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Abstract

The paper considers models for best, worst and best-worst choice probabilities,
that use a single common set of random utilities. Choice probabilities are de-
rived for two distributions of the random terms: i.i.d. extreme value, i.e. Logit,
and multivariate normal, i.e. Probit. In Logit, best, worst and best-worst choice
probabilities have a closed form. In Probit, worst choice probabilities are simply
obtained from best choice probabilities by changing the sign of the systematic
utilities. Strict log-concavity of the likelihood, with respect to the coefficients
of the systematic utilities, holds, under a mild necessary and sufficient con-
dition of absence of perfect multicollinearity in the matrix of alternative and
individual characteristics, for best, worst and best-worst choice probabilities in
Logit, and for best and worst choice probabilities in Probit. The assumption
of substitutability between best and worst choices is tested with data on mode
choice, collected for the assessment of user responses to urban congestion charg-
ing policies. The numerical results suggest significantly different preferences
between best and worst choices, even accounting for scale differences, in both
Logit and Probit models. Worst choice data exhibit coefficient attenuation,
less pronounced in Probit than in Logit, and higher mean values of travel time
savings with larger confidence intervals.
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1. Introduction

1.1. Motivation
Researchers use increasingly stated preference data providing partial or full

rankings, because they can provide augmented information with respect to
methods based on asking the favorite alternative only.

When data on full rankings are available, these are frequently analyzed, for
the higher ease of estimation, with the use of the rank-ordered Logit model,
introduced by Beggs et al. (1981). An alternative model, of more recent use, is
the rank-ordered Probit, introduced by Hajivassiliou & Ruud (1994). Examples
in transportation of the rank-ordered Logit are found in Beggs et al. (1981) and
Ben-Akiva et al. (1992). An example of the use of the rank-ordered Probit is in
Nair et al. (2018a).

However, ranking data can be based on best and worst choices only. Louviere
& Islam (2008) suggest that judging items at extremes provides advantages in
cognitive efforts on discriminating among items of intermediate importance. In
addition, the questionnaire task appears easier for the respondent. Thus, it is
also suggested the approach to be of interest to applications concerned with
complete rankings, obtained by iterating best-and-worst tasks. Examples in
transportation of the use of best and worst data are rare (Beck et al., 2017).
The present paper is concerned with this type of partial ranking.

Louviere & Woodworth (1990) and Finn & Louviere (1992) were the first to
propose a discrete choice task in which an individual is asked to indicate the
least preferred item in a choice set, in addition to indicating the traditional most
preferred one. This data collection approach is now called best-worst scaling and
is applied in many fields (Scarpa et al., 2011, provide several references). Items
can have different nature (Flynn & Marley, 2014; Louviere et al., 2015; Marley
& Flynn, 2015). Initially, they were restricted to attitudes, public policy goals,
brands, or anything that does not require a detailed description. Later, they
were extended to more complex items, such as attributes and levels describing a
single alternative, or complete profiles of multiple alternatives that are standard
in choice modeling. The paper deals with this latter case.

Best and worst choices have long been analyzed using random utility models
(RUM). Traditionally, distinct models have been considered for the three types
of choice: best only, worst only, and best-worst. Which model should be used for
best choices, which one for worst choices and which one for best-worst choices
remains mainly an empirical question. However, the models used in empirical
applications are often mainly driven by tractability reasons.

An i.i.d. extreme value (EV) distribution of the random terms is assumed.
For best choices, the ordinary multinomial Logit (MNL) is used. For worst
choices, the so-called reverse Logit model is used (see Anderson & de Palma,
1999). This model, which provides worst choice probabilities in MNL form with
systematic utilities having a minus sign, originates from a form of the total
utility where the random term is subtracted (instead of being added) to the
systematic part. For best-worst choices, Finn & Louviere (1992) have proposed
the so-called maximum difference (max-diff) model. In this model, the choice
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maker maximizes the difference in the utilities, with random terms specific of
the alternative pair.

As elucidated by Louviere et al. (2015), one should estimate model forms
coherent with the process used by individuals to make choices when asked. Tra-
ditionally, two such processes are considered: (i) simultaneous best and worst
choice, and (ii) sequential (best-then-worst, or, less frequently, worst-then-best)
choice. Thus, one should pay attention to task structures, and decide whether,
for an interviewer-administered or a web-based survey, an assumption of simul-
taneous best and worst choices is feasible and meaningful, or the survey uses
a sequential task administration process that consequently requires sequential
modeling.

In practice, in the case of simultaneous best and worst choice, estimation is
carried out using a maxdiff model, or by data pooling. In the latter approach,
one expands the best choice dataset with worst choice data where a minus sign
precedes the value of each attribute of the utilities. One estimates then a MNL
with the joint likelihood. Both best only and worst only choices are modeled
with reference to the complete choice set.

In the case of sequential best-then-worst choices, data pooling is common.
This approach is similar to the simultaneous case, but one considers, in con-
structing the joint likelihood, that the worst choice is performed from a different
set, because only the alternatives that remain after the best choice are consid-
ered when deciding which alternative is worst. Worst only choices are modeled
with reference to this reduced choice set. The case of worst-then-best choices is
analogous.

In all of the above cases, estimation is accomplished using standard software
for MNL. Data pooling machinery, for both the simultaneous and the sequential
case, is implemented in the most recent version of one econometric software1.

In the paper, we restrict our attention to simultaneous best and worst choice.
We consider two consistent RUMs according to the definitions given in Marley
& Louviere (2005). Consistency implies that the best, worst and best-worst
choices are all modeled according to a single common set of utilities. In the first
model – the additive model - the random terms have a plus sign, while in the
second model - the reverse model - they have a minus sign.

In best-worst scaling, there are a number of open issues. Some are theoret-
ical. Some are empirical. The following are tackled here. On the theoretical
side, results on worst and best-worst probabilities need to be extended to the
multivariate normal distribution of the random terms, i.e. the Probit case. Con-
ditions for strict log-concavity of the likelihood associated with best, worst and
best-worst choice probabilities is another issue. Strictness of log-concavity is
important since it ensures uniqueness of the maximum. On the empirical side,
the data augmentation perspective reckons that best and worst choices have the
potential to provide better estimates of the utility coefficients than best choices
only. The substitutability of best and worst data, that is taken for granted in

1NLogit 6, by Econometric Software, Inc.

3



this perspective, has been called into question. The following section provides
a review of the relevant literature on these issues.

1.2. Literature background

For the i.i.d. EV, i.e. Logit, distribution of the random terms, the closed-
form expressions of the best, worst and best-worst choice probabilities in the
additive and reverse models are known from Marley & Louviere (2005) and
de Palma et al. (2017). In the additive model, the best choice probabilities
are ordinary MNL. The worst choice probabilities are expressed as an alternat-
ing sum of best choice probabilities (also derived by Fok et al., 2012, and by
Vann Ophem et al., 1999). The best-worst choice probabilities are a product of
best choice and worst choice probability.

For the multivariate normal, i.e. Probit, distribution of the random terms,
no investigation has been carried out yet on the expressions of worst and best-
worst choice probabilities. Necessary and sufficient conditions for strict log-
concavity of the likelihood are available, to the best of our knowledge, only for
the two cases of best probabilities of the multinomial Logit (McFadden, 1974),
and best probabilities of the binomial Probit (Wedderburn, 1976; Daganzo, 1979;
Amemiya, 1985). For both distributions (Logit and Probit), there is no example,
so far, of estimation that exhibits consistency between best, worst and best-
worst choices.

The substitutability assumption between best and worst choice data has been
questioned by a few authors. Louviere et al. (2015, Ch. 14), with examples in
the marketing area, and Ben-Akiva et al. (1992) and Giergiczny et al. (2017),
with examples in the transportation area, find statistically significant differences
between depth-specific coefficients, i.e. coefficients based on best choice data
only and coefficients based on worst choice data only. The results restrict to the
Logit.

