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Highlights

� The HBV cccDNA was detected by Southern blotting in AAV-HBV transduced 

C57BL6 mice 

� A strategy was set up to distinguish the HBV cccDNA from the AAV-HBV episome 

by qPCR

� AAV-HBV transduced immune-competent mice will allow to test drugs targeting 

cccDNA regulation and stability in vivo
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Abstract

Hepatitis B Virus (HBV) persists in infected hepatocytes as an episomal covalently-closed-

circular DNA mini-chromosome, called cccDNA. As the main nuclear transcription template, 

HBV cccDNA is a key replication intermediate in the viral life cycle. Little is known about the 

mechanisms involved in its formation, maintenance and fate under antiviral therapies. This is 

mainly due to the lack of small immune-competent animal models able to recapitulate the 

entire HBV replication cycle, including formation of HBV cccDNA. Here we report that HBV 

cccDNA can be detected by Southern blot analyses in the liver of C57BL6 mice transduced 

with AAV-HBV. HBV cccDNA persists in the liver of these animals together with the AAV-HBV 

episome. We also set up a PCR strategy to distinguish the HBV cccDNA from the AAV-HBV 

episome. These suggest that the AAV-HBV/mouse model might be relevant to test drugs 

targeting HBV cccDNA regulation and persistence. 
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Hepatitis B virus, cccDNA, adeno-associated virus, immune-competent mouse, immune-

therapeutics

Highlights

� The HBV cccDNA was detected by Southern blotting in AAV-HBV transduced C57BL6 

mice 

� A strategy was set up to distinguish the HBV cccDNA from the AAV-HBV episome by 

qPCR

� AAV-HBV transduced immune-competent mice will allow to test drugs targeting 

cccDNA regulation and stability in vivo

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120



3

Main text

The Hepatitis B virus (HBV) circulates in the blood of patients as virions containing a partially 

double stranded relaxed circular DNA (rcDNA). However, the virus persists in the nucleus of 

infected hepatocytes as a covalently-closed-circular DNA, called HBV cccDNA, which is the 

template for all viral RNAs production. HBV cccDNA is organized in a chromatin-like structure 

that displays a typical beads-on-a-string arrangement by electron microscopy [1, 2]. Host 

histone proteins as well as other proteins involved in gene expressing regulation are bound 

to HBV cccDNA [3] and its transcriptional activity is subjected to the “histone code” [4]. Since 

it does not contain an origin of replication, HBV cccDNA persistence relies on its stability in 

non-dividing cells and/or on its replenishment via re-import of rcDNA from neo-synthesized 

nucleocapsids [5]. The universal rebound of HBV replication upon withdrawal from 

nucleos(t)ide analogue treatment [6], as well as traces of HBV-DNA remaining detectable 

years after clinical recovery from acute hepatitis [7, 8], indicate that HBV cccDNA has an 

extremely long half-life in the human liver. Current therapies against HBV infection are 

effective at suppressing viral replication and improve long-term outcome [9, 10], but do not 

affect HBV cccDNA transcription template [11]. 

Although many steps of the HBV life cycle have been now well studied, the mechanisms of 

HBV cccDNA formation and regulation, as well as its regulatory interplay with the host 

immune system, are still poorly understood. While cell culture models are valuable to 

characterize defined aspects of the viral life cycle, in vivo models are invaluable to study the 

fate of HBV cccDNA during long-term chronic infection and to evaluate new antiviral 

strategies, including immune-therapies. HBV has an extremely narrow host range since it 

only infects hominoid apes, including chimpanzees. The latter have been used in pivotal 

studies deciphering host responses during acute HBV infection [12, 13] but are no longer 
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available for experimental studies [14]. The use of Macaques, relevant for toxicology studies, 

is under investigation as an alternative in vivo model of HBV infection but economic reasons 

retrain their use [15]. 

