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Introduction

Electroencephalography as a general method for the investigation of human brain function includes ways of determining the reactions of the brain to a variety of discrete events. Some of these reactions may be associated with clear-cut changes in the EEG; some others, however, consist of changes that are difficult to visualize. The research field dedicated to the detection, quantification, and physiological analysis of those slight EEG changes that are related to particular events has steadily grown as a field of great interest in the last decades. These EEG changes may be treated globally under the common term event-related potentials (ERPs); a subset of the ERPs is constituted by the classic sensory (e.g. visual, auditory, somatosensory) evoked potentials (EPs). Generally there are three main areas of human research where ERPs play an important role: (A) clinical studies that aim at the identification of pathophysiological processes for diagnostic purposes and monitoring of brain and/or spinal cord functions; (B) neurocognitive and psychophysiological studies with the aim of disclosing neural mechanisms underlying, or associated with, cognitive and psychological phenomena; (C) brain-computer interfaces (BCI), where the classification of ERPs is used to convey messages directly from the brain to the external world without any muscle activity. The methods of analysis of ERPs have to be appropriately fit to the research question of interest. Thus, clinical applications need the knowledge of well standardized ERPs, as much as possible in quantitative terms so that deviations from the normality may be readily detectable; neurocognitive applications imply paying special attention to single-trial ERPs with the emphasis on their time-varying properties that may be analyzed along the same time scale as cognitive processes evolve; BCI studies require the application of robust methods of ERP detection, so that relevant brain signals may be used to operate external devices with a high level of reliability. This Chapter focuses on some general aspects of the methodology of analyzing ERPs, taking into consideration the different requirements alluded to above. Detailed descriptions of specific aspects of ERPs to stimuli of different modalities are presented in separate chapters of this book (visual modality in Chapter 38, auditory in Chapter 39, and somatosensory in Chapter 40), as well as general aspects of event-related (de)synchronization in Chapter 37. Specialized aspects of ERPs of children and infants are presented in Chapter 41 and the use of ERPs in the operating room is covered in Chapter 31. Frequency and time-frequency analysis methods that can be applied to the study of ERPs are presented in Chapter 44. There is a long list of important texts dedicated to the field of ERPs since the authoritative specialized textbook [START_REF] Regan | Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine[END_REF]. A recent comprehensive "Introduction to the Event-Related Potentials technique" is [START_REF] Luck | An Introduction to the Event-Related Potential Technique[END_REF]. Time-Frequency analysis methods are extensively and clearly treated in [START_REF] Cohen | Analyzing Neural Time Series Data[END_REF]. This field has benefited from theoretical advances in signal analysis and the development of techniques in various research areas, since the questions raised by the need to identify signals as ERPs of small amplitude in a varying EEG of much larger amplitude (this applies equally to event-related fields recorded by MEG), are similar to those encountered in many different areas of physics and engineering. We should note that, although several sophisticated methods have been introduced in the field of ERPs, in the setting of the clinical routine simple averaging is still the dominant methodology used.

Basic Models of ERPs

For decades ERPs have been conceived as stereotyped fluctuations with approximately fixed polarity, shape, latency, amplitude and spatial distribution. According to this view, ERPs are considered independent of the ongoing EEG, i.e., ERPs, time-and phase-locked with respect to a given event, would be simply added to the ongoing EEG. This concept constitutes the socalled additive generative model. Nonetheless, several observations show that the ongoing synchrony within a neuronal population, manifest in spontaneous EEG oscillations, changes as neurons are recruited by a sensory stimulus that elicits also an attention reaction.

The possibility that evoked responses may be caused by a process of phase resetting was put forward based on the seminal findings [START_REF] Sayers | Objective evaluation of auditory evoked EEG responses[END_REF][START_REF] Sayers | The mechanism of auditory evoked EEG responses[END_REF][START_REF] Mcclelland | Towards fully objective evoked responses audiometry[END_REF], showing in the auditory system that stimuli at low intensity, near hearing threshold, evoke responses that can be discriminated better based on ensemble phase spectral measures as compared to amplitude measures. These findings indicate that the ERP may consist, at least partially, of an enhanced alignment of phase components of the spontaneous neuronal activity. In line with these seminal observations, several authors [START_REF] Basar | EEG-Brain dynamics: relation between EEG and Brain Evoked Potentials[END_REF][START_REF] Makeig | Dynamic brain sources of visual evoked responses[END_REF][START_REF] Penny | Event-related brain dynamics[END_REF] have proposed to consider ERPs as time/frequency modulations of the activity of local neuronal populations. From a theoretical point of view we noted in [START_REF] Lopes Da Silva | Event-related neural activities: what about phase?[END_REF] that it is not probable that two independent neuronal populations, one generating exclusively ongoing activity and another one responsible only for the evoked response, would co-exist side by side as distinct and independent entities in a given brain area. It is more likely that the same neuronal elements contribute to the generation of both types of activity. This same idea was formulated in [START_REF] Shah | Neural dynamics and the fundamental mechanisms of Event-Related brain potentials[END_REF],

where it was noted that EEG ongoing activity and EPs are generated by overlapping neuronal elements. According to this model, event-related responses may engage a group of neurons, by way of two basic mechanisms: either by enhancing (or decreasing) synchrony of on-going neuronal firing and/or by synchronizing the activity of specific neuronal populations. These two mechanisms are not mutually exclusive. Thus several combinations of neural processes may take place in the generation of evoked responses: narrow-band power decreases and increases (event-related spectral perturbations) as well as phase-locking and/or phase-resetting of ongoing EEG frequency components. Furthermore, since the ongoing EEG activity is commonly non-symmetric around zero, slow components may contribute to averaged responses, according to the potential asymmetry model in [START_REF] Mazaheri | Rhythmic pulsing: linking ongoing brain activity with evoked responses[END_REF] and [START_REF] Nikulin | Non-zero mean and asymmetry of neuronal oscillations have different implications for evoked responses[END_REF]. In an editorial where these and other fundamental aspects of the generation of evoked responses are analyzed, [START_REF] De Munck | How are evoked responses generated? The need for a unified mathematical framework[END_REF] stressed the need for a mathematical framework enabling the comparison of different models of ERP generation. We may add that a better understanding of the biophysics underpinning the generation of ERPs is an important prerequisite for advancing our knowledge in this field. The methods described in this Chapter are mainly based on the additive model. This may be considered a basic working hypothesis, which may yield meaningful results even if the data does not precisely conform to this model, as decades of practice have confirmed.