The approaches used by these authors are different. Louviere et al. (2015)
estimate a reverse Logit model with worst choices. Ben-Akiva et al. (1992) and
Giergiczny et al. (2017) use data based on full rankings, and compare the results
of rank-ordered Logit models estimated with the full dataset and with condi-
tional datasets, i.e. datasets obtained by eliminating the first-best alternative,
the first- and the second-best alternative, and so on. The main result common
to these studies is that the attenuation of the values of the coefficients, from
best to worst choices, is a manifestation of the higher uncertainty (lower scale
parameter) that affects ranking preferences of the individuals at lower depths
(i.e. for worst choices). Giergiczny et al. (2017) provide the only analysis so
far of the differences between best and worst choices in terms of value of travel
time savings (VTTS). The case they address relates to rail services.

Yan & Yoo (2014) find, with simulation experiments, that the estimates
produced by the rank-ordered Logit model can show coefficient attenuation if
the true distribution of the random terms deviates even slightly from the i.i.d.
EV distribution. This result has motivated the papers by Nair et al. (2018a,b),
where the performances of the rank-ordered Probit are investigated. Nair et al.
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(2018b) find the rank-ordered Probit more robust than the rank-ordered Logit
in terms of stability of the coefficients across ranking depths.

1.3. Contribution
In the paper, we consider consistent additive and reverse models under two

distributions of the random terms: i.i.d. EV, i.e. Logit, and multivariate nor-
mal, i.e. Probit.

In the theoretical part of the paper, we address two issues. The first is
the derivation of probabilities for best, worst and best-worst choices. After a
presentation of preliminary results extending to any additive RUM, we review
the best, worst and best-worst choice probabilities of the two models (additive
and reverse) in the Logit case. For the Probit, we provide new results for worst
choice probabilities.

The second issue is the strict log-concavity, with respect to the coefficients
of the systematic utilities, of the choice probabilities and of the associated likeli-
hood functions. In particular, for the Logit, we prove strict log-concavity of the
likelihood function of MNL under milder assumptions than those in McFadden
(1974). For the Probit, we provide (mild) conditions for strict log-concavity of
the likelihood function of multinomial Probit (MNP). Clearly, these results have
a wider impact than that on best-worst scaling only.

At the same time, the paper aims to test, with a numerical example of
practical relevance in transportation, the implict assumption about the substi-
tutability of best and worst data that is taken for granted in the traditional
data augmentation perspective. The test extends to Logit and Probit, and is
carried out in terms of coefficients of the systematic utilities and VTTS alike.

In the empirical part, the data are presented. They relate to a stated-
preference survey carried out in Rome in 2015. The choice of the transportation
mode among three alternatives - car, powered-two-wheeler (PTW) and public
transportation - is considered. Respondents in the sample were asked to state
their best and worst choice. The survey was aimed to assess the responses of car
users to charging measures, similar to those implemented in London, Stockholm
and Milan. This policy is currently being planned by the municipality. Then,
we present the results of the estimation of additive and reverse Logit and Probit
models, each with best choice data only, worst choice data only, and best-worst
data.

The remainder of the paper is organised as follows. Section 2 and 3 are
theoretical, and present general assumptions and identities. Section 4 and 5
deal with specific theoretical results for Logit and Probit models, respectively.
Section 6 presents the data and the estimation results. Section 7 concludes.
Proofs of lemmas, propositions and theorems are relegated to appendices.

2. Main assumptions

Consider an individual facing a choice of the best and/or the worst alterna-
tive among a finite set of alternatives X ≡ {1, · · · , n}, where n ≡ |X| denotes
the cardinality of X, with n ≥ 3.
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Individual preferences are represented by an additive random utility model
(ARUM). We assume there exists a vector of systematic utilities v ≡ (v1, · · · , vn),
and a vector of random utilities ε ≡ (ε1, · · · , εn) such that the utility of alter-
native z takes the following additive form

Uz = vz + εz, z ∈ X. (1)

We assume that ε admits a positive and continuous probability density func-
tion with respect to Lebesgue measure on Rn.2 Let Fε(·) be the cumulative dis-
tribution function of the vector ε, whose arguments (realizations) are denoted
by t ≡ (t1, · · · , tn) ∈ Rn.

With the above assumptions, non-coincidence holds, i.e. P(Uz = Uz′) =
0, z, z′ ∈ X, z′ 6= z, where P(·) is a probability measure. In words, ties among
utilities occur with zero probability.

3. Identities

3.1. Best choice probabilities

For any non-empty subset Y of X and any alternative x of Y , the probability
that alternative x is the best choice in Y is given by

BY (x;v) ≡ P (Ux ≥ Uz, z ∈ Y ) , x ∈ Y ⊆ X, v ∈ Rn. (2)

All these probabilities are forming a system of best choice probabilities. The
probabilities in the whole set can be obtained by performing the following single
integration (S.P. et al., 1992, Eq 2.27)

BX(x;v) =
∫ +∞

−∞

∂Fε(u1X − v)
∂tx

du, x ∈ X, v ∈ Rn, (3)

where 1X is the all-ones n-vector. The best choice probabilities on any set
Y ⊆ X can be obtained by performing the following limit3

BY (x;v) = lim
vz→−∞
∀z∈X\Y

BX(x;v), x ∈ Y ⊆ X, v ∈ Rn. (4)

3.2. Worst choice probabilities

Consider now the system of worst choice probabilities defined by

WY (x;v) ≡ P (Uz ≥ Ux, z ∈ Y ) , x ∈ Y ⊆ X, v ∈ Rn. (5)

2That is, the support of ε is the whole space Rn.
3A proof of this equality requires the use of Fubini’s theorem to interchange the order of

integrals and Lebesgue’s dominated convergence theorem to interchange the limit with an
integral sign.
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A general identity provided in de Palma et al. (2017, Theorem 5) allows to
recover the worst choice probabilities from the best choice probabilities. Accord-
ingly, worst choice probabilities are given by an alternating sum of best choice
probabilities

WX(x;v) =
∑

{x}⊆Y⊆X

(−1)|Y |−1BY (x;v), x ∈ X, v ∈ Rn. (6)

3.3. Best-worst choice probabilities
Now, for two different alternatives x and y of X, consider the probability

that, jointly, x is the best in X and alternative y is the worst in X. Formally,
best-worst choice probabilities are defined by

BWX (x, y;v) ≡ P (Ux ≥ Uz ≥ Uy, z ∈ X) , x, y ∈ X, x 6= y, v ∈ Rn. (7)

Let 1Y denotes the n-vector with zth component being one if z ∈ Y and
zero if z ∈ X \ Y , with Y ⊆ X. We have established this new identity:

Lemma 1. The best-worst choice probabilities are, for any x, y ∈ X, x 6= y,
and any v ∈ Rn, given by:

BWX (x, y;v) =
∑

{y}⊆Y⊆X\{x}

(−1)|Y |−1BX,Y (x, y;v), (8)

where:
BX,Y (x, y;v) ≡

∫ ∞
0

−∂BX(x;v + t1Y )
∂vy

dt. (9)

Proof. See Appendix A.

BX,Y (x, y;v) represents the probability that, jointly, x is the best alternative
in X and y is the best alternative in Y (see de Palma et al., 2017).

3.4. Log-likelihood identities and properties
We consider the case where the systematic part of the utility of alternative

z has the following linear specification

vz = ξzθ, z ∈ X, (10)

where ξz is a row vector of alternative and individual characteristics of RK , and
θ is a column vector of coefficients of RK to be estimated.

The log-likelihood associated with the observation of x as the best (resp.
worst) choice in Y is LBY (x) ≡ lnBY (x;v) (resp. LWY (x) ≡ lnWY (x;v)), x ∈
Y ⊆ X. In the sequel, ∇θLBY (x) (resp. ∇θLWY (x)) denotes the row gradient
of LBY (x) (resp. LWY (x)) with respect to θ. Moreover, we denote by ∇2

θLBY (x)
and ∇2

θLWX (x) the corresponding Hessian matrices. The vector argument v is
omitted for the sake of notational convenience. Evaluating the gradient vector
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and the Hessian matrix of the log-likelihood functions is critical for estimation
purpose.

For any row vector ξ of RK , we shall use the vectorial notation ξ2 ≡ ξ′ξ,
where the prime denotes vector transpose. Using the following alternating
weights4

ωX,Y (x) ≡ (−1)|Y |−1BY (x;v)
WX(x;v) , x ∈ Y ⊆ X, (11)

we establish a result which provide identities relating to the gradient vectors
and the Hessian matrix of the log-likelihood functions associated with best and
worst choices.

