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Abstract 

Purpose: We investigated whether a compensation method could correct for the variations of radiomic 

feature values caused by the use of different CT protocols. 

Materials and Methods: Phantom data involving 10 texture patterns and 74 patients (cohort #1: 42 

patients; 19 males; mean age, 60.4 years; range, 31-81 years; September-October 2013; cohort #2: 32 

patients; 16 males; mean age, 62.1 years; range, 29-82 years; January-September 2007) scanned using 

different CT protocols were retrospectively included. For any radiomic feature, the compensation 

approach identified a protocol-specific transformation to express all data in a common space devoid of 

protocol effects. The differences in statistical distributions between protocols were assessed using 

Friedman tests before and after compensation. Principal component analyses (PCA) were performed on 

the phantom data to evaluate the ability to distinguish between texture patterns after compensation. 

Results: In the phantom data, the statistical distributions of features were different between protocols for 

all radiomic features and texture patterns (p<.05). After compensation, the protocol effect was no longer 

detectable (p>.05). PCA demonstrated that each texture pattern was no longer displayed as different 

clusters corresponding to different imaging protocols unlike what was observed before compensation. The 

correction for scanner effect was confirmed in patient data with 100% (10/10 features for cohort #1) and 

98% (87/89 features for cohort #2) of p-values less than .05 before compensation, compared to 30% (3/10) 

and 15% (13/89) after compensation. 

Conclusion: The compensation successfully realigns feature distributions computed from different CT 

imaging protocols and should facilitate multicenter radiomic studies.  



Introduction 

Since 2012, the concept of Radiomics is expanding (1)  in oncology with the objective to characterize tumor 

heterogeneity from medical images. Radiomics extracts features from medical images that quantify tumor 

shape, intensity histogram and texture of the lesions more precisely and more accurately than visual 

assessment by a radiologist, in order to build models involving such features to assist patient management. 

In particular, texture analysis from CT images has led to promising results to distinguish between tumor 

lesions with different histopathological characteristics and to predict treatment response or patients 

survival (2). However, several studies have highlighted the sensitivity of radiomic features to CT acquisition 

and reconstruction parameters using phantoms (3–8) or patient data (9–12). Indeed, feature values are 

affected by slice thickness, pixel size, reconstruction kernel, tube voltage, tube current and contrast-

enhancement. They also differ between different scanners with the same settings (8). Moreover, the 

impact of imaging protocols varies according to the texture pattern and the radiomic feature (4). 

One of the most widely cited studies in radiomics (13), which included 1019 patients, used different CT 

imaging protocols involving different CT scanners, different pixel size and slice thickness, with or without 

intravenous contrast, without accounting for this variability in the data analysis. To reduce that variability, 

it has been proposed to resample images with a fixed voxel size, to filter the images (5) or to change the 

definition of features (6,11). These approaches require a modification of the CT images or are not 

applicable to all radiomic features. 

The same issue is encountered in PET imaging, where radiomic features are sensitive to the acquisition 

protocol and reconstruction algorithm (14). A compensation method was initially described in genomics 

(15), where the so-called batch effect is the source of variations in measurements caused by the handling 

of samples by different laboratories, different technicians and on different days. The batch-effect is 

conceptually similar to variations induced by the scanner or the protocol effects in radiomics. The 



compensation method identifies a batch-specific transformation to express all data in a common space 

devoid of batch effects. It has been shown to be effective in PET to realign the radiomic feature 

distributions between 3 different protocols for healthy liver tissue and breast lesions, without altering the 

biological information (16). 

 The purpose of this study was therefore to determine whether this compensation method could 

also correct for the CT protocol effect, using phantom and patient data.  

 

Materials and Methods 

All patient data were anonymized and publicly available in supplemental data of (9) and (10). All authors 

had control of the data and information submitted for publication. 

Phantom experiments 

The phantom data used in our study have been produced by Mackin et al (4) and are publicly available in 

supplemental data of (4). The Credence Cartridge Radiomics (CCR) phantom consists of 10 layers with 

different materials corresponding to different texture patterns. This phantom was scanned using 17 

different imaging protocols from four medical institutes involving various reconstruction kernels, scan 

types, slice thickness, pixel spacing, spiral pitch factor and effective milliamperage. Additional information 

on phantom and acquisition characteristics are provided in Supplemental Tables 1 and 2. For each layer, 

16 non-overlapping volumes of interest (VOI) with a cubic volume, on average, of 8 cm3 (range: [7.6 - 9 

cm3] corresponding to [2708 - 14332 voxels] depending on the imaging protocols) are also made available 

in Dicom-RTstruct format. For each VOI and each imaging protocol, we (FO with 7 years and CN with 20 

years of research experience in medical imaging) computed 40 radiomic features using the LIFEx freeware 

(17) (www.lifexsoft.org, Inserm, Orsay, France, Supplemental Table 3), with a  fixed bin size (18) set to 10 

http://www.lifexsoft.org/


HU between -1 000 UH and 3 000 UH without any spatial resampling.  We performed the radiomic analysis 

for 16 imaging protocols out of 17 due to a reading issue with acquisition CCR1-GE2. 

