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Scale Free Controllability of Large-Scale
Networks: an Output Controllability Approach

Giacomo Casadei, Carlos Canuda-de-Wit and Sandro Zampieri

Abstract—In this paper we consider the problem of controlla-
bility and energy consumption for large scale networks. Instead
of controlling separately all the nodes of the network we control
an output which is defined as some measurement (for instance
the average) of the nodes which are not directly controlled.
We thus exploit the concept of Output Controllability and the
Output Controllability Gramian to analyze the properties of the
system. In this context, we show that it is possible to obtain a
reduced-order model which makes the Gramian compution and
control design much easier. Simulations show that the reduced
model is consistent with the original one and for low ratios of
controlled nodes, more robust and performing with respect to
the original.

I. INTRODUCTION

In recent years, the interest in the topic of networks
control have been growing. This interest is motivated by
the vast number of applications which nowadays can be
framed into the context of networks. Robot swarms ([2]),
power networks ([3]) and social networks ([4]), are just
few examples which pushed researchers in studying control
problems for networks. Many results about consensus and
synchronization can nowadays be found both in the context of
linear ([5], [6], [7], [12]) and nonlinear systems ([8], [9], [10],
[11], [13]). In recent years, due to the increasing complexity
of networks applications, the focus has shifted towards the
framework of large scale networks. The analysis of large
scale networks has been widely covered in the literature and
notable contributions can be found in [14], [15], [16]. In
particular, in [17], [18], it has been observed that many real
world large networks such as the world wide web present a
scaling effect in their growth, namely the connectivity degree
follows a power law distribution.

The problem of controlling large scale networks is with
many extents still an open problems. A fundamental aspect
that has to be considered is the energy necessary to control
a system and with this respect the analysis of large networks
have been addressed by several authors ([19], [20], [21]).
It has been shown that several aspects such as network
centrality [22], [23], exact controllability [24], [25] and
number of control nodes [26] plays a fundamental role in
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assessing controllability. It is however important to distin-
guish between the classic controllability concept and practical
controllability. Classic controllability is defined as a property
of the state and input maps while practical controllability is
related to the energy necessary to control the system. With
this respect, in [27] the authors have shown that an anlysis of
the practical controllability of a large network is really hard
to perform.

This work is carried out within the context of the ERC,
Scale-FreeBack (see [1]) which aims to develop holistic
scale-free modeling, estimation and control methods for com-
plex network systems. Scale-free control refers to the ability
of a control algorithm to easily scale to any network dimen-
sion. Several large-scale systems are described by homoge-
neous networks in which nodes have practically the same de-
gree and are inherently difficult to model and control. These
networks can however be abstracted/aggregated/reduced to
a Scale-Free graph characterized by heavy-tailed node/link
distributions obeying a power law, for which the underlying
network structure is dominated by relatively small numbers
of nodes (hubs) having a large number of connections. It is
expected that controlling scale-free networks by acting only
on a limited number of lumped nodes, the control design for
large-scale systems will be tractable. This idea boils dawn
to control some few outputs (for instance representing the
average value of a large group of states), rather than trying
to control the network full state. In this context, we can
adapt the conventional controllability to the concept of output
controllability and consequently the Controllability Gramian
to the Output Controllability Gramian. The latter allows to
evaluate the controllability and the energy necessary to steer
the output to a desired value. By its definition however, the
Output Controllability Gramian still requires the computation
of the Controllability Gramian and thus presents the problem
mentioned previously.

To overcome this issue, in this paper we propose a output-
based model reduction to evaluate the controllability of a
large scale network. In particular, we define a reduced model
which aggregates the dynamics which contributes to the
output. The reduced-model simplifies the computation of the
Controllability Gramian and the minimum energy control
inputs to steer the ouput of the system to a desired value.
Simulation results shows that this reduced system is more
robust to noise and ill-conditionement of the Gramian and,
for small ratios of controlled nodes, control design based
on the reduced model performs better than the design based
on the original system. Furthermore, thanks to the simplicity
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of the reduce system Gramian, a relationship between the
control energy, the networks control-degree and inertia can
be displayed.