Mice, considered as a less expensive alternative animal model, are naturally not susceptible 

to HBV infection since the mouse sodium taurocholate cotransporting polypeptide (NTCP) 

orthologue does not allow HBV entry into murine hepatocytes [16, 17]. Mice or murine cell 

lines over-expressing the human NTCP can efficiently be infected by Hepatitis Delta virus 

(HDV) particles that share the same envelop as HBV and therefore enter by similar pathway. 

However, HBV replication was not detected and HBV cccDNA formation was suggested to be 

restricted in mouse cells [17-20]. To circumvent this issue, different alternatives have been 

proposed. Immune-deficient mice have been used to generate humanized liver models 

(HuHep mice) that are susceptible to HBV infection [21]. However, the absence of a 

functional immune system in these animals prevents the study of immunological issues 

regarding HBV infection, as well as the evaluation of novel immune-therapies. The injection 

of HBV minicircle or viral vectors in immune-competent mice was proposed to bypass 

limiting steps (i.e., entry and the HBV cccDNA formation) and allow transcription of HBV 

RNAs and virus production. Indeed, transfection of HBV minicircle led to the formation of 

HBV cccDNA-like molecules in hepatocytes and to persistent HBV replication in vivo [22, 23]. 

Chronic HBV infection has also been successfully established in immune-competent mice by 

inoculating low doses of adenovirus- [24] or adeno-associated virus (AAV) vectors containing 

the HBV genome [25-27]. These models have proven useful for immunological studies. 

However, despite the fact that HBV cccDNA has been previously detected in HNF1a null HBV 

transgenic mice [28] and in a murine hepatic cell line derived from a hTGF-alpha transgenic 

mouse that harbor an inducible HBV genome integration [29], it was assumed that its 
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formation and maintenance would not occur in AAV-HBV-transduced mice, as it was 

reported for humanized NTCP transgenic mice [17]. 

Here, we investigated the establishment of an HBV cccDNA pool in HBV AAV8-HBV-

transduced C57BL6 mice in comparison with HBV-infected HuHep mice and HBV-infected 

HepG2-NTCP cells. Intrahepatic DNA was extracted following a Hirt procedure that favors 

the enrichment of low molecular weight DNA such as the HBV cccDNA (see supplementary 

material and methods). It was then subjected to Southern blot analysis, the gold standard 

method to specifically detect HBV cccDNA [30]. Different HBV DNA forms were theoretically 

expected to be detected in AAV-HBV transduced cells. Those include the HBV polymerase-

free rcDNA, the single-stranded (ss) AAV-HBV DNA (from incoming AAV particles), the 

episomal circular double-stranded (ds) AAV-HBV DNA monomers and multimers (formed by 

recombination, [31, 32]) as well as, hypothetically, the HBV cccDNA formed by re-import of 

HBV rcDNA from neo-formed cytoplasmic nucleocapsids (Figure 1A). The HBV DNA circular 

forms should theoretically all be linearized upon digestion at the unique XhoI site (Figure 

1A). HBV rcDNA and cccDNA were detected at their respective expected size (given their 

agarose mobility properties according to their relaxed or supercoiled state) in HBV-infected-

HuHep mice and -HepG2-NTCP cells (Figure 1B, lanes 1 and 5). As expected (Figure 1A), XhoI 

digestion resulted in a single 3,2 kb band corresponding to a double stranded linear (DSL) 

HBV DNA (Figure 1B, lanes 2 and 4). Interestingly, we also observed signals corresponding to 

the HBV rcDNA and cccDNA forms in intrahepatic DNA extracted from an AAV-HBV-

transduced C57BL6 mouse (Figure 1B, lane 6). Importantly, these forms were not detected 

with a specific DIG-labeled AAV-vector probes (Figure 1B, lane 12). Additional bands with 

mobility properties around 1.4 kb, 1.7 kb, 3.4 kb, and 4.8 kb (Figure 1B, lanes 6, #) were 
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observed in the AAV-HBV-transduced C57BL6 mouse sample but not in the HBV-infected-