Time Averaging of ERPs

Ensemble Averaging

According to the additive model, ERP analysis in the time domain is based on two assumptions: (i) the electrical response evoked by the brain is time-and phase-locked to the event and (ii) the ongoing activity is a stationary 'noise'. In this way, the observed ERP can be decomposed in a signal term (assumed fixed across sweeps, although amplitude and latency inter-sweep variability should be taken into account, as discussed further below), plus a 'noise' term, which actually include all recordable activity besides the ERPs (instrumental noise, environmental artifacts, biological artifacts, induced EEG and ongoing EEG) and is highly variable from sweep to sweep. The former constitutes the generally called Evoked Response, or in classic EEG literature "Evoked Potential". ERP detection becomes, accordingly, a matter of improving the signal-to-noise ratio (SNR).

Let us consider a real case where it is of interest to study evoked potentials related to sensory stimuli. The presentation of the stimuli is repeated a number of times. Each repetition is named a sweep (or trial). The aim is to estimate the corresponding event-related responses. Throughout this Chapter we will make use of the following notation and nomenclature: there is a set of K sweeps, which we will index by k∈ {1,..,K}. EEG signals are recorded from N electrodes (also referred to as sensors or derivations) at a succession of equally spaced discrete time samples. T According to this model, the evoked responses in Q may be continuously modulated in amplitude and latency across sweeps. The single-sweep SNR is the ratio between the variance of σk Q(τk) and the variance of Nk. Since the amplitude of ERP responses on the average is in the order of a few μV, whereas the background EEG is in the order of several tens of μV, the SNR of single sweeps is very low. Therefore averaging, smoothing and/or filtering is warranted to improve the SNR.

The weighted and aligned arithmetic ensemble average of the K sweeps is given by

, ( 36.2) 
where the hat symbol (ˆ) on σk and τk indicates that these quantities are unknown and therefore must be estimated. Of course, with all weights equal to one and time-shifts equal to zero, ensemble average estimation (Eq 36.2) reduces to the usual arithmetic mean. Using equal weights, the above estimator is unbiased if the noise term is zero-mean, uncorrelated to the signal, spatially and temporally uncorrelated and stationary. It is actually optimal if the noise is also Gaussian [START_REF] Lęski | Robust Weighted Averaging[END_REF]. However these conditions are never matched in practice. For instance, EEG
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data are highly spatially and temporally correlated and typically contain outliers and artifacts, thus are non-stationary. As a rule of thumb, the SNR of the arithmetic ensemble average improves proportionally to the square root of the number of sweeps. In practice, it is well known that the arithmetic mean is an acceptable ensemble average estimator provided that sweeps with low SNR are removed and that enough sweeps are available.

In the following we consider several methods that have been proposed to improve the arithmetic average estimator. We will first review briefly univariate methods, and thereafter describe in some detail multivariate methods. Nowadays ERP recordings most often involve several channels and it is not uncommon to see studies using tens or hundreds of channels. The spatial diversity of the signal recorded at many derivations can be specifically exploited by spatial filtering to improve the ensemble average and single-sweep estimation, thus in practice univariate methods are slowly being replaced by multivariate methods.

Univariate Methods

The goal being suppressing noise while preserving the ERP components, early attempts addressed the univariate problem, that is, at each available sensor separately, by using Wiener filtering [START_REF] Doyle | Some comments on the use of Wiener-filtering for the estimation of evoked potentials[END_REF][START_REF] Albrecht | Wiener filtration versus averaging of evoked responses[END_REF]. In order to overcome deviations from signal stationarity, [START_REF] Weerd | A posteriori time-varying filtering of averaged evoked potentials. I. introduction and conceptual basis[END_REF][START_REF] Weerd | A posteriori time-varying filtering of averaged evoked potentials. II. mathematical and computational aspects[END_REF] introduced an adaptive time-varying Wiener filter capable of optimizing the estimation of both lowfrequency components of relatively long duration and high frequency components of short duration. In the same vein several approaches, borrowed from the field of signal processing, were proposed in the course of time: autoregressive models [START_REF] Cerutti | Single sweep analysis of visual evoked potentials through a model of parametric identification[END_REF], autoregressive moving average models [START_REF] Heinze | ARMA-filtering of evoked potentials[END_REF], Kalman filters [START_REF] Tarvainen | Estimation of nonstationary EEG with Kalman smoother approach: an application to event-related synchronization (ERS)[END_REF] and wavelets denoising [START_REF] Bartnik | Single evoked potential reconstruction by means of wavelet transform[END_REF][START_REF] Bertrand | Time frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials[END_REF][START_REF] Schiff | Fast wavelet transformation of EEG[END_REF][START_REF] Demiralp | Decomposition of event-related brain potentials into multiple functional components using wavelet transform[END_REF][START_REF] Effern | Nonlinear denoising of transient signals with application to event-related potentials[END_REF][START_REF] Quian Quiroga | Obtaining single stimulus evoked potential with wavelet denoising[END_REF][START_REF] Quiroga | Single-trial event-related potentials with wavelet denoising[END_REF]. In the next section we consider the latter since it has interesting potentiality in neurocognitive studies, in particular.