II. PROBLEM FORMULATION

Consider a system

ẋ = Lx+Bu (1)

with x ∈ Rn, u ∈ Rm, L ∈ Rn×n a stable matrix and
B ∈ Rn×m. As far as controllability is concerned, we recall
that the Controllability Gramian is defined as

Wt =

∫ t

τ=0

eL(t−τ)BBT eL
T (t−τ) dτ . (2)

Given a certain A, we could define a family of W which
varies according to m. It can be proved that (1) could be
generically controllable for any m ≥ 1: on the other hand, it
could be practically uncontrollable from an energetic point
of view depending on the particular values of m. The energy
necessary to steer the system from x(0) = 0 to a desired
final value x(t) = xf is defined as

E(xf , T ) =

∫ t

0

‖uo(τ)‖2 dτ = xTfW−1t xf (3)

where uo(·) is the optimal input which steers the system
from the initial state x0 = 0 to x(t) = xf while minimizing
the control energy. As a matter of fact, it is possible to
define different controllability metrics which derives from the
Controllability Gramian Wt:

• worst case energy: simple calculation shows that

max
‖xf‖=1

E(xf , t) = λmin(W−1t )

namely the the larger λmin(WK,t) the more controllable
the system;

• average control energy: it can be shown that

Tr(W−1t )

measures the average control energy: in particular the
smaller Tr(W−1t ) the more controllable the system;

• quality of complete controllability: the determinant of
Wt measures the volume of the hyperellipsoid of final
states xf reachable from the initial state x0 = 0 and
with control input energy E(xf , t) ≤ 1.

The analysis of the Controllability Gramian plays a funda-
mental role in assessing if a system is practically controllable
or not. However, for large scale systems the computation
of the Gramian (2) is computationally costly and typically
suffers of noise and ill-conditionement. The computation of
the metrics introduced before is thus a difficult task, subject
to huge computational inaccuracy. Furthermore, if one seeks
to solve an optimal control problem to steer a system to
a desired final state xf , solutions which depends on the
Controllability Gramian would be really unreliable.

A. Output controllability

In many engineering applications we are interested in
controlling an output of the system rather than its full state.
A system

Σx :

ß
ẋ = Lx+Bu
y = Cx

(4)

with y ∈ Rr, is said to be output controllable if for any
yf ∈ Rr and t > 0 there exists an input function u(τ),
0 < τ ≤ t, such that the output goes from y(0) = 0 to
y(t) = yf . This property can be checked through the rank of
the output controllability matrix.

Theorem 1 System (4) is output controllable if and only if
the matrix CO ∈ Rr×nm

CO = [CB CLB CL2B . . . CLn−1B]

has full row rank.

In general, assuming output controllability is less restric-
tive than assuming (standard) controllability. In terms of
energy, it seems plausible that controlling an output in place
of each single state of the system would require less energy.
As a matter of fact, the energy necessary to steer the output
y(0) = 0 to a desired final value y(t) = yf can be expressed
as a function of the Output Controllability Gramian

Wo = CW CT . (5)

where for the sake of simplicity in the notation we dropped
the subscript K, t.

Lemma 1 Given a system in the form of (4), the minimal
energy necessary to steer the output y(0) = 0 to a desired
final value y(t) = yf is given by

E(yf , t) = yTf W−1o yf (6)

where Wo is (5).

Proof: The minimal energy necessary to steer the output
to the final value can be obtained by solving the optimal
problem

min
u(·) s.t.
y(t) = yf

∫ t

0

u(τ)Tu(τ) dτ (7)

We have

H = uTu+ λT (Lx+Bu) (8)

Hx = λTL (9)

Hu = 2uT + λTB (10)

with constraint

X (xf ) : Rn → Rm, X (xf ) = Cx (11)

We seek a solution to the two-boundary value problem

ẋo = Lxo +Buo xo0 = x0 (12)

λ̇o = −HTx λof = X Tx ν (13)
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Namely we have

λ̇ = −λTL ⇒ λ(t) = e−L
T tλ0

λf = e−L
T tfλ0 = CT ν

Thus we have λ0 = eL
T tfCT ν and as a consequence

λ(t) = eL
T (tf−t)CT ν (14)

and as a consequence

Hu = 0 ⇒ u = −1

2
BTλ = −1

2
BT eL

T (tf−t)CT ν (15)