HepG2-NTCP or -HuHep mouse samples. These additional bands corresponded to AAV 

sequences as confirmed by hybridization with specific AAV DIG-labeled probes (Figure 1B, 

lane 12). The 4.8 kb and 1.4 kb bands corresponded to the AAV-HBV dslDNA and ssDNA, 

respectively (Figure 1A). The two intermediate bands migrating at a 3.4 and 1.7 kb position, 

probably corresponded to circular episomal AAV-HBV monomers containing either a full-

length or a truncated AAV-HBV genome, respectively. Detection of all these HBV DNA forms, 

including cccDNA, was confirmed in different AAV-HBV-transduced C57BL6 mice (coming 

from different laboratories but transduced with the same AAV8-HBV vector [25]) (Figure 1C). 

Digestion with an HBV single cutter mainly resulted in a 3.2 kb band corresponding to the 

HBV dslDNA and in a 4.8 kb band corresponding to the AAV-HBV dslDNA, while leaving AAV-

HBV ssDNA intact (Figure 1C, XhoI). The higher MW forms visible above the AAV-HBV 

dslDNA after digestion with XhoI were most likely AAV-HBV concatemers. 

While Southern blot analyses allow to distinguish between the different HBV DNA forms, the 

sensitivity of the technique is rather low (around 7,5 x 104 copies with our method), time 

consuming and less reproducible than selective qPCR methods. In addition, if true 

discrimination of the HBV cccDNA from the almost identical viral linear DNA or rcDNA is still 

challenging, discrimination of HBV cccDNA from the AAV-HBV episome is even more 

challenging, as they not only share common sequences but also are both episomal forms. To 

increase the specificity of HBV cccDNA detection, a nuclease digestion is usually performed 

before selective qPCR methods based on the use of primers (and probes) spanning the nick 

in the HBV rcDNA and hybridizing to its “gap region”. T5 exonuclease, that degrades HBV 

rcDNA but should leave episomal HBV cccDNA molecules intact, is currently widely used 

[33]. Accordingly, the cccDNA band was still detected in AAV-HBV samples after digestion 
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with T5 (Fig.2B, lane 6). In addition, as expected, the circular closed AAV-HBV episome was 

also resistant to the T5 exonuclease activity (Figure 2A, and 2B lanes 6 and 13). Surprisingly, 

the AAV-HBV ssDNA band was also unaffected by T5 digestion (Figure 2B, lanes 6 and 13). 

This latter might be due to the complex secondary structure formed by the AAV ITRs that 

have been shown to be less accessible for DNA polymerases for instance [34]. To specifically 

detect only HBV cccDNA, we used a combination of digestion with XmaI and SacI restriction 

enzymes, that cut only in the AAV-HBV vector (Figure S1, 2A, and 2B lanes 5 and 12), 

followed by incubation with the T5 exonuclease resulting in complete degradation of all the 

AAV DNA species, including HBV-AAV SS forms (likely due to the cut in the ITRs by XmaI) 

(Figure 2A, 2B lanes 7 and 14). We confirmed that this triple digestion allowed to detect 

cccDNA by qPCR by comparing three different DNA samples (one extracted from HBV-

infected HepG2-NTCP cells and two extracted from AAV-HBV-transduced C57BL6 mouse 

livers) containing different amounts of total HBV DNA and cccDNA (Figure 2C). 

