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ABEL AND GALOIS CANNOT SHARE A CAKE

IN A SIMPLE AND EQUITABLE WAY

GUILLAUME CHÈZE

Abstract. In this note we study a fair division problem. We show that there

exist explicit couples of measures for which no algorithm outputs an equitable

fair division with connected parts.

In order to state this result we have defined a new model of computation:

the algebraic Robertson-Webb model. In this model the mediator can ask the

same queries as in the usual model but he or she can only perform algebraic

operations. All existing algorithms described in the classical Robertson-Webb

model can be described in this new model.

The main tool of our approach is Galois theory.

Introduction

In 1837, Pierre Wantzel has shown that there exists no general construction us-
ing only compass and straightedge which divides an angle into three equal angles.
The proof relies on algebra and field theory. The angle trisection problem can be
seen has a fair division problem: we have a portion of pizza and we want to divide it
in an equitable way between three friends (by using only compass and straightedge
constructions. . . ). Wantzel’s theorem says that this problem has no solution.

In this article, we are going to study a similar fair division problem and we are
going to use similar tools.

In the following, we consider an heterogeneous good, for example: a cake, land,
time or computer memory, represented by the interval X = [0, 1] and n players with
different points of view. We associate to each player a non-atomic probability mea-
sure µi on the interval X = [0; 1]. These measures represent the utility functions of
the player. This means that if [a, b] ⊂ X is a part of the cake then µi([a, b]) is the
value associated by the i-th player to this part of the cake. As µi are probability
measures, we have µi(X) = 1 for all i.
A division of X is a partition X = ⊔iXi where Xi is the part given to the i-th
player. A division is simple when each Xi is an interval.

Several notions of fair division exists.
We say that a division is proportional when µi(Xi) ≥ 1/n.
We say that a division is envy-free when for i 6= j, we have µi(Xi) ≥ µi(Xj).
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We say that a division is equitable when for all i 6= j, we have µi(Xi) = µj(Xj).

The problem of fair division (theoretical existence of fair division and construc-
tion of algorithms) has been studied in several papers [Ste48, DS61, EP84, EP11,
BT95, RW97, Pik00, Tho06, Pro13, BJK13, AM16], and books about this topic,
see e.g. [RW98, BT96, Pro16, Bar05]. These results appear in the mathemat-
ics, economics, political science, artificial intelligence and computer science liter-
ature. Recently, the cake cutting problem has been studied intensively by com-
puter scientists for solving resource allocation problems in multi agents systems,
see e.g. [CDE+06, CLPP13, KPS13, BM15].

In this note we are going to study simple equitable fair divisions. This topic
has been less studied than proportional and envy-free divisions. However, there ex-
ist some results showing the existence of such fair divisions [CDP13, SHS18, Chè17].

A practical problem is the computation of fair divisions. In order to describe
algorithms we thus need a model of computation. There exist two main classes
of cake cutting algorithms: discrete and continuous protocols (also called moving
knife methods). Here, we study only discrete algorithms. These kinds of algorithms
can be described thanks to the classical model introduced by Robertson and Webb
and formalized by Woeginger and Sgall in [WS07]. In this model we suppose that a
mediator interacts with the agents. The mediator asks two type of queries: either
cutting a piece with a given value, or evaluating a given piece. More precisely, the
two type of queries allowed are:

(1) evali(x, y): Ask agent i to evaluate the interval [x, y]. This means compute
µi([x, y]).

(2) cuti(x, a): Asks agent i to cut a piece of cake [x, y] such that µi([x, y]) = a.
This means: for given x and a, solve µi([x, y]) = a.

In the Robertson-Webb model the mediator can adapt the queries from the previ-
ous answers given by the players. In this model, the complexity counts the finite
number of queries necessary to get a fair division. For a rigorous description of this
model we can consult: [WS07, BN17].