Lemma 2. For any ARUM with linear specification (10), for any x ∈ X, we
have:

∇θLWX (x) =
∑

{x}⊆Y⊆X

ωX,Y (x)∇θLBY (x). (12)

Moreover,

∇2
θLWX (x) +

[
∇θLWX (x)

]2 =
∑

{x}⊆Y⊆X

ωX,Y (x)
{
∇2
θLBY (x) +

[
∇θLBY (x)

]2}
.

(13)

Proof. See Appendix A.

This lemma shows that, for general ARUMs, the gradient of the log-likelihood
associated with worst choice is an alternating weighted sum of gradients of the
log-likelihood associated with best choice. The Hessian associated with worst
choice involves a similar alternating weighted sum of best choice Hessians plus
square matrices obtained from differences between best and worst choice gradi-
ents.

3.5. Reverse models
Now, we introduce a parallel RUM where the roles of best and worst choice

probabilities are interchanged. Following Anderson and de Palma (1999), we
associate to every RUM its corresponding reverse ARUM, where the utilities
are now given by

URz = vz − εz, z ∈ X. (14)

Note the term −εz, whereas in the previous model (see Eq. (1)) we had +εz.
Clearly, the best choice best choice probabilities, in the reverse model, de-

fined by BRX(x,v) ≡ P
(
URx ≥ URz , z ∈ X

)
, satisfy the following

BRX(x,v) = WX(x,−v), x ∈ X, v ∈ Rn. (15)

4The vector argument v is voluntarily omitted from the notation of the alternating weights.
Thanks to Identity (6), we can verify that:

∑
{x}⊆Y⊆X ωX,Y (x) = 1, x ∈ X.
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Conversely, the worst choice probabilities in the reverse model, defined by
WR
X (x,v) ≡ P

(
URz ≥ URx , z ∈ X

)
, satisfy

WR
X (x,v) = BX(x,−v), x ∈ X, v ∈ Rn. (16)

Finally, the best-worst choice probabilities in the reverse model, defined
by BWR

X (x, y;v) ≡ P
(
URx ≥ URz ≥ URy , z ∈ X

)
, are related to the best-worst

choice probabilities in the original model by

BWR
X (x, y;v) = BWX(y, x;−v), x, y ∈ X, x 6= y, v ∈ Rn. (17)

4. Logit

4.1. Best, worst and best-worst choice probabilities
Assume the random variables εx, x ∈ X, follows independent standard Gumbel
distributions. That is, the cumulative distribution function of ε is given by

Fε(t) = exp(−
∑
z∈X

e−tz ), t ∈ Rn. (18)

Differentiating (18), then applying (3) and (4), best choice probabilities are
obtained by integration yielding the ordinary multinomial Logit model (MNL)
formula5

BY (x;v) = evx∑
z∈Y e

vz
, x ∈ Y ⊆ X, v ∈ Rn. (19)

It is worth to rewrite the above Logit expression as follows

BY (x;v) = evx−ΛY (v), x ∈ Y ⊆ X, v ∈ Rn, (20)

where ΛY (v) ≡ ln
∑
z∈Y e

vz is the Log-Sum-Exp function. Note the following
property (Williams-Daly-Zachary theorem; McFadden, 1981)

∂ΛY (v)
∂vz

=
{
BY (z;v) , z ∈ Y ⊆ X;
0, z ∈ X \ Y.

(21)

Applying Identity (6), the corresponding worst choice probabilities are ob-
tained (also found in Fok et al., 2012, and in Vann Ophem et al., 1999)

WX (x;v) =
∑

{x}⊆Y⊆X

(−1)|Y |−1 evx∑
z∈Y e

vz
, x ∈ X, v ∈ Rn. (22)

5The integrand of the RHS of (3) is given by: ∂Fε(u1X−v)/∂tx = evx−u exp(−eΛX (v)−u).
By integration, we get: BX(x,v) = evx−ΛX (v). The remaining MNL best choice probabilities
are then obtained by applying (4).
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Note that the alternating weights defined by (11) are explicitly given by

ωX,Y (x) ≡ (−1)|Y |−1e−ΛY (v)∑
{x}⊆Z⊆X(−1)|Z|−1e−ΛZ (v) , x ∈ Y ⊆ X. (23)

Best-worst choice probabilities are, for any x, y ∈ X, x 6= y, and any v ∈ Rn,
given by6

BWX (x, y;v) = evx∑
z∈X e

vz

∑
{y}⊆Y⊆X\{x}

(−1)|Y |−1 evy∑
z∈Y e

vz
. (24)

When we have three alternatives only, it is easily shown that the additive
Logit with B&W choices is exactly the same as the rank-ordered Logit. In fact,
with reference to alternatives 1 and 2, we have:

BW{1,2,3} (1, 2) = ev1

ev1 + ev2 + ev3

(
1− ev2

ev2 + ev3

)
= ev1

ev1 + ev2 + ev3

ev3

ev2 + ev3

= B{1,2,3} (1)B{2,3} (3) , (25)

which is the rank-ordered Logit model, where best choice probabilities are ex-
ploded.

Our results can be put into perspective with the impossibility theorem by
Luce & Suppes (1965). The theorem assumptions are that: (i) ranking prob-
abilities are derived from a common set of utilities, (ii) the probability of the
ranking from best to worst is obtained from explosion of best choice probabili-
ties, and the probability of the ranking from worst to best is also obtained from
explosion of worst choice probabilities. The theorem states that, under these
assumptions, best choice probabilities should be equal across alternatives, and
worst choice probabilities should also be equal across alternatives, an impossi-
bility result. Notice that not all the assumptions of this theorem apply to the
framework here. In the additive Logit model, explosion of best probabilities, for
computation of the probability of the ranking from best to worst, holds because
best probabilities are MNL, but explosion of worst probabilities, for computa-
tion of the probability of the ranking from worst to best, does not because they
are not MNL. With three alternatives, we do not compute the probability of
the ranking from worst to best by exploding worst probabilities, but we use the
formula of best-worst choice probability.

6Since ∂BX(x;v + t1Y )/∂vy = −evx+vy+t/[eΛX\Y (v) + et+ΛY (v)]2, integration of
that expression yields (notice that eΛX\Y (v) + eΛY (v) = eΛX (v)): BX,Y (x, y;v) =
evx+vy−ΛX (v)−ΛY (v). Applying then Lemma 1 yields the expression of the MNL best-worst
choice probabilities.
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4.2. Log-likelihood
Let us recall a classical result in the econometrics of the MNL (see, e.g.,

McFadden, 1974; Ben-Akiva & Lerman, 1985). Note that the log-likelihood
corresponding to the observation of the best choice is, using (20), given by

LBY (x) = vx − ΛY (v), x ∈ Y ⊆ X.
Therefore, using (21), its gradient satisfies

∇θLBY (x) = ξx − ξY , x ∈ Y ⊆ X, (26)
where

ξY ≡
∑
z∈Y

BY (z;v) ξz, Y ⊆ X. (27)

The corresponding Hessian matrix is given by

∇2
θLBY (x) = HY (v) ≡ −

∑
z∈Y

BY (z;v) (ξz − ξY )2, Y ⊆ X. (28)

It is denoted by HY (v) since it does not depend on the alternative x.
From (28), the Hessian matrix of the best choice log-likelihood function is a

semi-definite negative matrix, because it is, formally, the negative of a covariance
matrix.

For the worst choice, the formulas are more intricate. We shall use the
following notation

ξ
W

X (x) ≡
∑

{x}⊆Y⊆X

ωX,Y (x)ξY , x ∈ X. (29)

Note that an alternative form of ξWX (x) is

ξ
W

X (x) =
∑
z∈X

θX(x, z;v)ξz, x ∈ X, (30)

where

θX(x, z;v) ≡
∑

{x,z}⊆Y⊆X

(−1)|Y |−1BY (x;v)BY (z;v)
WX(x;v) , x, z ∈ X. (31)

We have:

Proposition 1. For a MNL with linear specification (10), for any x ∈ X, we
have:

∇θLWX (x) = ξx − ξ
W

X (x). (32)
Moreover, the corresponding Hessian matrix is:

∇2
θLWX (x) =

∑
{x}⊆Y⊆X

ωX,Y (x)
{
HY (v) +

[
ξY − ξ

W

X (x)
]2
}
. (33)
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Proof. See Appendix B.