Overall, we demonstrated that an HBV 3.2 kb cccDNA can be genuinely detected in livers 

from AAV-HBV-transduced C57BL6 mice that display a chronic HBV infection (as shown by 

stable secretions of HBeAg, HBsAg and viremia (Figure S2)). Until now, HBV cccDNA 

detection in mouse cells was reported in only two studies using HNF1a null HBV transgenic 

mice [28] or a murine hepatic cell line derived from a hTGF-alpha transgenic mouse that 

harbors an inducible and integrated HBV genome [29]. The advantage of the AAV-HBV-

transduced mouse model over those latter models is that (i) different HBV genotypes or 

mutants can be easily inserted into the AAV vectors and (ii) different mouse strains with 

different genetic background can be used. The model will further allow studies to determine 

the half-life of HBV cccDNA and to understand if the presence of HBV cccDNA may influence 
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and explain the outcome of the infection after AAV-HBV transduction in different mouse 

strains [35]. As the mouse NTCP orthologue does not allow HBV entry into cells [17], HBV 

propagation cannot occur in AAV-HBV transduced C57BL6 mice. This suggests that HBV 

cccDNA might be formed by recycling of de novo-formed cytoplasmic nucleocapsids in AAV-

HBV transduced mouse hepatocytes. If so, the model would allow to (i) identify the factors 

that may influence HBV cccDNA formation by recycling of newly-formed cytoplasmic 

nucleocapsids (ii) to study the impact of nucleos(t)ides analogues or core protein allosteric 

modulators [36] on HBV cccDNA recycling within chronically infected hepatocytes and 

determine whether a combination of these two classes of antiviral agents could help 

depleting the pool of intrahepatic HBV cccDNA [11]. Alternatively, HBV cccDNA could also be 

formed by recombination from the AAV-HBV episome. This could explain, at least in part, 

why HBV cccDNA was not detected in HBV-transgenic C57BL6 mice [37]. But this remains to 

be adequately investigated by long-term studies using nucleoside analogues to prevent 

potential recycling and/or AAV-HBV vector with mutation on ATGs of HBc gene to altogether 

prevent nucleocapsid formation. If cccDNA originates from genuine recycling the model will 

be useful to study both recycling itself and molecules, which could interfere with it. If 

cccDNA originates from recombination, then the model will yet be useful to study molecules 

capable to silence and/or induce degradation of cccDNA. It also remains to be determined if 

the detected cccDNA is functional and can genuinely lead to viral RNA synthesis, as well as if 

it would eventually take over the AAV-HBV episome as the main template for viral 

transcription. These hypotheses are so far indirectly supported by a recent study describing 

the disappearance of AAV-HBV and AAV-HDV episomes in transduced C57BL6 mice without 

a significant decline of HBV viral load [38]. 
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In conclusion, our results highlight the relevance of the AAV-HBV/mouse model that will be 

pivotal to decipher the mechanisms of HBV cccDNA maintenance and regulation as well as to 

evaluate the fate of HBV cccDNA under novel therapies combining direct acting antivirals 

with immune-modulatory drugs for instance [39, 40]. 
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Figure legends

Figure 1: Detection of the HBV cccDNA in AAV-HBV transduced C57BL6 mice. (A) Schematic 

representation of HBV DNA forms extracted by a Hirt procedure and their expected 

modifications after XhoI digestion. (B) Intrahepatic DNAs from an HBV-infected HuHep 

mouse (day 84 p.i.), an AAV-HBV-transduced C57BL6/J mouse (day 28 p.t.) or HBV-infected 

HepG2-NTCP cells (day 10 p.i.) were extracted following a Hirt procedure and submitted to 

Southern blot analyses using HBV-DIG or AAV-DIG labeled probes. (C) Intrahepatic DNAs 

from 20 AAV-HBV-transduced C57BL6/N mice (day 84 p.t.) were extracted following an Hirt 

procedure, pooled in four different groups (#1, #2, #3, #4), digested or not by XhoI and 

subjected to Southern blot analyses using HBV-DIG or AAV-DIG labeled probes. ND: not 

digested, MW: molecular weight.