In the fair division literature some impossibility results have been already given.
Stromquist in [Str08] has proved that there exists no algorithm giving a simple
and envy-free fair division for n ≥ 3 players. When n = 2, the classical “Cut and
Choose” algorithm gives a simple and envy-free fair division.
Cechlárová et al. have shown, in [CP12], that there exists no algorithm computing
a simple and equitable fair division for n ≥ 3 players.
The strategy used in these articles is the following: we suppose that an algorithm
computing the desired division exists and then by an iteration process we construct
from this algorithm a set of measures giving a contradiction. Thus we obtain a
result of this kind: for all algorithms in the Roberston-Web model there exists a
set of measures for which the desired fair division cannot be given.
It must be noticed that this approach gives for each algorithm a set of measures
leading to a contradiction. Thus the set of measures is related to the algorithm.
Moreover, the measures are not explicitly given. Therefore, we can imagine that
these sets of measure correspond to very complicated situations not appearing in
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practice and that for “reasonable” sets of measures the contradiction does not oc-
cur.
Furthermore, this strategy does not give an explicit set of measures such that no
algorithm in the Robertson-Webb model can return the desired fair division with
this input.

In this note we study simple equitable divisions when we have n = 2 players. It
must be noticed that in general we cannot deduce a result for two players from a
result about n ≥ 3 players, see the envy-free situation. Furthermore, the situation
n = 2 is not taken into account by the theorem given in [CP12]. Thus, the case
n = 2 is not a trivial case.

Now, in order to state our main result, we introduce our model of computation.

1. The algebraic Robertson-Webb model

In the Robertson-Webb model of computation the computational power of the
mediator is not specified. It is not mentioned what kind of computations the me-
diator can perform with the results of the queries. Furthermore, the number of
elementary operations done by the mediator (equality and inequality tests and
arithmetic operations +,−,×,÷) is not taken into account in the complexity. This
point has been discussed in [Chè18].
Here, we suppose as in the classical model that the mediator can use the cuti and
evali queries. However, we also suppose that the mediator can only perform equal-
ity and inequality tests and the usual algebraic operations: +,−,×,÷ on the results
of queries. We also suppose that the mediator can use freely the rational numbers.

These assumptions are not restrictive. Indeed, no known algorithm uses the
computation of a logarithm or of an exponential by the mediator or more generally
the computation of a transcendental function.
Furthermore, when the mediator needs a constant during the algorithm this con-
stant is always a rational number. Indeed, in practice the mediator never asks a
query of the form cuti(0,

e
4µi(X)), where e = 2, 718 . . . is Napier’s constant. Queries

have the form cuti
(

0, µi(X)
n

)

or cuti
(

0, p
q
µi(X)

)

, where p, q, n are integers.

Therefore, if we suppose that the answer to the first three queries are denoted
by α1, α2, α3, then in this new model, the fourth query is of the form cuti(β1, β2) or
evali(β1, β1) where β1, β2 ∈ Q(α1, α2, α3). This means that β1 and β2 are rational
expressions in terms of α1, α2, α3.

The algebraic assumption is not restrictive and to author’s knowledge all al-
gorithms written in the classical Robertson-Webb model can be written in this
algebraic Robertson-Webb model. However, these precisions are important for our
study. Indeed, if the algorithm uses k queries with answers α1, . . . , αk for computing
a fair division, then the cutpoints used in the output of the algorithmmust belong to
Q(α1, α2, . . . , αk). This gives an algebraic condition for the final cutpoints. Using
this algebraic condition, we can show:
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Theorem 1. In the algebraic Robertson-Webb model of computation no algorithm

returns a simple and equitable division when the measures (µ1, µ2) are given by

µ1

(

[0, x]
)

= x, µ2

(

[0, x]
)

= x5.

The strategy used to prove this theorem is the following: We are going to show
that if there exists an equitable and simple division X = [0, t] ⊔ [t, 1] then the final
cutpoint t must satisfy a polynomial equation. Then with elementary field theory
we can show that t cannot be computed with the algebraic Robertson-Webb model.
Now, if we use Abel’s impossibility theorem and Galois’ theory showing that some
polynomials are not solved by radicals, then we obtain other examples as stated in
the next theorem:

Theorem 2. In the algebraic Robertson-Webb model of computations there exist

measures (µ1, µ2) such that no algorithm returns a simple and equitable division for

these measures.