 

Patients 

Publicly available radiomic features from two patient databases (#1 and #2) were used in our study.  First 

set of features was derived from cohort #1 of 42 patients with a lung cancer between September and 

October 2013 (9), including 19 males (mean age, 60.4 years; range, 31-81 years, Table 1). All patients 

underwent a CT scan with the same machine and protocol (Supplemental Table 4), and CT images were 

reconstructed using three algorithms: filtered back projection (FBP), Sinogram Affirmed Iterative 

Reconstruction (Siemens Healthcare, Forchheim, Germany) with a noise reduction strength of level 3 

(called S3 thereafter) and 5 (called S5). For each patient, the dominant tumor lesion was segmented 

manually three times, twice by a radiologist and once by a technologist. For each of the 3 VOIs per patient 

and each reconstruction, 15 radiomic features were calculated. We (FO) excluded 5 geometric features 

(volume, diameter, surface, sphericity and compactness) from the analysis as they mostly depend on the 

segmentation. 

Second set of features was obtained from 32 patients of cohort #2 between January and September 2007 

(16 males; mean age, 62.1 years; range, 29-82 years, Table 1) with a lung cancer who underwent two CT 

scans (Supplemental Table 4) within 15 minutes (10). This dataset was originally collected in the clinical 

trial NCT00579852 to evaluate the reproducibility of tumor volume and diameter measurements and is 

part of the Reference Image Database to Evaluate therapy Response (RIDER) project (19). The CT images 

were reconstructed using 6 protocols combining two reconstruction algorithms (lung and standard 

abbreviated as L and S) and three slice thicknesses (1.25 mm, 2.5 mm and 5 mm) (10). For one lesion per 

patient (29 primary and 3 metastatic lesions), a tumor VOI was obtained from a consensus among the 



manual segmentations by 3 radiologists. After resampling the VOI voxels to 0.5x0.5x0.5 mm3 using a tri-

linear interpolation, 89 radiomic features were calculated for the 6 imaging protocols (2 reconstructions x 

3 slice thicknesses) and for each of the 64 scans (32 patients with 2 scans). 

 

Compensation method 

To correct for differences in features caused by the various imaging protocols, we (FO) used the ComBat 

compensation method (15). This method has been used for cortical-thickness measurements from MR 

images (20) and for radiomic features from different PET protocols (16). It is a data-driven method that 

identifies the protocol effect assuming that the value of each feature y measured in VOI j with imaging 

protocol i can be written as: 

yij=α+ γi+δiεij                                                                         Equation 1 

where α is the average value for feature yij, γi is an additive protocol effect, and δi is a multiplicative 

protocol effect affected by an error term (εij). The compensation consists in estimating the model 

parameters α, γi and δi using a maximum likelihood approach based on the set of available observations 

y:  

yij
ComBat=

yij-α̂-γî

δî
+α̂                                                                     Equation 2 

where α̂, γî and δî are estimators of α, γi and δi.  

We used the non-parametric form of the model in which no assumptions are made regarding the laws 

followed by the parameters. In this setting, ComBat determines a transformation for each feature 

separately. For each texture pattern of phantom data and of each patient dataset, we used the R (version 



3.4.2, R foundation for Statistical Computing, Vienna, Austria) function called ComBat, available at 

https://github.com/Jfortin1/ComBatHarmonization to identify the transformation parameters. 

Statistical analysis 

To determine whether the protocol setting (independent variable i in Equation 1) impacted the 

distributions of radiomic feature values (dependent variables yij in Equation 1), we (FO, FF with 30 years 

of experience) performed 2-sided Friedman tests before and after ComBat compensation for each feature 

as summarized in Supplemental Table 5. Null hypothesis is that there is no difference between the 

distributions. Benjamini-Hochberg procedure was used to control the false discovery rate (21). P-values 

less than .05 were regarded as statistically significant. As the goal of the compensation is to realign the 

distributions in terms of mean and standard deviation, a p-value of the Friedman test greater than .05 

means that the realignment was successful. 