Figure 2: Strategy to distinguish between the HBV cccDNA and the AAV-HBV episome in 

AAV-HBV transduced C57BL6 mice. (A) Schematic representation of HBV DNA forms 

extracted by a Hirt procedure and their expected behavior after the indicated digestions. (B) 

Intrahepatique DNAs from an AAV-HBV-transduced C57BL6/N mouse (day 28 p.t.) or HBV-

infected HepG2-NTCP cells (day 10 p.i) were extracted following a Hirt procedure, digested 

or not by indicated restriction enzymes and subjected to Southern blot analyses using HBV-

DIG or AAV-DIG labeled probes. (C) Intrahepatic DNAs from two AAV-HBV-transduced 

C57BL6/J mice sacrificed respectively at day 21 p.t and day 28 p.t or HBV-infected HepG2-

NTCP cells (day 10 p.i) were extracted following a Hirt procedure, digested or not by XmaI, 

SacI and T5 and subjected to Southern blot analyses using HBV-DIG, AAV-DIG labeled probes 

(left panels) or specific qPCR analyses to quantify total HBV DNA or cccDNA (right panels).  
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ND: not digested, MW: molecular weight. *not digested with no digestion buffer or 

incubation at 37°C.
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Supplementary material and method

Virus production and cell culture. HBV inoculum was prepared from HepAD38 [41] 

supernatants by polyethylene-glycol-MW-8000 (PEG8000, SIGMA) precipitation (8% final). 

Viral stock with a titer reaching at least 1x1010 vge/mL was tested endotoxin free. 

Recombinant AAV8-HBV vectors carrying 1.2 copies of the HBV genome (genotype D) were 

produced (using the pAAV-HBV1.2 plasmid provided by the Pasteur Institute (France)) and 

titrated by the “Plateforme de Thérapie Génique” in Nantes, France (INSERM U1089) and 

titrated by qPCR, as previously described [25]. HepG2-NTCP cells were seeded at 105 

cells/cm2 in DMEM medium supplemented with penicillin (Life Technology), streptomycin 

(Life Technology), sodium pyruvate (Life Technology), 5% Fetal Calf Serum (FCS; Fetalclone 



IITM, PERBIO). The day after, medium was renewed and complemented with 2,5% DMSO 

(SIGMA) and cells were infected at a multiplicity of infection of 250 in the presence of 4% 

PEG800 three days later for at least 16h. Cells were then washed with PBS and maintained in 

medium containing DMSO until lysis for analyses. 

Mouse experiments.

Sanofi’s site. All in vivo experiments were made accordingly to French and European 

regulations on animal welfare and Public Health Service recommendations and all protocols 

have been reviewed and approved by the institutional animal care committee of Sanofi 

(APAFIS#2189-2015100714329651v1). All animals were housed in a specific-pathogen-free 

environment in the animal facilities of Sanofi, Marcy l’Etoile, France. Eight-week-old 

C57BL6/J female mice (Charles River, Les Oncins, Saint-Germain Nuelles, France) received a 

single tail vein injection of 5.1010 vg/mouse of AAV8-HBV viral particles. After 21 or 28 days 

post-injection, mice were euthanized, blood was collected and liver pieces were flash frozen 

in liquid nitrogen and kept at -80°C before further processing. HBe antigens level in the 

serum of mice #23 (day 21 p.t.) and #32 (day 28 p.t.) used in figure 1B and 2C reached 60 

NCU/mL and 2100 NCU/mL respectively (Autobio kit according to the manufacturer’s 

instructions (AutoBio, China)). 

University of Strasbourg’s site. All animal were housed in the A3 animal facility of the Inserm 

U1110, Research Institute of Viral and Liver Disease. The procedures were approved by the 

local ethic committee and authorized by the French ministry of research (n° 

02014120511054408 – APAFIS#74.03). Twenty 8-week old C57BL6/N male mice (Charles 

River, Les Oncins, Saint-Germain Nuelles, France) were injected intravenously with 1011 vge 

of AAV8-HBV and sacrificed 12 weeks later. Liver pieces were flash frozen in liquid nitrogen 



and kept at -80°C before further processing. Sera analysis were pooled in four groups with 

HBeAg levels reaching 1024 +/- 219, 987 +/- 251, 725 +/- 254 and 739 +/-307 NCU/mL for 

group #1, #2, #3 and #4 respectively (using the Autobio kit according to the manufacturer’s 

instructions (AutoBio, China)).