In order to find ν, we have

x(t) = eLtx0 −
1

2

ñ∫ t

0

eA(t−τ)BBT eA
T (t−τ)dτ

ô
CT ν

which for t = tf gives us r constraints

yf = CeLtfx0−
1

2
C

ñ∫ tf

0

eL(tf−τ)BBT eL
T (tf−τ)dτ

ô
CT ν

we obtain
ν = 2Wo

[
CeAtfx0 − Cxf

]
(16)

Finally, we have

uo(t) = −BT eA
T (tf−t)CTW−1o

[
CeAtfx0 − Cxf

]
(17)

For the sake of simplicity we set x0 = 0 and by introducing
(17) into (7) we obtain (6). /

The analysis of the output Controllability Gramian defined
in (5) allows to understand the input-output energy relation-
ship for system (4).

At this stage, the Output Controllability Gramian Wo still
requires the computation of the Controllability Gramian W .
In case of large scale networks, the problem introduce in
previous sections are still present. In order to overcome them,
in Section III we introduced a reduced model which allows
to simplify the calculation of the Controllability Gramian
and thus the Output Controllability Gramian and the minimal
energy control input.

III. A REDUCED MODEL NETWORK

In this section we consider a generic network system in the
form of (1). We suppose that a certain number m of nodes
can be directly controlled. Thus system (4) can be expressed
as

˙ïz
δ

ò
=

ï
L11 L12

L21 L22

ò ï
z
δ

ò
+

ï
Im
0

ò
u

y =
[
01×m HT

] ïz
δ

ò (18)

with L Metzler, z = [x1, . . . , xm]T , δ = [xm+1, . . . , xn]T

and HT is a full vector, namely

HT =
[
h1 . . . hn−m

]
, hi 6= 0 ∀ i .

The partition of L, B and C follows the partition of the
system state into [z, δ]T . In particular, z represents the nodes
which can directly be controlled through the control input u
while δ represents the uncontrolled nodes in the network. The

output is then defined as a measurement of the uncontrolled
nodes (for instance their average).

With the goal of controlling the output in mind, in order
to simplify the computation of the Output Controllability
Gramian and minimal energy control input, we aim to define
a reduced model for (18). We consider the possibility to
aggregate the dynamics of the uncontrolled nodes and to
express the evolution of the output as a reduced dynamical
system.

To this end, we define a matrix P ∈ R(m+1)×n as

P =

ï
Im 0
0 HT

ò
. (19)

Accordingly we introduce a new representation for (1)

x̂ = Px .

As a matter of fact, by considering (18) we can write

˙̂x =

ï
L11 L12

HTL21 HTL22

ò
x+

ï
Im
0

ò
u

=

ï
L11

HTL21

ò
z +

ï
L12

HTL22

ò
δ +

ï
Im
0

ò
u

(20)

Furthermore, we have that

P+ =

ï
Im 0
0 1

σH

ò
, P+P =

ï
Im 0
0 1

σHH
T

ò
where σ = ‖H‖2 and P+ ∈ Rn×(m+1) is such that PP+ =
Im+1. As a consequence we can write

x = P+x̂+ (In − P+P )x

=

ï
Im 0
0 1

σH

ò
x̂+

ï
0 0
0 Iη − 1

σHH
T

ò ï
z
δ

ò
where η = n −m and which through simple computations
leads to

δ =
[
0 1

σH
]
x̂+ (Iη −

1

σ
HHT )δ

Thus (20) can be rewritten as

˙̂x =

ñ
L11

1
σL12H

HTL21
1
σH

TL22H

ô
x̂+

ï
Im
0

ò
u

+

ñ
L12(Iη − 1

σHH
T )

HTL22(Iη − 1
σHH

T )

ô
δ

(21)

System (21) is a reduced model for (1), namely x ∈ Rn and
x̂ ∈ Rm+1. In case y represents the average of the aggregated
nodes, the third term in (21) can be seen as the variance of
the measure of the states [xm+1, . . . , xn] with respect to y.