Wavelet decomposition, denoising and single-trial analysis

Wavelet transforms yield a time-frequency decomposition of non-stationary signals [START_REF] Mallat | A theory for multiresolution signal decmposition: the wavelet representation[END_REF], as described further in Chapter 44, where the reader may find the basic concepts of the methodology of wavelet decomposition. In [START_REF] Aniyan | A wavelet based algorithm for the identification of oscillatory event-related potential components[END_REF] the authors noted that wavelet analysis provide reliable measures for the detection of ERPs, more robust than conventional filtering techniques, and summarize a number of applications of this methodology in the field of ERPs. Specifically regarding ERPs it is important to emphasize that these signals are non-stationary, and present different frequency components with different durations distributed along the time signal.

Typically the earlier components of ERPs have relatively high frequencies and short duration, while the later components have lower frequencies and extend over longer durations. These features make ERPs particularly suitable for an analysis using wavelet decomposition. The seminal papers [START_REF] Bartnik | Single evoked potential reconstruction by means of wavelet transform[END_REF][START_REF] Bertrand | Time frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials[END_REF][START_REF] Tallon-Baudry | Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human[END_REF] paved the way for the application of ERPs wavelet decomposition.

The process of automatic denoising is, however, not simple. Several algorithms have been proposed with this purpose. Recently [START_REF] Ahmadi | Automatic denoising of single-trial evoked potentials[END_REF] introduced an algorithm for the automatic selection of wavelet coefficients (the so-called NZT algorithm) based on the inter-and intra-scale correlation of neighboring wavelet coefficients. An example of this application is shown in Fig 36.

1, illustrating the potential of this methodology to extract single-trial evoked potentials with an enhanced signal-to-noise ratio. Such methods are being actively explored particularly in neurocognitive studies of perception, learning and memory [START_REF] Rey | Single trial analysis of field potentials in perception, learning and memory[END_REF]. The possibility of reliably recording single-trial evoked potentials is particularly relevant, for example, in studies where it is of interest to study trial-to-trial variability in relation to perceptual performance, or to follow changes in latency of a given component associated with a memory task, for instance. In this way it is possible to reliably extract single-trial EPs from a session consisting of many stimuli presentations, while the subject is performing a cognitive task. 

Multivariate Methods

Several multivariate methods have been developed with the aim of improving the estimation of ERP ensemble averages by means of spatial, temporal or spatio-temporal filtering. Spatial filtering is more common; according to the macroscopic model of EEG generation, the brain current sources of EEG/ MEG signals contribute linearly to the scalp electric/magnetic fields (see Chapter 4). The aim of a spatial filter is to find an optimal linear combination of the data across sensors to enhance the SNR. The aim of a temporal filter is to find an optimal linear combination of data across samples. One can design a spatial filter, a temporal filter or a spatiotemporal filter. The mathematical description of the three kinds of filters is presented in BOX I.

In this context we introduce briefly three methods that have similar objectives: Principal Component Analysis (PCA), the Common Spatial Pattern (CSP) and Blind Source Separation (BSS). The performance of these methods for removing eye artifacts is illustrated in Figs 36.2 and 36.3 using an example of a visual oddball paradigm eliciting a P300 for infrequent stimuli.

BOX I -Filtering

Given an ensemble average estimation X ∈ ℝ N.T as in Eq 36.2, where N is the number of electrodes and T the number of sample time points in a trial, the output of a spatial, temporal and spatiotemporal filter are the components given by, respectively, (

In Eq.36.3 B ∈ ℝ N.P is a spatial filter and D ∈ ℝ T.P a temporal filter matrix. For both we require 0<P<N, where P is named the subspace dimension. The upper bound for P is due to the fact that for ERP data we assume N<T and that filtering is achieved by discarding from the ensemble average estimation the N-P components not accounted for by the filter. The task of a filter is indeed to retain from the raw data a small number of meaningful components so as to suppress noise while preserving the relevant signal. Once the matrix B and/or matrix D are designed by means of optimization techniques, the spatio-temporal filtered ensemble average estimation is obtained by projecting back the components onto the sensor space, as ' X = AB T X DE T (36.4) where matrix A∈ ℝ N.P and E ∈ ℝ T.P are found so as to verify , (36.5) with I the identity matrix. If one wants to design a sole spatial filter (first expression in Eq 36.3), D and E are simply to be ignored in Eq 36. [START_REF] Sayers | Objective evaluation of auditory evoked EEG responses[END_REF]. Similarly, if one wants to design a sole temporal filter (second expression in Eq. 36.3), A and B are to be ignored.
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Principal Component Analysis

Principal component analysis (PCA) was the first filter of this kind to be applied to ERP data [START_REF] Donchin | A multivariate approach to the analysis of average evoked potentials[END_REF][START_REF] John | Experimental background: signal analysis and behavioral correlates of evoked potential configurations in cats[END_REF] and has been often employed since then [START_REF] Chapman | EP Component Identification and Measurement by Principal Component Analysis[END_REF][START_REF] Lagerlund | Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition[END_REF][START_REF] Kayser | Trusting in or breaking with convention: towards a renaissance of principal components analysis in electrophysiology[END_REF][START_REF] Dien | Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations[END_REF]. A long-lasting debate has concerned the choice of spatial vs. temporal PCA [START_REF] Lopes Da Silva | Event-related neural activities: what about phase?[END_REF][START_REF] Picton | Human Auditory Evoked Potentials[END_REF]. This debate, however, could be resolved performing a spatio-temporal PCA, combining the advantages of both. The PCA seeks uncorrelated components maximizing the variance of the ensemble average estimation; the first component explains the maximum of the variance, while the remaining components explain the maximum of the remaining variance, assuming that it is uncorrelated to all the previous. Hence, the variance explained by the N-P discarded components (P is the subspace dimension, see BOX I) explains the variance of the 'noise' that has been filtered out by the PCA. The spatial and/or temporal filter matrix B and D are found by singular value decomposition as the left and right singular vectors of the ensemble average given by Eq.(36.2). An example of spatial PCA applied to a P300 data set is shown in Fig. 36.2.