It is far from being clear from (33) whether the Hessian matrix is semi-
definite. At this stage, we will go even further and establish Proposition 2 which
will be helpful to find some mild conditions ensuring that the log-likelihood
functions are strictly concave (Theorem 1). Strict concavity ensures uniqueness
of the maximum.

We denote by d ≡ (d1, · · · , dn−1) ∈ Rn−1 the vector whose components are
dz = vz−vn, z = 1, · · ·n−1. We are using a Prékopa’s theorem (Prékopa, 1973)
which states that if the probability density function f(·) is positive and strictly
logarithmic concave function in an open convex set of Rn−1, then the associated
cumulative distribution function F (·) is also strictly logarithmic concave in the
same set. We have:

Proposition 2. The MNL best choice probabilities BX(x;v), given by the Logit
formula (19), and the worst choice probabilities WX(x;v) given by (22), are
strictly log-concave in d, for any x ∈ X.

Proof. See Appendix B.

We consider now a sample of N observations indexed by i = 1, · · · , N . The
observation index will be in general omitted in the notations below. Each ob-
servation consists of a best and a worst choice within the given choice set X
(not necessarily the same for all the observations in the sample). Every obser-
vation provides log-likelihood functions, LBX(x) and LWX(y), where x, y ∈ X
are the observed best and worst choices, respectively. They contribute to the
total best and worst log-likelihood functions, LB and LW , which are obtained
by summing-up, over the whole sample, those terms.

We denote by M the matrix obtained by concatenating the rows of the
N observation-specific

[
(ni − 1)×K

]
matrices whose rows are ξz − ξni , z ∈

Xi \ {ni}, where Xi denotes the choice set of i and ni its cardinality. The
matrixM has

∑N
i=1 n

i −N rows and K columns.

Theorem 1. In the linear-in-the-coefficients MNL model, the total log-likelihood
functions of the best choices LB and of the worst choices LW are strictly concave
in θ iff the matrixM has full rank.

Proof. See Appendix B.

Note the high simplicity of these necessary and sufficient conditions for strict
log-concavity of both LB and LW . Recall that the conditions in McFadden
(1974, Axiom 5) for the global concavity of LB require the full rank of the∑N
i=1 n

i×K matrix whose rows are ξz − ξXi . Since ξXi depends on θ, McFad-
den’s conditions are less easy to check.

We have therefore proved that the likelihood functions associated with best
and worst choices have, under the stated conditions, a unique maximum, pro-
vided one exists. Similar results can be derived for best-worst choices, on the
basis of (24), by preservation of strict log-concavity under product.
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4.3. Reverse Logit
Consider now the reverse MNL. Applying (15) and (22), the best choice

probabilities are given by (see also the derivation of Anderson & de Palma,
1999):

BRX (x;v) =
∑

{x}⊆Y⊆X

(−1)|Y |−1 e−vx∑
z∈Y e

−vz
, x ∈ X. (34)

Likewise, the worst choice probabilities are given by the ordinary MNL for-
mula with systematic utilities preceded by a minus sign (Anderson & de Palma,
1999; Marley & Louviere, 2005):

WR
X (x;v) = e−x∑

z∈X e
−vz

, x ∈ X. (35)

Best-worst choice probabilities are, for x, y ∈ X, x 6= y, and on the basis of
(17) and (24), given by (see also Marley & Louviere, 2005):

BWR
X (x, y;v) = e−vy∑

z∈X e
−vz

∑
{x}⊆Y⊆X\{y}

(−1)|Y |−1 e−vx∑
z∈Y e

−vz
. (36)

The results for the log-likelihood function are specular and are, for brevity,
omitted.

5. Probit

5.1. Best, worst and best-worst choice probabilities
Assume that the vector of random components ε has a multivariate nor-

mal (MVN) distribution with zero mean and non-singular covariance matrix Σ.
This yields the multinomial Probit (MNP) model. If the covariance matrix Σ
were singular, the distribution of the random components would be degenerate,
and would not admit a probability density function with respect to Lebesgue
measure, contravening our initial assumption.

In the case of MNP, worst choice probabilities can be directly obtained from
best choice probabilities.

Proposition 3. In the MNP, we have:

WX (x,v) = BX (x,−v) , v ∈ Rn, x ∈ X (37)

Proof. See Appendix B.

In words, the worst choice probabilities are equal to the best choice proba-
bilities computed with systematic utilities preceded by a minus sign.

When we have three alternatives only, the Probit with best-worst choices is
the ordinary rank-ordered Probit.
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5.2. Log-likelihood
In the literature, we find the following result: in the binomial Probit, the

total likelihood is strictly log-concave in the estimation coefficients (see Wed-
derburn, 1976; Daganzo, 1979; Amemiya, 1985). For this result to hold, it
suffices to assume that the matrix of observations has column full rank, other-
wise there would be a non-uniqueness. No result is found relating to the strict
log-concavity of total likelihood of MNP. We are able to prove the strict log-
concavity, with respect to the coefficients of the systematic utilities, of the total
likelihood of MNP under the same assumptions as those for strict log-concavity
of total likelihood of MNL.

Proposition 4. The MNP best choice probabilities BX(x,v) and worst choice
probabilities WX(x,v) are strictly log-concave in d, for any x ∈ X.

Proof. See Appendix B.
As in the Logit, recall the M matrix obtained by concatenating the rows

of the N observation-specific (ni − 1) × K matrices whose rows are ξz − ξni ,
z ∈ Xi \ {ni}. It plays a key role to obtain well behaved likelihood functions.

Theorem 2. In the linear-in-the-coefficients MNP model, the total log-likelihood
functions of the best choices LB and of the worst choices LW are strictly concave
in θ iff the matrixM has full rank.

Proof. See Appendix B.

5.3. Reverse Probit
Consider now the reverse MNP. The following equalities hold between reverse

and additive choice probabilities.

Proposition 5. In the MNP, we have:

BRX (x,v) = BX (x,v) , v ∈ Rn, x ∈ X , (38)
and

WR
X (x,v) = WX (x,v) , v ∈ Rn, x ∈ X . (39)

Proof. See Appendix B.

6. Empirical illustration

6.1. Data
In Rome, an access charging policy for a large central area, delimited by

the railway ring (“Anello ferroviario”), with an extension of 33.7 square km, has
been included in the new urban traffic master plan (“Piano Generale del Traffico
Urbano” - PGTU) passed in 2015. The planned policy, not yet put into action,
is similar to the congestion charge implemented since 2003 in London (ca 21
square km), the charging scheme implemented since 2006 in central Stockholm
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(ca 30 square km), and the so-called “area C” implemented since 2012 in central
Milan (ca 8 square km), since it is based on a daily access charge to enter the
inner city area.

A combined revealed-preference (RP) and stated preference (SP) survey was
conducted, by means of computer-assisted face-to-face interviews, in Spring
2015. The sample is drawn from a population including individuals who travel
by car, at least once a week, from an origin located in the area between the road
ring (“Grande raccordo anulare”, GRA) and the railway ring, to a destination
located inside the railway ring. The RP part investigates current travel habits
and preferences for transportation modes.

The SP part considers hypothetical scenarios characterised by access charges
for car and powered two wheelers (PTW), the improvement of bus service sup-
ply, and the ban of more polluting vehicles in the charged area. The choice
experiment proposes three alternatives (car, PTW, public transportation) with
the attributes and levels reported in Table 1.

In Rome, a significant shift towards PTW is expected from policies that
create negative incentives to the use of the car. Therefore, the charging policy
targets PTW as well, because shifting demand towards public transportation is
a main policy goal of the municipality. To increase the realism of the interview,
the travel time used for car and PTW is the perceived value stated in the RP
part of the interview. For public transportation, the attribute travel time is
pivoted around the revealed value with variations of -20% and -40%.