CIRI’s site.  All experiments were performed in accordance with the European Union 

guidelines for approval of the protocols by the local ethics committee (Authorization 

Agreement C2EA-15, “Comité Rhône-Alpes d’Ethique pour l’Expérimentation Animale”, 

Lyon, France - APAFIS#1570-2015073112163780). Primary Human Hepatocytes (PHH, 

Corning, BD Gentest) were injected in FRG mice intrasplenically 48h after adeno-uPA 

conditioning [42]. Mice were subjected to NTBC cycling during the liver repopulation 

process. 20 weeks-old humanized FRG (or 9 weeks post engraftment of PHH) female mice 

with HSA levels >19 mg/ml, as determined using a Cobas C501 analyzer, Roche Applied 

Science, were infected by IP injection with 5x108 vge/mL of HBV. Mice were sacrificed 11 

weeks post-infection. Liver pieces were flash frozen in liquid nitrogen and kept at -80°C 

before further processing. HBe antigens level in the serum of mouse #473 used in figure 1B 

reached 3300 NCU/mL (Autobio kit according to the manufacturer’s instructions (AutoBio, 

China)). 

Hirt procedure and Southern Blot analyses.

DNA were extracted following a modified Hirt procedure [43]. 80 ug (for mice samples) or 20 

ug (for cellular samples) of DNA were subjected to Southern blot analyses using mixes of 

DIG-labeled probes (synthesized using primers listed below and the “PCR DIG probe 

synthesis kit” (Roche)), an AP conjugated anti-DIG antibody (Roche) and CDP-Star® (Roche) 

according to the manufacturer’s instructions. 



Target Name Sequence

HBV HBV-F1 TAGCGCCTCATTTTGTGGGT

HBV HBV-R1 CTTCCTGTCTGGCGATTGGT

HBV HBV-F2 TAGGACCCCTTCTCGTGTTA

HBV HBV-R2 CCGTCCGAAGGTTTGGTACA

HBV HBV-F3 ATGTGGTATTGGGGGCCAAG

HBV HBV-R3 GGTTGCGTCAGCAAACACTT

HBV HBV-F4 TGGACCTTTTCGGCTCCTC

HBV HBV-R4 GGGAGTCCGCGTAAAGAGAG

HBV HBV-F5 GTCTGTGCCTTCTCATCTG

HBV HBV-R5 AGGAGACTCTAAGGCTTCC

HBV HBV-F6 TACTGCACTCAGGCAAGCAA

HBV HBV-R6 TGCGAATCCACACTCCGAAA

HBV HBV-F8 AGACGAAGGTCTCAATCGCC

HBV HBV-R8 ACCCACAAAATGAGGCGCTA

AAV AAV.D-F1 CTCCATCACTAGGGGTTCCT

AAV AAV-R1 CAATTCGCCCTATAGTGAGT

AAV AAV-R2 GTTCGAAATCGATAAGCTTGG

Quantitative PCR analyses. One microgram of Hirt extracted DNA were digested or not for 

2h at 37°C with 2,5 U of XmaI (New England Biolabs) and 5 U of SacI-HF® (New England 

Biolabs). Ten unit of T5 exonuclease (New England Biolabs) were added and DNA were 

further incubated at 37°C for 30 min and 30 min at 70°C. DNA were then diluted in water to 



reach a concentration of 10 ng/uL. Forty nanogram of DNA were used to measure the HBV 

DNA and cccDNA amounts using specific TaqMan probes and primers as described before 

[44]. 
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Supplementary Figure 

Figure S1



Figure S2

Twelve C57BL6/J mice received a single tail vein injection of 5.1010 vg/mouse of AAV8-HBV 

viral particles. At the indicated time post-transduction, blood was collected and levels 

HBeAg, HBsAg and viremia were determined by ELISA and qPCR respectively. 
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