The Common Spatial and Temporal Pattern

References [START_REF] Koles | The Quantitative extraction and Topographic Mapping of the Abnormal Components in the Clinical EEG[END_REF][START_REF] Koles | EEG Source Localization: Implementing the Spatio-Temporal Decomposition Approach[END_REF] first adapted to EEG en extension of PCA proposed in [START_REF] Fukunaga | Statistical Pattern Recognition[END_REF]. The objective is obtaining a spatial filter separating EEG signals from distinct classes, with possible diagnostic value in the clinical domain or, more in general, distinguishing EEG signals obtained in different conditions [START_REF] Ramoser | Optimal Spatial Filtering of single trial EEG during Imagined Hand Movement[END_REF]. Specifically, the aim is finding spatial filters maximizing the ratio of the variance of the EEG obtained in two conditions. Since the resulting spatial components are common to EEG signals obtained in two different conditions, the approach is named Common Spatial Pattern (CSP). In contrast to the PCA, the CSP does not require orthogonality of the components. The ERPs components resulting from a spatial filter are given by the first expression of Eq. 36.3 in BOX I. A CSP adapted for time-and phase-locked activity such as ERPs was proposed in [START_REF] Rivet | xDAWN algorithm to enhance evoked potentials: application to brain-computer interface[END_REF]; the two conditions in this case are defined as the evoked activity and the evoked activity plus the noise, respectively, the noise being defined in section 3.1. Since the spatial filter maximizes the variance (energy) of the evoked activity with respect to the total EEG variance, it effectively seeks the optimal linear combinations of EEG derivations enhancing the SNR of the evoked activity. As for the PCA, the first P components are usually retained, with P smaller than N (see BOX I). A later extension of this method accounted for inter-sweep latency variability as well [START_REF] Souloumiac | Improved estimation of EEG evoked potentials by jitter compensation and enhancing spatial filters[END_REF]. Reference [START_REF] Yu | Bilinear common spatial pattern for single-trial ERPbased rapid serial visual presentation triage[END_REF] extended the idea to the spatiotemporal setting, yielding the common spatio-temporal pattern (CSTP), which components for ERPs are given by the third expression of Eq. 36.3 in BOX I. A closed-form solution for the CSTP accounting for inter-sweep latency and amplitude variability has been provided in [START_REF] Congedo | Spatio-temporal common pattern: A companion method for ERP analysis in the time domain[END_REF].

The reader can find comprehensive reviews on spatial filters and linear analysis of EEG in [START_REF] Parra | Recipes for the linear analysis of EEG[END_REF] and a tutorial on single-trial analysis and classification of ERP components in [START_REF] Blankertz | Single-trial analysis and classification of ERP components -a Tutorial[END_REF]. An example of CSTP applied to a P300 data set is shown in Fig. 36.2. 

Blind Source Separation

Blind Source Separation is introduced and described in Chapter 44. For more details the reader is referred to that chapter. Here we briefly consider the specificities of its application as applied to ERP data. In Chapter 44 the two main families of BSS methods are considered; the methods based on high-order statistics (HOS), better known as independent component analysis (ICA)

and those based on second-order statistics (SOS).

Independent Component Analysis (ICA, HOS-based BSS) has been applied to a collection of ERP ensemble averages (e.g., [START_REF] Jung | Imaging brain dynamics using independent component analysis[END_REF][START_REF] Makeig | Blind separation of auditory event-related brain responses into independent components[END_REF]) or to unaveraged single sweeps (e.g., [START_REF] Jung | Removing electroencephalographic artifacts by blind source separation[END_REF]). In the former case the ICA decomposition focuses on evoked ERP components only, since time but not phaselocked components have been drastically attenuated by the averaging process. The latter approach is more general, since it allows the decomposition at the same time of evoked components, induced components, background EEG and artifact. It faces, however, the problem of the low SNR of evoked and induced ERP components in unaveraged data [START_REF] Jung | Imaging brain dynamics using independent component analysis[END_REF],

therefore in practice it requires a large and clean ERP recording set [START_REF] Makeig | Mining event-related brain dynamics[END_REF].

Second-order-statistics based BSS in the context of ERPs has been introduced in [START_REF] Congedo | EEG Source Analysis[END_REF]. In that work evoked components, induced components as well as background EEG and artifacts were modeled by means of spatial covariance matrices (CM). Computing these CM separately for an "error" class and a "correct" class of ERPs in an error-related potential experiment, the author was able to separate the source responsible for an evoked negativity component and the source responsible for an induced event-related synchronization, despite the two phenomena peaked at the same time (500 ms post-stimulus) and had very similar spatial distribution. An example of BSS based on second-order statistics applied to the same data set used in 4 Special Considerations