Table 1: Attributes and levels in the choice experiment

Attribute Alt.
car PTW public transportation

access charge (EUR/day) 0,2,4,6 0,2,4,6 -
travel time (minutes) RP RP RP, -20% RP, -40% RP

The experimental design is a full factorial of 48 combinations. Four combina-
tions are excluded given the aim of the survey (dominated alternatives). After a
first pilot, choice combinations were administered, for practical purposes linked
to a maximum time span that had to be guaranteed in order for interviewees
to complete the questionnaire, using a blocking strategy. The entire design
has been subdivided into eleven blocks each including four choice tasks. This
made the administration of the interview possible also in logistically unfavor-
able conditions, e.g. on street, at office entrance/exit, in shopping malls during
regular opening hours. Figure 1 shows a choice task example. The interviewee
is invited to select, among the three proposed alternatives, the two that she/he
would choose with highest probability (best alternative) and lowest probability
(worst alternative).

We acquired 146 interviews, each including four choice tasks. The mini-
mum age of the interviewees is 23 years, maximum 79, mean 46.2 and standard
deviation 11.3. Table 2 reports sample statistics for other socio-economic char-
acteristics.
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Figure 1: Choice task example

Table 2: Sample statistics

Abs. freq. Percent
Gender
male 65 44.5
female 81 55.5
Education
primary school diploma 1 0.7
middle school diploma 4 2.7
high school diploma 60 41.1
university degree 51 34.9
higher degree (master, PhD,...) 30 20.5
Occupation
self-employed, manager 43 29.4
employee 91 62.3
specialized worker, shopkeeper, craftsman 6 4.1
worker, retired, occasional job 2 1.3
housewife, student, unemployed 4 2.7
Net income (EUR/month)
≤500 3 2.0
501-1000 15 10.2
1001-1500 59 40.4
1501-2500 52 35.6
2501-5000 15 10.2
>5000 2 1.4
Number of respondents 146 100.0

6.2. Estimation
Table 3 reports estimation results for the three models: additive Logit, re-

verse Logit and Probit, with B only, W only and B&W choice data. Recall that
additive Probit is identical to reverse Probit. Probit also considers independent
random terms across alternatives. Alternative 1 is car, alternative 2 is PTW, al-
ternative 3 is public transportation. The systematic utilities have the standard
linear-in-the-coefficients structure.

16



Ta
bl
e
3:

E
st
im

at
io
n
re
su
lt
s:

co
effi

ci
en
ts

B
W

B&
W

A
lt.

C
oe
ffi
ci
en
t

(t
-s
ta
t.)

C
oe
ffi
ci
en
t

(t
-s
ta
t)

C
oe
ffi
ci
en
t

(t
-s
ta
t)

A
dd

iti
ve

Lo
gi
t

ch
ar
ge

(E
U
R
/d

ay
)

1,
2

-.9
47
**
*

(-
7.
85
)

-.3
75
**
*

(-
5.
32
)

-.5
05
**
*

(-
7.
75
)

tr
av
el

tim
e
(m

in
ut
es
)

1,
2,
3

-.0
95
**
*

(-
9.
82
)

-.0
60
**
*

(-
9.
74
)

-.0
70
**
*

(-
12
.5
5)

al
t.

sp
ec
ifi
c
co
ns
ta
nt

2
-2
.1
86
**
*

(-
11
.0
6)

-1
.0
29
**
*

(-
8.
21
)

-1
.2
82
**
*

(-
10
.9
3)

al
t.

sp
ec
ifi
c
co
ns
ta
nt

3
-.4

53
**
*

(-
2.
69
)

.2
20

(1
.3
6)

.0
94

(.7
8)

tr
av
el

tim
e
×

ge
nd

er
(fe

m
al
e
=

1)
1,
2,
3

.0
43
**
*

(4
.8
1)

.0
17
**
*

(3
.2
3)

.0
23
**
*

(4
.4
9)

ch
ar
ge
×

in
co
m
e
(s
ix

in
co
m
e
cl
as
se
s:

1,
...
,6
)

1,
2

.1
21
**
*

(4
.2
0)

.0
35
*

(1
.9
0)

.0
53
**
*

(3
.1
2)

58
3
(p
se
ud

o)
ob

se
rv
at
io
ns
,l
og
-li
ke
lih

oo
d
fu
nc

tio
n
=

-4
21
.7
6

-5
01
.3
5

-8
25
.7
7

R
ev
er
se

Lo
gi
t

ch
ar
ge

(E
U
R
/d

ay
)

1,
2

-.7
96
**
*

(-
7.
69
)

-.4
32
**
*

(-
5.
27
)

-.5
76
**
*

(-
8.
08
)

tr
av
el

tim
e
(m

in
ut
es
)

1,
2,
3

-.0
81
**
*

(-
9.
80
)

-.0
72
**
*

(-
9.
92
)

-.0
71
**
*

(-
11
.7
0)

al
t.

sp
ec
ifi
c
co
ns
ta
nt

2
-1
.7
78
**
*

(-
11
.0
3)

-1
.1
64
**
*

(-
8.
31
)

-1
.3
17
**
*

(-
11
.1
5)

al
t.

sp
ec
ifi
c
co
ns
ta
nt

3
-.3

33
**

(-
2.
20
)

.3
84
*

(1
.8
6)

-.0
28

(-
.2
2)

tr
av
el

tim
e
×

ge
nd

er
(fe

m
al
e
=

1)
1,
2,
3

.0
37
**
*

(5
.0
6)

.0
23
**
*

(3
.6
0)

.0
29
**
*

(5
.2
9)

ch
ar
ge
×

in
co
m
e
(s
ix

in
co
m
e
cl
as
se
s:

1,
...
,6
)

1,
2

.1
03
**
*

(4
.1
7)

.0
40
*

(1
.8
3)

.0
65
**
*

(3
.6
2)

58
3
(p
se
ud

o)
ob

se
rv
at
io
ns
,l
og
-li
ke
lih

oo
d
fu
nc

tio
n
=

-4
22
.7
4

-5
03
.4
2

-8
04
.7
8

Pr
ob

it
ch
ar
ge

(E
U
R
/d

ay
)

1,
2

-.6
93
**
*

(-
8.
21
)

-.3
28
**
*

(-
5.
32
)

-.4
43
**
*

(-
6.
69
)

tr
av
el

tim
e
(m

in
ut
es
)

1,
2,
3

-.0
73
**
*

(-
10
.2
4)

-.0
55
**
*

(-
10
.3
9)

-.0
60
**
*

(-
11
.8
9)

al
t.

sp
ec
ifi
c
co
ns
ta
nt

2
-1
.6
44
**
*

(-
11
.5
6)

.9
40
**
*

(8
.5
5)

-1
.1
29
**
*

(-
12
.0
3)

al
t.

sp
ec
ifi
c
co
ns
ta
nt

3
-.3

23
**

(-
2.
39
)

-.2
29

(-
1.
48
)

0.
02
5

(0
.2
4)

tr
av
el

tim
e
×

ge
nd

er
(fe

m
al
e
=

1)
1,
2,
3

.0
33
**
*

(5
.0
3)

.0
16
**
*

(3
.3
8)

0.
02
2*
**

(4
.5
4)

ch
ar
ge
×

in
co
m
e
(s
ix

in
co
m
e
cl
as
se
s:

1,
...
,6
)

1,
2

.0
85
**
*

(4
.1
6)

.0
27
*

(1
.6
7)

.0
45
**
*

(2
.5
7)

58
3
(p
se
ud

o)
ob

se
rv
at
io
ns
,l
og
-li
ke
lih

oo
d
fu
nc

tio
n
=

-4
21
.1
1

-5
01
.5
9

-8
11
.7
5

K
ey
:
**
*,
**
,*

=
st
at
ist

ic
al

sig
ni
fic

an
ce

at
1%

,5
%
,1

0%
le
ve
l

17



Remember that, since we have three alternatives only, the additive Logit
with B&W choices is exactly the same as the rank-ordered Logit. Similarly, the
Probit with B&W choices is the ordinary rank-ordered Probit.

In all three models with all choice data we observe the following common
traits.

• The congestion charge and travel time coefficients have the expected sign
and are statistically significant (1% level).

• The alternative specific constant of alternative 2 (PTW) is negative and
statistically significant (1% level) (with the exception of Probit with W
choice data which shows a sign reversal), the reference alternative being
fixed as alternative 1 (car); the negative sign can be explained with the
lower levels of comfort and safety.

• The coefficient associated with the travel time-gender interaction effect
is positive and statistically significant (1% level), denoting an attitude of
females to accept longer travel times than males.