For the phantom data, we also performed a principal component analysis (PCA) of the 2 560 samples (16 

VOI x 10 texture patterns x 16 imaging protocols) described by 40 variables (radiomic features). PCA was 

performed before and after ComBat to visualize the impact of the compensation method on the distinction 

between patterns. We also studied whether two textural patterns could be distinguished when pooling 

data from the 3 imaging protocols before and after compensation and for balanced and un-balanced 

groups. 

The statistical analysis was performed using R software. 

  

https://github.com/Jfortin1/ComBatHarmonization


Results 

Patient characteristics are shown in Table 1. 

Phantom experiments 

In the phantom data, 399/400 p-values of the Friedman tests performed for all features based on 16 

imaging protocols and 10 texture patterns were lower than .05 before compensation (Table 2, 

Supplemental Table 6). Only one p-value for Skewness was larger than .05 for pattern 7 (dense cork, p=.46). 

After compensation, all p-values of Friedman tests were higher than .05, demonstrating that the protocol 

effect was no longer detectable.  

These results were confirmed visually using the projection of the data in the space spanned by the first 2 

principal components of PCA. Figure 1 shows an overlapped between textural patterns before ComBat, 

due to the large variability of radiomic feature values computed from 16 different CT protocols. For each 

textural pattern (each color), several clusters corresponding to different CT protocols could be identified. 

After ComBat, textural patterns could be clearly distinguished and were no longer composed of different 

clusters, demonstrating that the compensation method properly corrected for the scanner effect while 

retaining the specific characteristics of each texture pattern. Interestingly, the variance explained by the 

first two components was higher after ComBat (65.6% versus 53.2%), with approximately the same 

features contributing to the first two principal components before and after compensation (data not 

shown). 

Based on three CT acquisitions (GE1, P2 and S2, see Supplemental Table 2), Figure 2 shows that when data 

were pooled without realignment, the sensitivity for distinguishing cork from dense cork was 67% (32/48 

VOI) with a specificity of 98% (47/48 VOI) using the cutoff maximizing the Youden index. After ComBat, 

both sensitivity and specificity were 100% (48/48 VOI). For unbalanced groups, Supplemental Figure 1 

shows that the compensation method also yielded a perfect distinction between these two patterns. 



Patient data 

For patient datasets #1 and #2, 100% (10/10) and 98% (87/89) of Friedman tests respectively were lower 

than .05 between imaging protocols before ComBat (Table 2, Supplemental Tables 7-8). After ComBat, 

30% (3/10) of p-values for dataset #1 and 15% (13/89) of p-values for dataset #2 were lower than .05. 

Visual inspection of the radiomic feature value distributions when Friedman tests remained significant 

after ComBat showed that the residual difference between protocols was always small and that the 

protocol effect was much reduced (Supplemental Figure 2), demonstrating the effectiveness of the 

compensation. As illustrated in Supplemental Figure 3 for Homogeneity feature, ComBat corrects the 

protocol effect with a realignment of feature values among the three protocols for dataset #1 and among 

the 6 protocols for dataset #2.  For instance, before ComBat, the plot shows a shift in distribution with 

greater Homogeneity values for reconstruction S5 than for S3 and FBP. This was expected since S5 involved 

higher noise reduction. After compensation, the distributions between the three reconstructions better 

overlapped. Figure 3 shows three examples of realignment of features between different reconstruction 

algorithms, reconstruction kernels and slice thicknesses.  

Discussion 

As widely reported in the literature, radiomic features are sensitive to the acquisition and reconstruction 

parameters of CT images. Feature values are therefore not directly comparable between different imaging 

protocols, limiting their use in multicenter studies. Here, we demonstrated that the ComBat method can  

realign radiomic features computed from different CT imaging protocols. Using phantom data, we showed 

that ComBat removed the scanner and protocol effect while preserving the differences between texture 

patterns. The correction for the scanner effect was confirmed using patient images reconstructed with 

different imaging protocols. 



The use of this compensation method should facilitate multicentric radiomic analyses that are absolutely 

needed to demonstrate the practical usefulness of radiomic features for patient management. Data 

harmonization is currently a hot topic in the international imaging community with increasing awareness 

of the need to reduce the variability in image quality between centers and machines (22,23). ComBat offers 

a solution to realign radiomic features with several advantages. ComBat is easily available to all and fast 

(a function available for free in R software). The transformations are estimated based on the measured 

feature values, without the need to go back to images or to perform phantom experiments. No learning 

set is needed. Unlike other options described in the literature, ComBat does not change the feature 

definitions (6,11) and can therefore be used with all software/algorithms and with any radiomic features. 