Overlapping ERPs

Special care in ERP time domain analysis must be undertaken when we record overlapping ERPs, since in this case estimation (36.2) is biased [START_REF] Ruchkin | An Analysis of Average response Computations based Upon Aperiodic Stimuli[END_REF][START_REF] Woldorff | Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction[END_REF]. ERP are non-overlapping if the minimum inter-stimulus interval (ISI) is longer than the length of the latest recordable ERP component. There is today increasing interest in paradigms eliciting overlapping ERPs, such as some odd-ball paradigms and rapid image triage [START_REF] Yu | Bilinear common spatial pattern for single-trial ERPbased rapid serial visual presentation triage[END_REF], which are heavily employed in braincomputer interfaces for increasing the transfer rate [START_REF]Brain-Computer Interfaces. Principles and Practice[END_REF] and in the study of eye-fixation potentials, where the "stimulus onset" is the time of an eye fixation and saccades follow each other rapidly [START_REF] Sereno | K Measuring word recognition in reading: eye-movements and event-related potentials[END_REF]. The strongest distortion is observed when the ISI is fixed. Less severe is the distortion when the ISI is drawn at random from an exponential distribution [START_REF] Ruchkin | An Analysis of Average response Computations based Upon Aperiodic Stimuli[END_REF]. Remedies for overlapping ERPs have been proposed by a few authors. The method in [START_REF] Woldorff | Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction[END_REF] takes into consideration only the case of maximum three overlapping ERPs, and thus it is not general. The multivariate regression method proposed in [START_REF] Rivet | xDAWN algorithm to enhance evoked potentials: application to brain-computer interface[END_REF] and an improved version formulated in [START_REF] Souloumiac | Improved estimation of EEG evoked potentials by jitter compensation and enhancing spatial filters[END_REF] consider any occurrence and any form of overlapping, that is overlapping of any number of ERPs of the same as well as of different classes, in any combination. A further extension of the multivariate regression method, accounting for amplitude weights and latency time-shifts in the resulting ensemble average estimation, has been considered in [START_REF] Congedo | Spatio-temporal common pattern: A companion method for ERP analysis in the time domain[END_REF]. Reference [START_REF] Smith | Regression-based estimation of ERP waveforms: II. Nonlinear effects, overlap correction, and practical considerations[END_REF] discusses a univariate regression method and other weighting procedures that can be used to refine the study of the ERPs in relation to some properties of a stimulus. Note that the regression method is very general in that it reduces to the usual averaging when no overlapping is present [START_REF] Congedo | Spatio-temporal common pattern: A companion method for ERP analysis in the time domain[END_REF].

Latency and Amplitude Variability

In the section 3.2.1 we emphasized the use of methods with the aim of obtaining reliable estimates of single-trial ERPs, particularly in the case of neurocognitive studies, where it is relevant to relate dynamic changes of the amplitude of a peak or its latency of a single-trial ERP to the performance of a subject in tasks, where the neural correlates of attention, perception or memory are the targets of the investigation. Another face of the same coin, however, consists in improving the estimation of an average ERP in the presence of latency jitter or amplitude variations. According to this perspective one assumes that inter-sweep latency variability should be eliminated.

The multivariate ensemble average estimation introduced in (36.2) accounts for both latency and amplitude variability by means of the τ (latency) and σ (amplitude) variables therein introduced. Indeed, the usual approach in ERP studies requires the estimation of a time-shift (in sample units) and a (non-negative) weight for each sweep. An appropriate estimation of the time shifts aims at aligning the ERP peaks. An appropriate estimation of weights dampens the contribution of sweeps contaminated by artifacts and strong spontaneous background activity.

Using optimization techniques to estimate either variable, an improvement of the ensemble average signal to noise ratio is expected. Of course, estimating both time shifts and weights is preferable.

In this context several approaches have been proposed to optimize the estimation of ERPs, starting from Woody's adaptive matched filter method [START_REF] Woody | Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals[END_REF], where the cross-correlation between each sweep and a template is computed to estimate the time by which each sweep should be shifted in order to obtain the maximal cross-correlation with the template. The method was extended in [START_REF] Jaśkowski | Amplitudes and latencies of single-trial ERP's estimated by a maximumlikelihood method[END_REF] allowing to compensate not only for latency, but also for amplitude variability. Several modifications of this basic approach have been proposed [START_REF] Souloumiac | Improved estimation of EEG evoked potentials by jitter compensation and enhancing spatial filters[END_REF][START_REF] Congedo | Spatio-temporal common pattern: A companion method for ERP analysis in the time domain[END_REF][START_REF] Cabasson | Time Delay Estimation: A New Insight Into the Woody's Method[END_REF].

Refining the ERP averaging procedure

In addition to the methods presented above, a number of other statistical techniques can be used for refining the averaging procedure applied to ERPs. Instead of computing the average, according to Eq 36.2, it has been proposed to use the median, trimmed mean or trimmed Lmean (TL-mean) [START_REF] Leonowicz | Trimmed estimators for robust averaging of eventrelated potentials[END_REF][START_REF] Hosking | L-moments: analysis and estimation of distributions using linear combinations of order statistics[END_REF]. The simplest method of this family is to use the median, i.e., the middle observation in case of odd number of observations or the average of the two middle observations in the case of even number of observations. In the computation of the "trimmed mean" a pre-defined percentage of extreme values are given weight zero, i.e. are discarded, while the remaining observations keep equal weights; the trimmed L-mean applies higher weights for the observations near the median. Examples of these different computational methods are given in [START_REF] Leonowicz | Trimmed estimators for robust averaging of eventrelated potentials[END_REF]. Extensive testing has shown that the median leads to noisy ensemble average estimates with spurious high-frequency components [START_REF] Lęski | Robust Weighted Averaging[END_REF][START_REF] Leonowicz | Trimmed estimators for robust averaging of eventrelated potentials[END_REF]. Smoothing the ERP sweeps by low-pass filtering (e.g. by a moving average filter) can yield useful results in this context [START_REF] Möcks | Does Filtering and Smoothing of Average Potentials really Pay? A Statistical Comparison[END_REF].

Estimating the onset of an ERP

The researcher using ERPs is often confronted with the question of how to estimate the onset of an ERP. A useful method, the SD method, based on the t-test, consists in setting a threshold at 3 standard deviations (SDs) from the mean of the pre-stimulus baseline signal as exemplified in Fig 36.4. Reference [START_REF] Letham | Statistically robust measurement of evoked onset latencies[END_REF] proposed an alternative method called the "median rule". It makes use of boxplot rules for outlier detection using a threshold that is set based on the inter-quartile range. The onset latency is the first post-stimulus point above this threshold. Simulations studies demonstrated that the SD method is more sensitive to outliers than the "median rule" method.

The latter does not make assumptions with respect to the distribution of the data, and can be applied to single-sweep ERPs. In cases where the baseline is of good quality as those presented in Fig 36 .4, the differences between the two methods are small. 