• The coefficient associated with the charge-income interaction effect is pos-
itive, denoting that, as expected, income increases reduce the disutility of
the congestion charge.

The first analysis relates to the stability of the coefficients across B only and W
only choice data.

The magnitude of most coefficients is affected by the choice data, something
which would have significant impacts on best choice shares, if data aggregation
were post-performed upon estimation results. The estimates with W choices
appear attenuated in comparison with the B choice ones. The statistical signif-
icance, measured by the absolute value of the t-statistic, of the coefficients with
W data is lower than with B data. In this regard, one notes that scale differences
can exist between B and W data (Swait & Louviere, 1993). This makes direct
comparison between coefficients, and the associated statistical significance, not
possible.

Figure 2, 3 and 4 show for the additive Logit, reverse Logit and Probit
respectively, the plot of the W choice versus B choice coefficients. For the
additive Logit, the linear regression is worst = .472 · best+ .078, with R2 = .84;
for the reverse Logit, the linear regression is worst = .667 · best + .113, with
R2 = .79; for the Probit the linear regression is not estimated due to a sign
reversal in one coefficient. The slope of the best-fit linear regression line is less
than unity, another manifestation of the attenuation in the coefficients. It is
as if, when moving from B to W, the random term variance increased, because
individuals are less certain about their least preferred alternative. This outcome
is an empirical regularity in rank-ordered data analysis (see the results in Ben-
Akiva et al., 1992, Louviere et al., 2015, Ch. 14, and Giergiczny et al., 2017),
which is explained with the relative cognitive difficulties of identifying best and
worst alternatives.
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Figure 2: W choice coefficients plotted against B choice coefficients: additive Logit

Figure 3: W choice coefficients plotted against B choice coefficients: reverse Logit

Figure 4: W choice coefficients plotted against B choice coefficients: Probit

The equality of individual coefficients between B choice data and W choice
data is tested by the asymptotically normal test statistic:
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βkB − βkW√
V ar(βkB) + V ar(βkW )

(40)

The results of this test are in Table 4. Most differences are significant at 5%
level. Statistical significance of differences results to be lower in Probit than in
additive Logit (with the exception of one coefficient), a result in agreement with
Nair et al. (2018b), who find the rank-ordered Probit a superior option to the
rank-ordered Logit in terms of robustness of coefficients across ranking depths.

Table 4: Asymptotically normal test statistic: B-W difference of coefficients

Alt. Additive Reverse Probit
Logit Logit

charge 1,2 -4.09*** -2.76*** -3.50***
travel time 1,2,3 -3.02*** -0.75 -1.99**
alt. specific constant 2 -4.94*** -2.87*** -14.38***
alt. specific constant 3 -2.88*** -2.80*** -0.46
travel time × gender 1,2,3 2.43** 1.47 2.02**
charge × income 1,2 2.50** 1.91* 2.18**
Key: ***,**,* = statistical significance at 1%, 5%, 10% level

We have conducted additional simulations to assess whether the coefficient
attenuation is attributable to the model’s mathematical characteristics or to the
individuals’ behaviour. To this aim, a vector of coefficients of the systematic
utilities is assumed. Then the random terms are drawn and the B and the W
alternative identified. Two models are estimated with these simulated choices:
one with B choices and one with W choices. Three cases are considered: ad-
ditive Logit, reverse Logit and Probit. As a result, no systematic bias, i.e. no
coefficient attenuation from B to W, is found with simulated choices. We can in-
fer this empirical finding to be a behavioural effect, rather than a mathematical
artefact.

A second analysis relates to the values of time. The values of the marginal
rate of substitution between travel time and the congestion charge (from the
utilities of the car and PTW alternatives) can be assumed, in the context of
the example here, as a measure of the marginal willingness to pay (WTP). This
WTP expresses the value of the travel time savings (VTTS). WTP values, and
therefore VTTS, are not affected by the scale value.

The mean VTTS are shown in Table 5 for the additive Logit, reverse Logit
and Probit. In all three models, mean VTTS with W choices are higher than
mean VTTS with B choices (except for the highest male income class). In
contrast, Giergiczny et al. (2017) find for the choice of rail services database the
opposite result.

Approximated standard errors of the VTTS are also computed, using the
delta method (Greene, 2012). The associated t-statistics are shown in Table
5. The VTTS confidence intervals with W data are relatively larger than those
with B data, except for the highest income class.
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Alternative methods can be used to compute WTP confidence intervals.
Gatta et al. (2015) provide a systematic comparison of eleven methods inves-
tigating the performance under different conditions. They suggest using the
likelihood ratio test inversion method, which is not affected by the cost coef-
ficient approaching zero and is robust to small departures from correct speci-
fication, especially with small samples. The delta method, however, produces
similar results when relatively large samples are involved, as in the case under
consideration.

The equality of VTTS values between B choice data and W choice data is
tested by the asymptotically normal test statistic. Table 6 reports the results
of the test. Statistically significant differences between B and W choice data
tend to be shown by lower income classes and the female population. Statistical
significance of differences results to be lower in Probit than in additive Logit, a
result reinforcing the agreement with Nair et al. (2018b), who find, as observed,
the rank-ordered Probit a superior option to the rank-ordered Logit in terms of
robustness of coefficients across ranking depths.
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Table 6: Asymptotically normal test statistic: B-W difference of VTTS

Additive Logit Reverse Logit Probit
Male
≤ 500 -1.71* -1.78* -1.70*
501-100 -1.79* -1.87* -1.76*
1001-1500 -1.70* -1.80* -1.63
1501-2500 -1.16 -1.23 -1.08
2501-5000 0.30 -0.32 -0.26
>5000 0.34 -0.37 0.36
Female
≤ 500 -2.43** -2.39** -2.38**
501-1000 -2.61*** -2.56** -2.53**
1001-1500 -2.60*** -2.53** -2.49**
1501-2500 -2.06** -2.00** -1.96**
2501-5000 -1.09 -1.03 -1.06
>5000 -0.18 -0.12 -0.22
Key: ***,**,* = statistical significance at 1%, 5%, 10% level

A third analysis relates to the evaluation of the predictive abilities of the
models. This is also a test for similarities and differences among models esti-
mated with B, W and B&W choices. We use the root likelihood as a scoring
function to measure predictive accuracy. A scoring function is a measure of
model prediction performance that relates the probabilistic model predictions
to the stated choices (Louviere et al., 2015). The root likelihood is preferred to
the hit rate because it takes into account the probabilistic nature of the choice
model, and it penalizes poor predictions in addition to rewarding accurate ones.

The root likelihood for prediction of B choices RLB of the model estimated
with choice data C is defined as

RLB =
{

N∏
i=1

∏
x∈Xi

[
BiXi

(
xi,viC

)]=i

BXi(xi,vi
C)
}1/N

, (41)

where i is the observation superscript, N the number of observations in the
sample, =iBXi

(
xi,viC

)
the best choice indicator function for observation i and

alternative x (=iBXi

(
xi,viC

)
= 1 if in observation i the alternative x is chosen

as best,= 0 otherwise).
In the case where the model is estimated with B data, since

ln
(
RLB

)
= 1
N

N∑
i=1

∑
x∈Xi

=iBXi

(
xi,viB

)
lnBiXi

(
xi
)
, (42)

we also have

RLB = e
1
N LLB

, (43)
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where LLB is the total log-likelihood with best choices.
Similarly, the root likelihood for predicting W choices RLW of the model

estimated with choice data C is defined as

RLW =
{

N∏
i=1

∏
x∈Xi

[
W i
Xi

(
xi,viC

)]=i

W Xi(xi,vi
C)
}1/N

, (44)

where =iWXi

(
xi,viC

)
is the worst choice indicator function for observation i and

alternative x (=iWXi

(
xi,viC

)
= 1 if in observation i the alternative x is chosen

as worst,= 0 otherwise), and LLW is the total log-likelihood with worst choices.
In the case where the model is estimated with W data we have

RLW = e
1
N LLW

, (45)

where LLW is the total log-likelihood with worst choices.
Table 7 shows, for the additive Logit, the reverse Logit and the Probit, the

values of the root likelihood for predicting B and W choices with different types
of choice data (B, W, B&W). The models estimated with B choice data best
predict B choices (in the light of the highest root likelihood values), the models
estimated with W choice data best predict W choices.