This is illustrated in three datasets using three different implementations for the radiomic feature 

calculation (Supplemental Table 5). ComBat does not require spatial resampling of the CT images to a 

single pixel size and/or image filtering (5). It is applicable when only radiomic features values are available 

or when images are not available. ComBat can account for covariates of interest if the patients scanned 

with different imaging protocols do not have the same characteristics (eg, different age distributions). 

ComBat can model these covariates in the compensation process as illustrated in PET imaging with 

different proportions of cancer subtypes in different departments (16), as long as enough patients with 

the same characteristics are available.   

As demonstrated using the phantom data (Table 2), before compensation, the values of radiomic features 

were significantly different between imaging protocols for a given pattern. Ignoring this effect in 

multicentric studies might bias the findings and lower statistical power. A recent study highlighted that 

the 4 features selected in (13) to build the radiomic signature were highly correlated with tumor volume 

(24), which might explain why the model remained robust on data from different centers. Using ComBat 

might help determine whether radiomic features reflecting the lesion biological heterogeneity but 

affected by the center effect more than the lesion volume also have some predictive value.  



Our study has some limitations: our findings should be confirmed on other cancer types, for other imaging 

protocols and scanners and the actual impact on diagnostic performance on clinical data needs to be 

demonstrated. Independent multi-center validation of radiomic models is also essential for them to 

become mainstream (1,25,26).  

In summary, ComBat makes it possible to pool radiomic features from different CT protocols. This method 

appears promising to deal with the center effect in multicenter radiomic studies and to possibly raise   the 

statistical power of such studies. ComBat is data-driven meaning that the transformations identified by 

ComBat to set all data in a common space should be estimated for each study involving data from different 

centers/protocols. Our analysis was based on less than 50 patients for each acquisition protocol 

demonstrating the efficiency of the method even for small patient cohorts. Using simulations in which we 

gradually removed patient data (results not shown), we found satisfactory results with as few as 20 

patients per imaging protocol. The minimum number of patients required per imaging protocol to 

successfully apply ComBat remains to be comprehensively investigated.  
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Table 1: Patient characteristics. 

 

 Patient dataset #1 Patient dataset #2 

Sex-no. (%)   

Male 19 (45%) 16 (50%) 

Female 23 (55%) 16 (50%) 

Age-yr.   

Mean 60.4 62.1 

Range 31-81 29-82 

Lesion-no. (%)   

Primary lung lesion 8 (19%) 29 (91%) 

Metastatic lesion 34 (81%) 3 (9%) 

 

 

 

  



Table 2: number of significant Friedman tests (p<.05) without and with compensation in the phantom 

and clinical datasets. 

 

 w/o realignment with realignment 

Phantom (40 tests for each pattern)   

     Pattern 1: 20% filled ABS 40/40 (100%) 0/40 (0%) 

     Pattern 2: 30% filled ABS 40/40 (100%) 0/40 (0%) 

     Pattern 3: 40% filled ABS 40/40 (100%) 0/40 (0%) 

     Pattern 4: 50% filled ABS 40/40 (100%) 0/40 (0%) 

     Pattern 5: acrylic 40/40 (100%) 0/40 (0%) 

     Pattern 6: cork 40/40 (100%) 0/40 (0%) 

     Pattern 7: dense cork 39/40 (98%) 0/40 (0%) 

     Pattern 8: plaster resin 40/40 (100%) 0/40 (0%) 

     Pattern 9: rubber particles 40/40 (100%) 0/40 (0%) 

     Pattern 10: wood 40/40 (100%) 0/40 (0%) 

Patient dataset #1 (10 tests) 10/10 (100%) 3/10 (30%) 

Patients dataset #2 (89 tests) 87/89 (98%) 13/89 (15%) 

ABS:  acrylonitrile butadiene styrene 

 

 

 

 

 

  



Figure 1: Phantom data: principal component scores for 2560 samples corresponding to 16 VOI x 10 

texture patterns (in colors) x 16 imaging protocols described by 40 radiomic features on the first two 

principal components before (A) and after ComBat (B).  After compensation, each texture pattern was no 

longer composed of different clusters, demonstrating that the scanner effect has been correctly 

compensated. 