Frequency and Time-Frequency Domain Analysis

Analysis in Frequency and Time-Frequency domains of EEG signals in general terms is described in detail in Chapter 44, to which the reader is referred. Although in ERP studies representations in the time domain are much more common, there is a large body of studies that used frequency domain analysis of ERPs, particularly elicited by steady-state visual stimuli stimuli (SSVEPs), since the pioneering work of the Amsterdam's school of van der Tweel, [START_REF] Spekreijse | Sequential analysis of the visual evoked potential system in man: nonlinear analysis of a sandwich system[END_REF] and in [START_REF] Regan | Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine[END_REF]. This early work has yielded significant contributes to a better understanding of the physiology of the visual system as reviewed in [START_REF] Regan | Some early uses of evoked brain responses in investigations of human visual function[END_REF]. Reference [START_REF] Vialatte | Steady-state visually evoked potentials: focus on essential paradigms and future perspectives[END_REF] pointed out the relevance of SSVEPs in new applications in brain-computer interface systems. Besides SSVEP studies, also steady-state amplitude-or frequency-modulated sound stimuli are used to investigate functional properties of the auditory system; the corresponding SSAEPs can be analyzed using frequency analysis [START_REF] Picton | Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone[END_REF][START_REF] Picton | Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria[END_REF] and applied in the objective evaluation of auditory thresholds, and also to analyze supra-threshold hearing [START_REF] Picton | Human auditory steady-state responses: the effects of recording technique and state of arousal[END_REF].

Topography and Source Localization

Scalp topography and source localization of ERPs are the basic tools to perform analysis in the spatial domain of the electrical activity generating ERPs. This is fundamental for linking experimental results to brain anatomy and physiology. It also represents an important dimension for studying ERP dynamics per se, complementing the information provided in time and/or frequency dimensions [START_REF] Lehmann | Spatial Analysis of evoked potentials in mana review[END_REF]. The spatial pattern of ERP scalp potential or of an ERP source component provides useful information to recognize and categorize ERP features, as well as to identify artifacts and background EEG. Current research typically uses several tens and even hundreds of electrodes covering the whole scalp surface. An increasing number of high-density EEG studies involve realistic head models for increasing the precision of source localization methods (for the biophysical aspects see Chapter 4, and for source imaging techniques see Chapter 45). Advanced spatial analysis with high spatial resolution has therefore become common practice in ERP research. A comprehensive tutorial of topographic ERP analyses can be found in [START_REF] Murray | Topographic ERP analyses: a step-by-step tutorial review[END_REF]. In contrast to continuous EEG, ERP studies allow the generation of topographical and source localization maps for each time sample. This is due to the SNR gain engendered by averaging across sweeps. The SNR of spatial analysis increases with the number of averaged sweeps. One can further increase the SNR by using multivariate filtering methods, as discussed above. An example is given by the application of BSS to ERPs, yielding a number of time series with associated spatial patterns that are fixed for the whole duration of the sweeps (Fig 36 .3).

Statistical Testing

ERP studies involve both space (scalp location) and time dimensions (latency and duration of the ERP components). Frequency and time-frequency-domain variables may also be added depending on the objective of the study. Typical hypotheses to be tested in ERP studies concern differences in central location (mean) between and within subjects (t-tests), the generalization of these tests to multiple experimental factors extending to more than two levels, including their interaction (ANOVA) and the correlation between ERP variables and subject characteristics or behavioral variables such as response-time, age of the participants, complexity of the cognitive task, etc. (linear and non-linear regression, ANCOVA). These questions entail statistical analysis of ERPs, which may be rather complex and cumbersome. This Chapter cannot deal with these statistical questions in depth. Nonetheless it is useful to call attention to a number of specific questions that appear frequently in the field of ERP studies. In these studies it is common to have data sets constituted by ERPs recorded at, say, 32 scalp derivations and 128 sampling points, while the objective may be to test the null hypothesis that the mean ERP amplitude does not differ substantially in two experimental conditions (for ex. in a treatment versus a control group), for each time point and each derivation. Such an experiment requires testing 128x32=4096 hypotheses. This yields the well-known multiple-comparisons problem [START_REF] Hochberg | Multiple Comparison Procedures[END_REF], which is very common in ERP studies: whereas a statistical test guarantees that the probability to reject a null hypothesis when it is actually true is inferior to a desired probability (the α level of the test), this is no more guaranteed when multiple hypotheses are tested at once.

Two families of procedures have been applied in ERP studies to deal with the multiple comparison problem: those controlling the family-wise error rate (FWER) and those controlling the false-discovery rate (FDR).

The family-wise error rate (FWER) is the probability of making one or more false rejections among all tested hypotheses. The term "family" represents the collection of hypotheses that are being considered for joint testing [START_REF] Lehmann | Generalizations of the family error rate[END_REF]; this is what is meant by the expression family-wise error rate (FWER). The popular Bonferroni procedure [START_REF] Shaffer | Multiple Hypothesis testing[END_REF] belongs to this family. It consists in adjusting the alpha level to α/M, where M is the number of hypotheses being tested. All Bonferroni-like procedures fail to take into consideration explicitly the correlation structure of the hypotheses, thus they are unduly conservative, the more so the higher the number of hypotheses to be tested.

An important general class of test procedures controlling the FWER while preserving power is known as permutation tests based on maximal statistics, tracing back to the seminal work of Ronald Fisher [START_REF] Fisher | Design of Experiments[END_REF]. Permutation tests based on maximal statistics are able to account adaptively for any correlation structure of hypotheses, regardless their form and degree. Also, they do not need a distributional model for the observed variables, e.g., Gaussianity, as required by t-tests, ANOVA, etc. Given these characteristics, permutation tests are ideal options for testing hypotheses in ERP studies and have received much attention in the neuroimaging community (for a review see [START_REF] Petersson | Statistical limitations in functional neuroimaging II. Signal detection and statistical inference[END_REF] and for excellent treatises see [START_REF] Pesarin | Multivariate Permutation tests[END_REF][START_REF] Westfall | Resampling-Based Multiple Testing[END_REF]).