To simplify the computations in the following section, we
set the control input u as

u =
[
0 1

σL12H
]
x̂+ υ (22)

and rewrite (21) as

˙̂x =

ï
L11 0

HTL21
1
σH

TL22H

ò
x̂+

ï
Im
0

ò
υ

+

ñ
L12(Iη − 1

σHH
T )

1
σH

TL22(Iη − 1
σHH

T )

ô
δ

(23)
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In compact form we rewrite (23) as

˙̂x = L̂x̂+ B̂υ + D̂δ

y = Ĉx̂
(24)

where Ĉ =
[
01×m 1

]
. It is readily seen that the system is

output controllable as long as HTL21 6= 0. Thus, by using
Lemma 1, the following holds.

Lemma 2 Given a system in the form of (24), the minimal
energy necessary to steer the output y(0) = 0 to a desired
final value y(t) = yf is given by

Ê(yf , t) = y2f Ŵ−1o (25)

where Ŵo is Controllability Gramian of system (24).

Lemma 2 holds for any system (24). In particular if
D = 0m+1×η , the energy E(yf , tf ) for (18) and Ê(yf , t)
for (24) coincides. However the case of D = 0m+1×η ,
commonly referred to as exact reduction, holds only for
particular structure of the system and particular choices of
H (see [28] for more details on the subject).

We are thus interested in comparing the Output Controlla-
bility Gramian Wo for the original system (18) with the Ŵo

for (24). In the next Section we will show that Ŵo displays
some interesting properties and simulation results confirms
that its properties are closely related to Wo.

A. The Output Controllabilty Gramian of the reduced system

We recall that for a matrix Â ∈ R(m+1)×(m+1) with
structure

Â =

ï
A 0
aT α

ò
(26)

where A ∈ Rm×m, a ∈ Rm×1 and α ∈ R, simple
computations show that

Ân =

 An 0

aT
n−1∑
i=0

αn−i−1Ai αn


As a consequence, by using the Taylor expansion

eÂt =
∞∑
i=0

Âiti

i!

the following holds.

Lemma 3 The exponential of (26) preserves a block trian-
gular structure and in particular can be expressed as

eÂt =

ï
eAt 0
Λ eαt

ò
(27)

where

Λ =
∞∑
i=0

aT
(αIm −A)−1(αiIm −Ai)

i!
ti .

Proof: We define A1 = blkdiag(A,α) and

A2 =

ï
0 0
aT 0

ò

where A2 is nilpotent. We have that

eÂt =
∞∑
i=0

(A1 +A2)iti

i!

Thus by considering (A1 +A2)i we have

(A1 +A2)2 = A2
1 +

ï
0 0

αaT

ò
+

ï
0 0

aTA 0

ò
(A1 +A2)3 = A3

1 +

ï
0 0

α2aT 0

ò
+

ï
0 0

αaTA 0

ò
+

ï
0 0

aTA2 0

ò
... = ...

(A1 +A2)i = Ai1 + aT (αIm −A)−1(αiIm −Ai)

Then, by definition of A1 and A2, (27) follows straightfor-
ward. /

For the sake of compactness we rewrite L̂ as

L̂ =

ï
L 0

`T ϕ

ò
and with a slight abuse of notation

eL̂t =

ï
eLt 0
Λ eϕt

ò
.

By considering the definition given in (5), the Output
Controllability Gramian of (24) is

Ŵo = Ĉ Ŵ ĈT

= Ĉ

ñ∫ t

0

eL̂(t−τ)B̂B̂T eL̂
T (t−τ) dτ

ô
ĈT

(28)

In general, the (full) Controllability Gramian Ŵ of (24) will
have a structure of the form

Ŵ =

ñ
Ŵ11 Ŵ12

Ŵ21 Ŵ22

ô
which, given definition of Ĉ =

[
0 1

]
, leads to the Output

Controllability Gramian

Ŵo = Ŵ22

As a matter of fact, considering the structure of B̂ we have

B̂B̂T =

ï
Im 0
0 0

ò
and thus it follows

Ŵo = `T L̃
∫ t

0

(eϕτIm−eLτ )(eϕτIm−eL
T τ )dτ L̃T ` (29)

where we have defined L̃ = (ϕIm−L)−1. The integral term
reads as∫ t

0

e2ϕτIm − eϕτImeLτ − eϕτImeL
T τ + eLτeL

T τdτ =

=

∫ t

0

e2ϕτIm − e(ϕIm+L)τ − e(ϕIm+LT )τ + eLτeL
T τdτ
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which, in case L = LT (the case of undirected graphs),
becomes ∫ t

0

e2ϕτIm + e2Lτ − 2e(ϕIm+L)τdτ .