 

 

 

  



Figure 2: Example of ComBat application in phantom experiments: two texture patterns (cork and dense 

cork) were scanned using three different imaging protocols with 16 volumes of interest in each case 

(GE1, P2, S2, see Supplemental Table 2). When pooling all radiomic feature values, the optimal cutoff 

could not perfectly distinguish the patterns while after compensation of scanner effects, a perfect 

distinction was observed.  

 

 

  



Figure 3:  Probability density function(%) of Homogeneity before (left) and after ComBat (right) in patient 

data using two CT reconstruction algorithms (FBP and S5), two reconstruction kernels (Standard and 

Lung) and two voxel thicknesses (1.25 mm and 5 mm). CT images are from Kim et al, PLoS ONE 

2016;11:e0164924 and Lu et al, PLoS ONE 2016;11:e0166550. Displayed p-values are given for Friedman 

tests.  

  



Supplemental Figure 1: Phantom experiments: distinction between two patterns (Cork vs Dense cork) 

for 3 acquisition protocols with unbalanced groups (different numbers of cork and dense cork VOI for 

each scanner) without and with realignment.  

 

  



Supplemental Figure 2: Probability density function of 4 radiomic features before (left) and after (right) 

ComBat for patient dataset #1 (A, B) and #2 (C, D). For these features, the p-values of Friedman test 

remained statistically significant after ComBat but these plots demonstrate that the correction was 

effective.  

 



Supplemental Figure 3: Boxplot before (left) and after (right) compensation for the homogeneity 

feature. A) patient dataset #1 for 3 reconstruction algorithms (FBP, S3 and S5). B) patient dataset #2 for 6 

different protocols involving three slice thicknesses (1.25 mm, 2.5 mm and 5 mm) and two 

reconstruction algorithms (lung-L and standard-S). Displayed p-values are given for Friedman tests. 

 

  



Supplemental Table 1: phantom characteristics. 

No. Description Illustration 
Pattern 1 Acrylonitrile butadiene styrene (ABS) plastic with 20% of air-filled (holes of 

diameter = 6.0 mm) 

 
Pattern 2 ABS plastic with 30% of air-filled (holes of diameter = 1.4 mm) 

 
Pattern 3 ABS plastic with 40% of air-filled (holes of diameter = 1.0 mm) 

 
Pattern 4 ABS plastic with 50% of air-filled (holes of diameter = 0.9 mm) 

 
Pattern 5 Solid polymethyl methacrylate (acrylic) 

 
Pattern 6 Standard cork 

 
Pattern 7 Dense cork 

 
Pattern 8 Plaster resin 

 
Pattern 9 Rubber particles 

 
Pattern 10 Sycamore wood 

 
 

  



Supplemental Table 2: acquisition characteristics for phantom experiments. 

Designation Manufacturer/Model 
Reconstruc
tion kernel 

Scan 
type 

Voxel size (mm3) 
Spiral 
pitch 
factor 

kVp mAs 

GE1 GE/Discovery CT750 HD standard helical 0.49x0.49x2.5 0.98 120 81 

GE3 GE/Discovery CT750 HD standard helical 0.78x0.78x2.5 0.98 120 122 

GE4 GE/Discovery ST standard helical 0.98x0.98x2.5 1.35 120 143 

GE5 GE/LightSpeed RT standard helical 0.98x0.98x2.5 0.75 120 1102 

GE6 GE/LightSpeed RT16 standard helical 0.98x0.98x2.5 0.94 120 367 

GE7 GE/LightSpeed VCT standard helical 0.74x0.74x2.5 0.98 120 82 

P1 Philips/Brilliance Big Bore B helical 0.98x0.98x3 0.94 120 320 

P2 Philips/Brilliance Big Bore C helical 0.98x0.98x3 0.94 120 369 

P3 Philips/Brilliance Big Bore B helical 1.04x1.04x3 0.81 120 320 

P4 Philips/Brilliance Big Bore B helical 1.04x1.04x3 0.81 120 369 

P5 Philips/Brilliance 64 B helical 0.98x0.98x3 0.67 120 372 

S1 Siemens/Sensation Open B31s axial 0.52x0.52x2 1.00 120 26-70 

S2 Siemens/Somatom Definition Flash 170f, 2 helical 0.54x0.54x3 0.60 120 17-28 

T1 Toshiba/Aquilion FC18 helical 0.63x0.63x3 1.11 120 135 

T2 Toshiba/Aquilion FC18 helical 0.63x0.63x3 1.11 120 135 

T3 Toshiba/Aquilion One FC18 helical 0.98x0.98x3 0.99 120 151 

 

 

 

  



Supplemental Table 3: list of radiomic features extracted from phantom data. Complete description is 

available on www.lifexsoft.org.  