Another family of testing procedures controls the false discovery rate (FDR). The FDR is the expected proportion of falsely rejected hypotheses [START_REF] Benjamini | Controlling the False discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF]. Indicating by R the number of rejected hypotheses and by F the number of those that have been falsely rejected, simply stated the FDR controls the expectation of the ratio F/R. This is a less stringent criterion as compared to the FWER, since, as the number of discoveries increases, we allow proportionally more errors [START_REF] Benjamini | Controlling the False discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF][START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency?[END_REF]. The FDR procedure and its version for dependent hypotheses have been the subject of several improvements (e.g., [START_REF] Yekutieli | Hierarchical False Discovery Rate-Controlling Methodology[END_REF]).

A very efficient approach in ERP analysis is the supra-threshold cluster permutation test included in the EEG toolbox "Fieldtrip" in [START_REF] Oostenveld | FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data[END_REF], as described in [START_REF] Maris | Nonparametric statistical testing of EEG-and MEG-data[END_REF]. The reader can find in these references as well as in the original and pioneering work of [START_REF] Holmes | Nonparametric Analysis of Statistic Images from Functional Mapping Experiments[END_REF] useful tips to realize this kind of testing; in ERP data we may assume that the effect of interest is concentrated simultaneously along some specific dimensions. For example, in testing the mean amplitude difference of a P300 ERP, one expects the effect to be concentrated along time and space: the former around 300-500 ms, and the latter at midline central and adjacent parietal locations. This leads to a typical correlation structure of hypothesis in ERP data; under the basic null hypothesis the effect would instead be scattered all over both the whole time and spatial dimensions. The concentration of the effect along relevant dimensions is the rationale of the supra-threshold cluster size test. An example in the time-space ERP domain is shown in Figure 36.5. 

Classification of Single-Sweeps

The goal of a classification method is to automatically estimate the class to which a singlesweep belongs. The task is challenging because of the very low amplitude of ERPs as compared to the background EEG. Large EEG artifacts, the non-stationary nature of EEG and inter-sweep variability exacerbate the difficulty of the task. Although single-sweep classification has been investigated since a long time [START_REF] Donchin | Discriminant analysis in average evoked response studies: the study of single trial data[END_REF], it has recently received a strong impulse thanks to development of ERP-based brain computer interfaces (BCI: [START_REF]Brain-Computer Interfaces. Principles and Practice[END_REF]). In fact, a popular family of such interfaces is based on the recognition of the P300 ERP. The most famous example is the P300 Speller [START_REF] Farwell | Talking off the top of your head: toward a mental prothesis utilizing event-related brain potentials[END_REF][START_REF] Krusienski | A comparison of classification techniques for the P300 Speller[END_REF], a system allowing the user to spell text without moving, but just by focusing attention on symbols (e.g., letters) that are flashed on a virtual keyboard.

Classification methods typically involve the following steps:

(i) describing each ERP sweep by a set of features: in the simplest case, the amplitude values of time samples and derivations concatenated so as to form a vector, (ii) using a training set, that is, a number of labeled sweeps for all classes, to find a discriminant function that can partition the space occupied by all objects so that unique patterns corresponding to different classes can be identified (for example pathological versus healthy subjects), (iii) determining the class to which a new object (i.e., an unlabeled single-sweep ERP) belongs; this is accomplished by computing a discriminant score for the object to be classified. Thus, each sweep is classified in the class corresponding to the subspace within which the discriminant score falls.

The fundamental criterion for choosing a classification method is the achieved accuracy for the data at hand. However, other criteria may be relevant. In most applications training of the classifier (step ii. above) starts with a calibration session carried out just before the actual session.

Classification methods are characterized by the set of features and the discriminant function they employ. The approaches emphasizing the definition of the set of features attempt to increase the SNR of single-sweeps by using multivariate filtering, as discussed previously in this Chapter, but specifically designed to increase the separation of the classes in a reduced feature space where the filter projects the data [START_REF] Rivet | xDAWN algorithm to enhance evoked potentials: application to brain-computer interface[END_REF][START_REF] Yu | Bilinear common spatial pattern for single-trial ERPbased rapid serial visual presentation triage[END_REF]. Without entering in technical details of the methodologies involved in this process, we may refer the reader to the useful tutorial dealing with the single-trial analysis and classification of ERPs in [START_REF] Blankertz | Single-trial analysis and classification of ERP components -a Tutorial[END_REF].

Recently, it has been recommended to start regarding the pre-processing, feature extraction and discrimination not as isolated processes, but jointly, as a whole [START_REF] Mak | Optimizing the P300-based brain-computer interface: current status, limitations and future directions[END_REF][START_REF] Jrad | sw-SVM : sensor weighting support vector machines for EEG-based Brain-Computer Interfaces[END_REF]. An approach that features at the same time good accuracy, good generalization and good adaptation capabilities in the case of ERP data has been recently borrowed from the field of Riemannian geometry [START_REF] Congedo | EEG Source Analysis[END_REF][START_REF] Barachant | Multi-Class Brain Computer Interface Classification by Riemannian Geometry[END_REF][START_REF] Barachant | Classification of covariance matrices using a Riemannian-based kernel for BCI applications[END_REF].

