torques are summed on each particle (according to Ref [45]) and the trajectory is updated

according to Newtonian dynamics (using LAMMPS [46]), ensuring the Stokes number (ργ̇a2/η for particle density

ρ, suspending fluid viscosity η and shear rate γ̇) remains ≪ 1 to approximate over-damped conditions. We also set

2γ̇a/
√

kn/(2ρa) < 10−5 to approximate hard spheres. In the second, per-particle forces are explicitly set to zero and

the velocities are computed to balance contact and hydrodynamic forces and torques, ensuring strictly inertia-free

flow [12, 28]. The numerical model generates results that are consistent with µ(J)-rheology as predicted by the

experimental work of Ref [20], see SI.
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