As a consequence, the Output Controllability Gramian reads
as

Ŵo = `T L̃
ñ
e2`τIm

2ϕ
+ (2L)−1e2Lτ

−2(ϕIm + L)−1e(ϕIm+L)τ ]t
τ=0
L̃T `

(30)
Since L is stable Metzler matrix, ϕ < 0 and L is Hurwitz:
thus the first and third terms in the square brackets are
vanishing. As a consequence, the second term is vanishing
to. Then for t → ∞ the Output Controllability Gramian
converges to

Ŵo = −`T L̃
ï

1

2φ
Im + (2L−1)− 2(ϕIm + L)−1)

ò
L̃`

= −`T L̃ (ϕIm − L)2

2ϕL(ϕIm + L)
L̃T `

= `T Φ `
(31)

where Φ is defined as

Φ = − 1

2ϕ
(ϕL+ L)−1

As far as `T and Φ are concerned, we can observe that:
i) `T ` express the relationship between the controlled

nodes and the output. In networks, this boils down to
saying that

`T ` ∝ dz→δ (32)

where dz→δ is the out-degree from controlled nodes z
to aggregated nodes δ;

ii) Φ can be seen as the network inertia of controlled nodes
and the aggregated nodes: it can be bounded as

‖Φ‖ ≤ 1

−2ϕ2λmin(L)− 2ϕλmin(L)2
(33)

where λmin(L) is the smallest eigenvalue of L.
From i), we can infer that controllability depends on the

number of connections between controlled nodes and the
aggregated nodes: the more connections, the less energy
required to control the output of the aggregated nodes. From
ii), we can conclude that the smaller the time-constant of
the aggregated nodes ϕ and the minimum eigenvalue of the
controlled nodes λmin(L), the bigger Φ and thus the less
the energy required to control the output of the aggregated
nodes.

IV. APPLICATION TO AVERAGE-CONTROL OF LARGE
SCALE FLOW NETWORKS

In this section we consider the application of the concept
presented in this paper to the case of Large Scale flow net-
works. We consider networks of n nodes with a ratio of con-
trolled nodes K = m

n that varies between K = { 12 , . . . ,
1
40}.

10 15 20 25 30 35 40 45 50

0

1

2

20 30 40 50

0

1

2
10

8

20 30 40 50

0

100

200

Fig. 1: Full Controllability and Output Controllability. As long as
the ratio of controlled nodes is K ≥ 1

5
, full controllability attains the

desired performance, however the energy required is much higher
(105 order) than the case of output control. Once K < 1

5
, the ill-

conditioned Controllability Gramian makes the system diverge from
the desired output and the energy grow even more.

The controlled nodes are selected for each network size and
ratio as the one with lower betweenness centrality, namely
the boundaries of the network. The network dynamics can
be written as

Σx :

ß
ẋ = Lx+Bu
y = Cx

(34)

where L is a Hurwitz Metlzer matrix: this choice is consistent
with transportation networks where the dynamics of the nodes
can be described by a conservation law (Laplacian matrix)
with some additional dissipative terms on the boundaries
(sinks of the network) [29]. Following the transportation
networks application, the graph has a pseudo-normal dis-
tribution centered around 4, representing a Manhattan grid.
The Laplacian matrix of the network is normalized and thus
|λi(L)| ≤ 2 [30].

By sorting the agents in such a way that the controlled
nodes of the graph are separated from the others, we can
rewrite Σx as (18) with

B =

ï
Im
0

ò
C =

[
01×m HT

]
(35)

In particular, we set HT = 1
η1

T , namely the average of
the uncontrolled nodes. This choice is motivated again by
flow networks where typically we are allowed to control the
boundaries of the graph with the goal to steer some measure
of the interior nodes (in this case the average) to a desired
value. In case of traffic networks for instance, the controlled
nodes would be the gates to the networks and the output the
average density of the interior nodes.

A. Full Controllability and Output Controllability

In order to justify the premise to this paper, we first show
that in case of large scale networks Output Controllability
is computationally much more convenient than Full Con-
trollability. This advantage appears evident already for small
networks.
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Fig. 2: Connection Distribution for the original system and of
the reduced order system: the green histograms shows the original
network, namely a network with pseudo-Normal Distribution for
n = 500. The blue histograms represents the distribution of the
network obtained after the model reduction is preformed for K =
{ 1
10
, 1
20
, 1
40
}.