Furthermore, we can take (µ1, µ2) in the following way:

µ1

(

[0, x]
)

= x, µ2

(

[0, x]
)

= xd

where

• d ≥ 5 is even,

• or d ≥ 5 is odd with d 6≡ 2 [3],
• or d ≥ 5 is prime and d ≡ 2 [3].

Thus, when we have two players, that we can call Abel and Galois, we can
give easy and explicit couples of measures for which no algorithm in the algebraic
Robertson-Webb model gives a simple and equitable fair division.

Notations. In order to explain the strategy used to prove this theorem we intro-
duce some notations:
For a couple of measure (µ1, µ2) we denote by fi, i = 1, 2 the function

fi(x) = µi

(

[0, x]).

Let αj be the result of the j-th query, then we set

Kj = Q(α1, . . . , αj).

We thus have Kj = Kj−1(αj) and K0 = Q.

We recall that when a field F is a subfield of a field K then we say that we have a
field extension and this is denoted by K/F. Furthermore, the dimension of K seen
as a F-vector space is called the degree of the extension and is denoted by [K : F].
When the degree is finite we say that the extension is finite. Moreover, when we
have the inclusion F ⊂ K ⊂ L, this gives two extensions L/K and K/F. If the degree
of these two extensions are finite then the extension L/F is also finite and we have
the following equality: [L : F] = [L : K][K : F], see e.g. [Tig01, Lemma 15.3].
Furthermore, we recall that if α is a root of an irreducible polynomial in K[X ] with
degree d then [K(α) : K] = d, see [Tig01, Proposition 12.15].
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2. Proofs

The idea used to prove our theorems is the following:
If there exists a simple and equitable fair division X = [0, t] ⊔ [t, 1], then we have

µ1

(

[0, t]
)

= µ2

(

[t, 1]
)

or µ2

(

[0, t]
)

= µ1

(

[t, 1]
)

.

This gives
f1(t) = 1− f2(t) or f2(t) = 1− f1(t).

These two equations are equivalent to the following one:

(E) f1(t) + f2(t)− 1 = 0.

This equation gives a first condition on t.
The following lemma gives another condition.

Lemma 3. If f1(x) = x, and f2(x) = xp with p ≥ 3 a prime number then the

degree of the field extension Kj/Kj−1 is equal to p or 1.

Proof. By definition we have Kj = Kj−1(αj).
Two situations appears:
First, αj = evali(x, y), where x, y ∈ Kj−1.
As, eval1(x, y) = y − x and eval2(x, y) = yp − xp, we deduce that in this case
αj ∈ Kj−1. Thus Kj = Kj−1 and the degree of the extension is equal to one.
Second, αj = cuti(x, a), where x, a ∈ Kj−1.
If i = 1 then αj is the solution of αj − x = a then αj ∈ Kj−1 and the degree of the
field extension is equal to one.
If i = 2 then αj is the solution of αp

j−xp = a. If this equation has a solution in Kj−1

then the degree of the extension is equal to one, else by a classical lemma, see e.g.
[Tig01, Lemma 13.9], the polynomial Xp − xp − a ∈ Kj−1[X ] is irreducible. In this
last case, the degree of the extension is equal to p, see [Tig01, Proposition 12.5]. �

Now, we can proof Theorem 1.

Proof of Theorem 1. If an algorithm in the algebraic Robertson-Webb model com-
putes an equitable and simple fair division in k steps then the final cutpoint t
belongs to Kk = Q(α1, . . . , αk). We have thus the inclusion Q ⊂ Q(t) ⊂ Kk.
As t satisfies the equation (E) we have here

t5 + t− 1 = 0.

We can factorize this expression and we obtain:

t5 + t− 1 = (t2 − t+ 1)(t3 + t2 − 1) = 0.

As the polynomial X2 −X + 1 has no real roots we deduce that we have

t3 + t2 − 1 = 0.

Furthermore, the polynomial X3+X2−1 is irreducible in Q[X ]. This can be shown
by considering the reduction of this polynomial in Z/2Z[X ]. Thus

[Q(t) : Q] = 3.