Notwithstanding the additional information, the models estimated with B&W
data fail to improve prediction for either B and W choices relative to the models
estimated with single-choice data.

In addition, the expectation that the models estimated with B&W data
should provide better estimates, i.e. higher values of the t-statistic, than with
B choice data or with W choice data only is not confirmed. These results are in
agreement with Louviere et al. (2015, Ch. 14), who investigates Logit, using a
reverse model for worst choices.

A fourth and final analysis relates to a comparison of the goodness of fit
between the three models: additive Logit, reverse Logit and Probit. The analysis
is carried out with reference to the AIC (Table 8). The model with the lowest
AIC is the one with the best goodness of fit.
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7. Conclusion

The paper has dealt with the estimation of RUMs using best, worst and
best-worst data. Two distributions of the random terms are considered: Logit
and Probit. Recent literature has provided closed-form expressions for best,
worst and best-worst choice probabilities for Logit. The paper has proved that,
in the case of Probit, worst choice probabilities are obtained from best choice
probabilities by simply changing the sign of the systematic utilities. The paper
has also proved the equality of best and worst choice probabilities between the
additive and the reverse Probit. These properties of Probit are attributable to
the symmetry of the univariate standard normal distribution.

A remarkable result of the paper is the proof, under mild conditions, of the
strict log-concavity, with respect to the coefficients of the systematic utilities,
of the likelihood functions associated with best, worst and best-worst choice
probabilities in the case of Logit, and with best and worst choice probabili-
ties in the case of Probit. The conditions boil down to the absence of perfect
multicollinearity in the matrix of the alternative and individual characteristics,
similar to linear regression models. The strict log-concavity of the likelihood
associated with best-worst choice probabilities in Probit remains an open prob-
lem.

In the transportation mode choice example here, worst choice preferences,
when compared with best choice preferences, show, in both Logit and Probit
models, coefficient attenuation, and higher mean VTTS with larger confidence
intervals. The results on VTTS suggest different best choice and worst choice
preferences, even accounting for scale differences. This is, for Logit, in agreement
with other authors (Ben-Akiva et al., 1992; Louviere et al., 2015; Giergiczny
et al., 2017. Only the result on the sign of the difference of the VTTS between
best and worst choice data is conflicting with the paper by Giergiczny et al.
(2017), who find lower mean VTTS with worst choice data. The finding on the
lower statistical significance of differences in coefficients and VTTS in Probit
than in Logit is in agreement with Nair et al. (2018b), who suggest rank-ordered
Probit to be a superior option to rank-ordered Logit in terms of robustness of
preferences across ranking depths.

The reasons for these results remain to be more extensively understood. Part
of the explanation may be due to the behavioral shift: the respondent is usually
more familiar with the best choice than with the worst choice.

In the empirical example, the benefit of collecting and using both best and
worst choices as a data augmentation strategy for a best choice model is not con-
firmed. Therefore, at least in this case, the benefit of collecting best and worst
choice data lies in the additional insights into the preferences of the individuals.

Data augmentation with worst choices is in all cases useful to estimate the
probability of a given alternative ranking last. This would be of interest to
marketing and the transportation field alike, because policy makers might wish
to know if a given product or alternative had an unacceptable feature (when
best-worst scaling is used for alternatives constituted by attributes of a sin-
gle product or service). Future research might deal with an extension of this,
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estimating the probabilities, available in closed form from de Palma & Kilani
(2015), of a given alternative ranking k-th, k = 1, 2, · · ·, n, in the choice set X
(first, second,..., last).

Appendix A. Proofs of lemmas

Proof of Lemma 1. Using Theorem 10 in de Palma et al. (2017), for any x, y ∈
X, x 6= y, and any v ∈ Rn, the best and worst choice probabilities BWX (x, y;v)
take the form given in (8) where

BX,Y (x, y;v) =
∫ ∞

0

∫ +∞

−∞

∂2Fε(u1X − t1Y − v)
∂tx∂ty

dudt.

Using (3), we have

BX (x;v + t1Y ) =
∫ +∞

−∞

∂Fε(u1X − v − t1Y )
∂tx

du.

Differentiation of the above equation with respect to vy, yields

−∂BX (x;v + t1Y )
∂vy

=
∫ +∞

−∞

∂2Fε(u1X − v − t1Y )
∂tx∂ty

du.

Therefore, we get the alternative expression of BX,Y (x, y;v) provided in (9).

Proof of Lemma 2. Differentiating (6), we obtain

WX(x;v)∇θLWX (x) =
∑

{x}⊆Y⊆X

(−1)|Y |−1BY (x;v)∇θLBY (x).

Dividing then both members of the above equation byWX(x;v), we obtain (12).
Differentiating Expression (12), we get

∇2
θLWX (x) =

∑
{x}⊆Y⊆X

{
ωX,Y (x)∇2

θLBY (x) +
[
∇θLBY (x)

]′∇θωX,Y (x)
}
,

where ∇θωX,Y (x) is the row gradient of ωX,Y (x) with respect to θ. It satisfies

∇θωX,Y (x) = ωX,Y (x)∇θLBY (x)− ωX,Y (x)∇θLWX (x).

Combining the two above displayed equations and using (12), Eq. (13) is ob-
tained.
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Appendix B. Proofs of propositions and theorems

Proof of Proposition 1. For the gradient computation, thanks to Lemma 2, Eq.
(12), we have

∇θLWX (x) =
∑

{x}⊆Y⊆X

ωX,Y (x)
(
ξx − ξY

)
.

By expansion, and using the fact that
∑
{x}⊆Y⊆X ωX,Y (x) = 1 and the Defini-

tion (29), we obtain (32).
For the expression of the Hessian matrix, we are using Lemma 2, Eq. (13).
Notice first that using (26) and (28), for any x ∈ Y ⊆ X, we have

∇2
θLBY (x) +

[
∇θLBY (x)

]2 = HY (v) +
(
ξx − ξY

)2
.

Therefore, using (13) and (32), we get

∇2
θLWX (x) =

∑
{x}⊆Y⊆X

ωX,Y (x)HY (v) + TX(x;v),

where

TX(x;v) ≡
∑

{x}⊆Y⊆X

ωX,Y (x)
(
ξx − ξY

)2 −
[
ξx − ξ

W

X (x)
]2
.

The above expression can be rewritten as

TX(x;v) =
∑

{x}⊆Y⊆X

ωX,Y (x)
[
ξY − ξ

W

X (x)
] [
ξY + ξWX (x)− 2ξx

]
.

By expansion, we obtain

TX(x;v) =
∑

{x}⊆Y⊆X

ωX,Y (x)
[
ξY − ξ

W

X (x)
]
ξY ,

which can be rewritten as follows

TX(x;v) =
∑

{x}⊆Y⊆X

ωX,Y (x)
[
ξY − ξ

W

X (x)
]2
,

obtaining the required expression.

Proof of Proposition 2. The best choice probabilities, for any v ∈ Rn and any
x ∈ X, can be written as

BX(x;v) = P

 ⋂
z∈X\{x}

{εz − εx ≤ vx − vz}

 = Fδ(w), (46)

where Fδ(·) is the c.d.f. of δ whose components are εz − εx, z ∈ X \ {z}; the
vector w ∈ Rn−1 has components: wz = vx − vz, z ∈ X \ {x}.
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Note that w is related to d by a reversible linear transformation. Indeed,
setting dn = wx = 0, we have: wz = dx − dz, z ∈ X \ {x}, and conversely:
dz = wn−wz, z ∈ X\{n}. Strict concavity being preserved under any reversible
linear transformation (Daganzo, 1979, Appendix D), strict log-concavity in d
and w are equivalent. We therefore need to prove the strict long-concavity of
Fδ(·).

In the case of the MNL, we have

Fδ(w) =
(∑
z∈X

e−wz

)−1

, w ∈ Rn−1,

which is the distribution of the classical (n−1)-variate logistic distribution (see
Arnold, 1992, p. 238). Since,

lnFδ(w) = − ln
(∑
z∈X

e−wz

)
, w ∈ Rn−1,

we get, for z1, z2 ∈ X \ {x}, the following second-order partial derivatives

∂2 lnFδ(w)
∂wz1∂wz2

= e−wz1(∑
z∈X e

−wz
)2

{
−
∑
z∈X\{z1} e

−wz , z2 = z1;
e−wz2 , z2 6= z1.