  is the number of sampled time points in a sweep. A sweep starts at a given time related to the presentation of a stimulus. The k th observed sweep for a given class of ERP signals is held matrix contains N rows and T columns of real numbers (the electric potential). The additive generative model for the observed sweep of a given class can then be written representing the evoked responses for the class under analysis, σk are (optional) positive scaling factors accounting for inter-sweep variations in the amplitude of Q, τk are (optional) time-shifts, in samples units, accounting for inter-sweep variations in the latency of Q, and Nk N×T  are matrices representing the noise term added to the k th sweep.
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 361 Figure 36.1. Result of the application of the automatic denoising algorithm applied to a VEP (visual evoked potential) recorded from an occipital site. (a) the original VEP is in black and the denoised version of it in red; (b) wavelet decomposition showing the wavelet coefficients chosen automatically for denoising by the NZT algorithm; (c) Contour plot of the amplitude of the original single-trial VEPs of successive trials as a function of time (stimulus presentation at moment 0). (d) Idem but for the denoised single-trial VEPs. The amplitude scale in color is indicated by the bar on the left. Note that the components (N200, P111 and P300) of the single-trial VEPs are much more evident in the denoised traces shown in (d). (Adapted with permission from [33] Ahmadi, M., Quian Quiroga, R. Automatic denoising of single-trial evoked potentials. NeuroImage, 2015; 66, 672-680).
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 362 Figure 36.2. Comparison of the arithmetic ensemble average estimations (EA) with the ensemble average estimation obtained by a PCA (with P=4, see BOX I) and a CSTP (with P=12). Data is from one subject performing a visual oddball ERP paradigm. The averages are computed on 80 1s sweeps following the infrequent stimulus (stimulus onset=time 0). All plots have the same horizontal and vertical scales. All available sweeps have been used and no artifact rejection has been performed on the recording. Note that only the CSTP method filters out the eye-related artefact peaking at about 500 ms, better visible at derivations FP1 and FP2.
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 363 Figure 36.3. SOS-based blind source separation of the ERP data presented in Fig. 36.2. The left plot of the top figure shows the 16 temporal components separated by BSS. The associated spatial patterns are shown in the bottom figure in the form of monochromatic topographic maps. The sign of the potential is arbitrary in BSS analysis, thus in these maps positive and negative potentials are plotted with the same color. The scale of the components is also arbitrary, thus each map is scaled to its own (arbitrary) maximum. The plots in the top figures entitled "ERPsource 2" and "ERP -source 7" show the ensemble average of Fig 36.2 obtained retaining only the second and seventh BSS component, i.e., they show the ERP ensemble average produced by these two components once all the others have been filtered out. Note that component 2 focuses on the eye-related artifact responsible for the peak visible in the ensemble average at about 500 ms at derivations FP1 and FP2 (Fig. 36.2), separating this feature from the P300 component, which has a maximal amplitude at the vertex, that is clearly identified by component 7.
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 364 Figure 36.4. MEG source-specific time course for the Auditory (A1, Heschl's gyri) cortex (light blue background) and Visual (V1, calcarine fissure) cortex (yellow background) to stimuli of both modalities (auditory in black and visual in red). The circular insets show the onset of each response, indicated by the vertical lines (red for visual and black for auditory). Both sensory-specific and cross-sensory ERPs are shown. Note that the onset latencies of the sensory-specific stimulation are shorter than those of the cross-sensory activation, particularly in the case of the auditory modality. Time scales -200 to 1000ms poststimulus, stimulus duration 300ms (black bar). (Adapted with permission from [68] Letham, B, Raij T. Statistically robust measurement of evoked onset latencies. J. Neurosci. Methods, 2011; 194, 374-379, see Fig 3 therein).
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 365 Figure 36.5. a): Grand ensemble average error-related potentials (19 subjects) for "Correct" and "Error" trials at different electrodes, the location of which is schematically indicated in the circular heads below (in b) for three time samples. The supra-threshold cluster size permutation test applied in time and spatial dimension, with α=0.05, yields three time windows, indicated in (a) by the grey areas, where there were significant different between the two sets of ERPs, corresponding to the "Correct" and "Error" trials. The significant differences between the two sets of ERPs were the following: a significant positivity for Error trials was found at time window 320-400ms at electrode Cz (p<0.01), a significant negativity for Error trials at time window 450-550ms at clustered electrodes Fz, FCz, Cz (p <0.01) and a significant positivity for Error trials at time 650-775ms at clustered electrodes Fz, FCz (p = 0.025). Significant clustered derivations are represented by white disks in b). (Adapted, with permission, from [56] Congedo M. EEG Source Analysis. HDR thesis presented at Doctoral School EDISCE, University of Grenoble Alpes, 2013, 268 pp).
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 366 Fig 36.6 illustrates the performance of this method compared to two others: the classic (uncorrected) t-test and the t-test adjusted by Bonferroni correction. The three methods were applied to a MEG Event-Related Potentials recorded from the temporal cortex in one subject, in a linguistic experiment separately for congruent and incongruent sentences endings. It can be seen that the classic t-test yields a too large number of rejections of the null-hypothesis, i.e., of false discoveries, the Bonferroni-corrected test yields a very conservative result, whereas the permutation test yields a result that is consistent for eight different test statistics.
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 366 Figure 36.6. Statistical testing of MEG evoked responses obtained in an experiment where subjects heard sentences where the last word was either semantically congruent or incongruent. The response of interest is the ERP elicited by the last word in the two conditions. The aim was to test the differences between the latter. Panel (a), evoked responses of one single subject at one sensor are shown, separately for congruent (dotted line) and incongruent (solid line) sentence endings. Panel (b), displays the time series of sample-specific t-values. Panel (c), presents the significant samples separately for each of three statistical procedures: -sample-specific t-tests at the uncorrected 0.05-level (two-sided), -sample-specific t-tests at the Bonferroni corrected level of 0.05/600 = 0.00008 (two-sided), and (3) a non-parametric test based on clustering of adjacent time-samples (cluster mass test). Note that major result is an ERP that is most prominent in the interval 400 -800ms; but the t-test procedure yields a large (8 clusters) number of samples where the uncorrected 0.05 level is crossed; on the contrary lowering α level according to Bonferroni procedure delivers a very conservative estimate; the non-parametric test, based on the permutation distribution of the maximum of the cluster-level statistics, results in a more robust estimate (see methodological details in [88]) (Adapted with permission from Fig 1 of Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M., FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011; 156869).