However, by Lemma 3 we have

[Kk : Q] = 5l,

with l ≤ k. Therefore the equality

[Kk : Q] = [Kk : Q(t)][Q(t) : Q]
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is impossible and this concludes the proof. �

In order to prove Theorem 2, we need some tools.

Lemma 4. If fi(x) = xei , for i = 1, 2 then for all j ≥ 1, Kj = Kj−1 or Kj is a

radical extension of Kj−1.

Roughly speaking, this lemma says that the field Kj is of the following form:
Kj−1( n

√
α), where n is an integer and α ∈ Kj−1.

Proof. If the j-th query is of the form evali
(

[x, y]
)

with x, y ∈ Kj−1 then evali
(

[x, y]
)

is equal to yei − xei . Thus the result to this query αj = yei − xei ∈ Kj−1. In this
situation we have then Kj := Kj−1.
If the j-th query is of the form cuti

(

x, a
)

with x, a ∈ Kj−1 then the result αj to
this query is the unique solution in [0, 1] of the following equation:

αei
j − xei = a.

This implies αj =
ei

√
a+ xei and Kj := Kj−1(

ei

√
a+ xei ).

The extension Kj/Kj−1 is thus a radical extension.
�

As Q ⊂ K1 ⊂ · · · ⊂ Kk we have by definition of a radical extension, see [Tig01,
Chapter 13], the following corollary:

Corollary 5. For all j ≥ 1, the extension Kj/Q is radical.

Now, we recall a result about the irreducibility and the Galois group of certain
trinomials.

Proposition 6 (Selmer [Sel56]). The polynomials Xd − X − 1 are irreducible in

Q[X ] for all d.
The polynomials Xd+X+1 are irreducible in Q[X ] for d 6≡ 2 [3], but have a factor

X2+X+1 when d ≡ 2 [3]. In the latter case, Xd+X+1 has another factor which

is irreducible.

Proposition 7 (Osada [Osa87]). Let f(X) = Xd+aX+ b ∈ Z[X ], where a = a0c
d

and b = b0c
d for some integer c. Then the Galois group over Q of this polynomial

is isomorphic to Sd if the following conditions are satisfied:

(1) f(X) is irreducible over Q,

(2) gcd
(

a0c(d− 1), db0
)

= 1.

Proof of Theorem 2. The strategy of the proof for the first two items is the follow-
ing: We suppose that there exists an algorithm in the algebraic Robertson-Webb
model computing an equitable and simple fair division X = [0, t] ∪ [t, 1]. Then, t
must satisfy the equation (E). Here this equation is:

td + t− 1 = 0.

As t must belong to Kk and, by Corollary 5, Kk is a radical extension of Q, we
deduce that t has a radical expression over Q. Thus if the polynomial Xd+X−1 is
irreducible then it can be solved by radicals over Q, see [Tig01, Proposition 14.33].
However, the Galois group of Xd +X − 1 is isomorphic to Sd.
Indeed, Proposition 6 and the change of variables Y = −X shows that Xd +X − 1
is irreducible in Q[X ], when d satisfies the hypothesis of the first two items. Then,
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Proposition 7 with a0 = b0 = c = 1 entails that the Galois group of Xd +X − 1 is
isomorphic to Sd.
Therefore Galois’ theory implies that this polynomial cannot be solved by radicals
over Q, see [Tig01, Chapter 14]. This gives the desired contradiction.

Now, we suppose that d ≥ 5 is prime and d ≡ 2 [3]. In this case, the proof is a
generalization of the proof of Theorem 1.
Proposition 6 and the change of variables Y = −X shows that Xd + X − 1 is
reducible. Moreover, this polynomial has an irreducible factor with degree 2 and
another one with degree d− 2. This gives

[Q(t) : Q] = 2 or [Q(t) : Q] = d− 2.

Furthermore, thanks to Lemma 3 we have

[Kk : Q] = dl,

where l ∈ N.
The equality

[Kk : Q] = [Kk : Q(t)][Q(t) : Q]

is then impossible since d is prime. This concludes the proof. �
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