Fig. 3: Eigenvalue Distribution of L and L̂: for a network of
n = 500 nodes and K = { 1

10
, 1
20
, 1
40
}. The spectrum of L̂ covers

the same spectrum of L for any K.

We consider a network of n = 100 nodes and we compare
the case of Full Controllability with the Output Controlla-
bility: we set a target value yf = 1 and a tf = 10 sec and
seek for a solution to (7). The Full Controllability solution
for system (34) is given by

uo(t) = −BT eL
T (tf−t)W−1

[
eLtfx0 − 1ηyf

]
(36)

while the Output Controllability solution is given by

uoout(t) = −BT eL
T (tf−t)CTW−1o

[
CeLtfx0 − yf

]
. (37)

We define a performance measure as the ratio between the
output obtained by setting the two control inputs just defined
and the desired output yf .

In Figure 1, it can be seen that as long as K ≥ 1
5 , the

full controllability attains the same desired output of the
output controllability however with a much higher energy.
Once K < 1

5 , the Controllability Gramian of the full system
is ill-conditioned to the point of making the system unable
to reach the desired value. The energy as well increases
rapidly up to an unrealistic value. On the other hand, Output
Controllability still reaches the desired value and the energy
increases proportionally to the decrements of control nodes.

B. Boundary Control of Normally Distributed Graphs

We are now interested in considering the properties of the
reduced system and to evaluate the performance obtained by

designing control based on this approximation. In the case
presented in this section, the reduced system (23) reads as

Σ̂x :



˙̂x =

ï
L11 L121

1
η1

TL21
1
η1

TL221

ò
x̂+

ï
Im
0

ò
u

+

ñ
L12(Iη − 1

η11
T )

1
η1

TL22(Iη − 1
η11

T )

ô
δ

y =
[
01×m 1

]
x̂

(38)
For a graph of n = 500 nodes, the connection distribution

before and after the reduction is shown in Figure 2: as
already mentioned the original network as a Manhattan
structure, with degree centered around 4 connections. The
distribution for (38) depends on the number of controlled
nodes and here we display the case of K = { 1

10 ,
1
20 ,

1
40}.

We can clearly see that the aggregated nodes become a
unique node which possesses many connections towards the
boundary nodes.

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4: Output of the system with two different control inputs uo

and ûo, respectively calculated on the original system and on the
reduced system for different size of the network. Control nodes are
sitting on the boundary of the network.

By considering the reduced system Σ̂x, the computation
of the Controllability Gramian Ŵ becomes much easier and
in turn the computation of the minimal energy control input
ûo. The solution to (7) for Σ̂x is given by

ûoout(t) = −B̂T eL̂
T (tf−t)ĈT Ŵ−1o

î
ĈeL̂tf x̂0 − yf

ó
. (39)

We are interested in comparing the behavior of the system
Σx in the case in which the control input u is designed
according to (37) and in the case in which it is designed based
on the reduce system, namely (39). We again set yf = 1 and
tf = 10 sec. For the sake of simplicity, we impose x0 = 0
and consequently x̂0 = 0.

As shown in Figure 3, the specturm of L̂ overlaps the
spectrum of L fro any K: clearly, due to the reduction of
size from n to m+1, the spectrum of L̂ has less eigenvalues
but they cover the same interval. This is a crucial aspect since
the input design highly depends on the spectrum of L and
L̂: with this respect it it worth pointing out that considering
the normalized Laplacian matrix plays an important role in
guaranteeing that the original spectrum and the reduced spec-
trum are covering the same range (a condition that otherwise
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would hold only for regular graphs). As a consequence, we
can expect that (37) and (39) will have a similar behavior.

In order to compare the performance of the system with
respect to the two inputs, we consider the ratio between the
output of (34) when (37) is used and when (39) is used with
the reference value yf = 1. Figure 4 shows the perfromance
of these two cases for different values of control nodes m.
As long as the K ≥ 1

5 the control input (37) (red plot)
outperforms (39) (black plot) of around 20%. However, we
find out that around the ratio K = 1

6 a phase-transition
appears in the controllability properties of a network.