The Hessian of lnFδ(·) is a symmetric matrix which has a negative dominant
diagonal since ∑

z∈X\{z1}

e−wz >
∑

z∈X\{z1,n}

e−wz , z1 ∈ X \ {x}.

Accordingly (see, e.g., Mas-Colell, 1985), the Hessian of lnFδ(·) is negative
definite so that Fδ(·) is strictly log-concave.

Similarly, for the worst choice, we have

WX(x;v) = P

 ⋂
z∈X\{x}

{εx − εz ≤ vz − vx}

 = F−δ(−w), (47)

where F−δ(·) is the c.d.f. of −δ. We need to prove that F−δ(·) is strictly log-
concave. As well known, the p.d.f. f−δ(·) of −δ and the p.d.f. fδ(·) of δ are
related by f−δ(−w) = fδ(w). The p.d.f. of the classical (n− 1)-variate logistic
distribution satisfies

fδ(w) = (n− 1)!e−
∑

z∈X
wz

(∑
z∈X

e−wz

)−n
,

so that
ln fδ(w) = ln [(n− 1)!]−

∑
z∈X

wz + n lnFδ(w).
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The RHS is the sum of an affine function and a strictly concave expression in
w (recall that Fδ(·) is stricly log-concave), so that fδ(·) (and therefore f−δ(·))
is strictly log-concave. Applying (Prékopa, 1973, Theorem 5), F−δ(·) is also
strictly log-concave, so that WX(x;v) is strictly log-concave in d.

Proof of Theorem 1. Consider one observation (the index i is omitted for sim-
plicity). Based on Proposition 2, the best choice probabilities B (x;v) and
the worst choice probabilities W (x;v) are strictly log-concave in d for any
x ∈ X. We have dz = wn − wz, z ∈ X \ {n}, with wz = vx − vz. Therefore,
dz = vz − vn, z ∈ X \ {n}. Recall that the systematic utilities are assumed
linear in the coefficients: vz = ξzθ, z ∈ X.

Based on Daganzo (1979, Appendix D), if F (x) is strictly concave in x =
(x1, ..., xn), A is an arbitrarym×nmatrix, and y is am-dimensional row vector,
then G (y) = F (yA) is strictly concave in y. Therefore, the natural logarithm
of B (x;v) and of W (x;v) is strictly concave in θ. The strict log-concavity
of the total likelihood follows from preservation of strict log-concavity under
product.

If the matrixM has not full rank, i.e. if at least one column is linear com-
bination of the others, it is not possible to estimate the independent impact of
the change of all the alternative and individual characteristics. This circum-
stance must be excluded, or, as underlined by Wedderburn (1976), there would
be non-uniqueness. An example clarifies this point. Assume we have for all
observations (related index omitted) ξ1 = αξ2. Clearly M has not full rank.
Then we have identical values of probabilities for different combinations of θ1
and θ2, i.e. non-uniqueness. This is because we have:

vz = αξ2,zθ1 + ξ2,zθ2 +
∑
h6=1,2

ξh,zθh, z ∈ X

Computation of utility, and probability, depends on αθ1 + θ2. There are
infinite combinations of θ1 and θ2 yielding the same value of αθ1 + θ2.

Proof of Proposition 3. In the light of Eqs (2) and (5), we only need to prove
that the vector −ε, which is MVN since it is an affine transformation of ε, has
zero mean and covariance matrix Σ.
Recall the following property (Brockwell & Davis, 1991, Proposition 1.6.1.): if
a is a m-component column vector, B is a m×n matrix, and X a n-component
random vector with mean E (X) and covariance matrix ΣXX, then the random
vector Y = a + BX, has mean E (Y) = a + BE (X), and covariance matrix
ΣYY = BΣXXB′. We only need to apply this property to ε, with a = 0 and
B = −In, where In is the n× n identity matrix.

Proof of Proposition 4. The proof goes along the same lines as the proof of
Proposition 2. We use Eq. (46), which holds for any ARUM. In the Probit case,
the random vector δ is a MVN with p.d.f.

fδ(w) = 1
(2π)(n−1)/2 [det(∆)]1/2 exp

(
−1

2w
′∆−1w

)
,

30



where w ∈ Rn−1 and ∆ is the covariance matrix of δ, provided that this matrix
is non-singular, which is proved below. Therefore, we get

ln fδ(w) = −1
2w
′∆−1w − n− 1

2 ln (2π)− 1
2 ln [det(∆)] .

The first term of the RHS is a symmetric bilinear form with matrix (−1/2)∆−1,
the remaining terms being constants. Since the covariance matrix ∆ is positive
definite, ∆−1 is also positive definite (Cambini & Martein, 2009, page 233).
Hence (−1/2)∆−1 is negative definite so that fδ(·) is stritly log-concave. By
Theorem 5 of Prékopa (1973), Fδ (·) also is strictly log-concave implying that
BX(x,v) it is also strictly log-concave in d.

For the worst choice probability in the Probit case, using (47), recall that
WX(x;v) = F−δ(−w). Since F−δ(·) = Fδ(·), the worst choice probabilities also
are strictly long-concave.

We now prove that ∆ is non-singular, therefore positive definite, if Σ, the
covariance matrix of ε, is positive definite. W.l.o.g., and for the sake of nota-
tional simplicity, we set x = n. We denote by ∆z1z2 (resp. σz1z2) the (z1, z2)-th
element of ∆ (resp. Σ), for z1, z2 belonging to X \ {n} (resp. X). They are
related by

∆z1z2 = σz1z2 − σz1n − σz2n + σnn, z1, z2 = 1, . . . , n− 1.

For any w non-null vector of Rn−1, let define

w′∆w ≡
n−1∑
z1=1

n−1∑
z2=1

∆z1z2wz1wz2 .

Let wn = −
∑n−1
z=1 wz. Combining the two above expressions, we get

w′∆w =
n−1∑
z1=1

n−1∑
z2=1

σz1z2wz1wz2

+ 2
n−1∑
z=1

σznwzwn + σnnw
2
n.

Therefore,
w′∆w = x′Σx,

where x = (w, wn) ∈ Rn. Since x is non-null and Σ is definite positive, we
have x′Σx > 0 so that w′∆w > 0. Hence ∆ is definite positive and therefore
non-singular.

Proof of Theorem 2. Consider one observation (the index i is omitted for sim-
plicity). Based on Proposition 4, the best choice probabilities B (x;v) and
the worst choice probabilities W (x;v) are strictly log-concave in d for any
x ∈ X. We have dz = wn − wz, z ∈ X \ {n}, with wz = vx − vz. Therefore,
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dz = vz − vn, z ∈ X \ {n}. Recall that the systematic utilities are assumed
linear in the coefficients: vz = ξzθ, z ∈ X.

Based on (Daganzo, 1979, Appendix D), if F (x) is strictly concave in x =
(x1, ..., xn), A is an arbitrarym×nmatrix, and y is am-dimensional row vector,
then G (y) = F (yA) is strictly concave in y. Therefore, the natural logarithm
of B (x;v) and of W (x;v) is strictly concave in θ. The strict log-concavity
of the total likelihood follows from preservation of strict log-concavity under
product.

If the matrixM has not full rank, i.e. if at least one column is linear combi-
nation of the others, it is not possible to estimate the independent impact of the
change of all the alternative and individual characteristics. This circumstance
must be excluded, or, as underlined by (Wedderburn, 1976), there would be
non-uniqueness. An example clarifies this point. Assume we have for all obser-
vations (related index omitted) ξ1 = αξ2. Clearly M has not full rank. Then
we have identical values of probabilities for different combinations of θ1 and θ2,
i.e. non-uniqueness. This is because we have:

vz = αξ2,zθ1 + ξ2,zθ2 +
∑
h6=1,2

ξh,zθh, z ∈ X

Computation of utility, and probability, depends on αθ1 + θ2. There are
infinite combinations of θ1 and θ2 yielding the same value of αθ1 + θ2.

Proof of Proposition 5. The proof is along the same lines of the proof of Propo-
sition 3. It is left to the reader.
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