In particular, when considering input (37) designed over
the original system, we observe a critical change in the per-
formance of the system. On the other hand, this phenomena
does not appear when we design the input as (39), namely on
the reduced system. The performance of the system with (37)
degrade abruptly and greatly, when K ≤ 1

6 while the behavior
of the network with (39) is much more regular, namely the
performance decreases proportionally to a decreasing number
of control nodes.

The origin of this behavior seems to lie in the eigenvalue
of the Controllability Gramian. The Controllability Gramian
computed over (34) is fragile with respect to K and suddenly
becomes inaccurate and highly ill-conditioned. On the other
hand, the reduced system (38) is more robust and the control
input (39) preserves acceptable performance for smaller K.
As reported in Figure 5, this behavior is scale-free with
respect to the size of the network. For input (37), we can still
observe the phase-transition appearing around K = 1

6 and an
abrupt degradation of the performances for smaller number
of control nodes. With input (39), the system display a much
more robust behavior for smaller K.

In a bigger picture, we can say that the design (39) is also
scale-free also with respect to K, namely the degradation
of performance caused by a reducing number of controlled
nodes is almost neglectable.

C. The out-degree of controlled nodes, the Inertia and the
Control Energy

The the performance observed in previous simulations is
consistent also with the evolutions of the Output Control-
lability Gramian Wo of the original system and Ŵo of the
reduce system. For a network of n = 500 nodes, Figure 6
shows the ratio between between Ŵo and Wo. For any K,
Ŵo underestimates Wo around 15%-20%.

Regarding the Output Controllability Gramian, at the end
of Section III-A we showed that Ŵo is closely related to the
out-degree of the controlled nodes z towards the aggregated
nodes δ (32) and to the network inertia (33). These two
aspects, which can be easily inferred through the analysis of
the reduced order system, are indeed confirmed by simulation
results.

In Figure 7, we considered again a network of n = 500
nodes with a fixed number of controllers m = 100. We plot
the performance of the system and the control energy with
the two inputs (37) and (39) respectively, for increasing con-
nectivity degrees dz→δ . It can be seen that the performance

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

(a) n = 100
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0.4

0.6

0.8

1

1.2

(b) n = 300

Fig. 5: Output of the system with two different control inputs uo

and ûo, respectively calculated on the original system and on the
reduced system for different size of the network, namely n = 100
and n = 300.

0 50 100 150 200 250

0.8

1

1.2

1.4

Fig. 6: Ratio between the Outptu Controllability Gramian of Σx
and Σ̂x calculated over 100 different graphs.

with input (39) improve for higher dz→δ . Most importantly,
the control energy decreases proportionally to an increasing
dz→δ . Similarly, in Figure 8, we plot performance and energy
of the network with respect to ‖Φ‖ in (33). We can clearly
see that for an increasing ‖Φ‖, the energy required to achieve
the desired goal decreases greatly.

These simulations allows to say that the reduced system
(38) is a good approximation of the original system (34)
from an energetic perspective. As a matter of fact, the
relationship between the control energy and the network
structure (obtained in (32) and (33)) is shown to have a real
impact.
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Fig. 7: Performance and Energy with respect to the degree of
controlled nodes towards aggregated nodes: performances both with
uoout and ûoout increases. Most importantly, the control energy
decreases with an increasing dz→δ .
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Fig. 8: Performance and Energy with respect to inertia of the
network ‖Φ‖: performances both with uoout and ûoout increases.
Most importantly, the control energy decreases for an increasing
‖Φ‖.

V. CONCLUSION

In this paper we considered the problem of controlling a
large scale network. Rather than controlling the full state,
we consider the case in which we are interested in control-
ling an output which depends on the non-controlled nodes.
Thanks to this choice, the network is practically controllable
independently from the size.

In order to simplify the computation of the Controllability
Gramian and minimum energy control inputs, we considered
a model-reduced approximation of the system, base on the
aggregation of the non-controlled nodes. We showed that
this new systems is reliable both for estimating the energy
necessary to control the output and also to design optimal
control. The reduction of complexity due to the aggregation
simplifies a lot the computation and ultimately shows to be
more reliable than performing computation over the large
original system.
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