Category Features 

Histogram Mean, Standard-Deviation, Maximum, Skewness, Kurtosis, Entropy (log2 and log10), Energy 

Gray-Level Co-
occurrence Matrix 

(GLCM) 
Homogeneity, Energy, Contrast, Correlation, Entropy (log2 and log10), Dissimilarity 

Gray-Level Run Length 
Matrix (GLRLM) 

Short-Run Emphasis (SRE), Long-Run Emphasis (LRE), Low Gray-level Run Emphasis (LGRE), High Gray-level 
Run Emphasis (HGRE), Short-Run Low Gray-level Emphasis (SRLGE), Short-Run High Gray-level Emphasis 
(SRHGE), Long-Run Low Gray-level Emphasis (LRLGE), Long-Run High Gray-level Emphasis (LRHGE), Gray-
Level Non-Uniformity (GLNU), Run-Length Non-Uniformity (RLNU), Run Percentage (RP) 

Neighborhood Gray-
Level Different Matrix 

(NGLDM) 
Coarseness, Contrast, Busyness 

Gray-Level Zone Length 
Matrix (GLZLM) 

Short-Zone Emphasis (SZE), Long-Zone Emphasis (LZE), Low Gray-level Zone Emphasis (LGZE), High Gray-
level Zone Emphasis (HGZE), Short-Zone Low Gray-level Emphasis (SZLGE), Short-Zone High Gray-level 
Emphasis (SZHGE), Long-Zone Low Gray-level Emphasis (LZLGE), Long-Zone High Gray-level Emphasis 
(LZHGE), Gray-Level Non-Uniformity (GLNU), Zone-Length Non-Uniformity (ZLNU), Zone Percentage (ZP) 

 

  

http://www.lifexsoft.org/


Supplemental Table 4: acquisition characteristics for patient datasets. 

Characteristics Patient dataset #1 Patient dataset #2 

Manufacturer/Model Siemens/Somaton Definition  GE/LightSpeed 16 or VCT 

Voxel size (mm3) 0.68x0.68x1.00 [0.50x0.50x1.25]-[0.90x0.90x5] 

Pitch factor 1 0.984-1.375 

kVp 120 120 

mAS 150 298-441 

 

  



Supplemental Table 5: summary of data used in this study. 

Dataset Number of 
imaging 

protocols 

Number of Volume of 
Interest 

Number of 
radiomic 
features 

Algorithm/software 
for the radiomic 

calculation 
Number of Friedman tests 

Phantom 
16 

16 by pattern (10 
patterns) 

40 LIFEx 
40 features x 10 patterns 

 400 tests 

Patient dataset #1 
3 

42 patients x 3 
segmentations = 126 

10 
In-house software 

by (9) 
10 features  10 tests 

Patient dataset #2 
6 

32 patients x 2 
acquisitions = 64 

89 
In-house software 

by (10) 
89 features  89 tests 

  



Supplemental Table 6: p-values of Friedman tests before and after realignment corrected using 

Benjamini-Hochberg procedure for phantom data. Values in red demonstrate significant differences at 

p<0.05. 

 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern 9 Pattern 10 
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CONVENTIONAL_UHmean <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

CONVENTIONAL_UHstd <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .96 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

CONVENTIONAL_UHmax <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

HISTO_Skewness <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 0.46 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

HISTO_Kurtosis <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

HISTO_Entropy_log10 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .98 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

HISTO_Entropy_log2 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .98 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

HISTO_Energy <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .97 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Homogeneity <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Energy <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Contrast <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Correlation <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Entropy_log10 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Entropy_log2 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLCM_Dissimilarity <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_SRE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_LRE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_LGRE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_HGRE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_SRLGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_SRHGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_LRLGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_LRHGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_GLNU <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .97 

GLRLM_RLNU <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLRLM_RP <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

NGLDM_Coarseness <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

NGLDM_Contrast <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

NGLDM_Busyness <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLZLM_SZE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLZLM_LZE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .96 

GLZLM_LGZE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLZLM_HGZE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .99 <.001 >.99 

GLZLM_SZLGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLZLM_SZHGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 



GLZLM_LZLGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .98 

GLZLM_LZHGE <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 .98 

GLZLM_GLNU <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLZLM_ZLNU <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

GLZLM_ZP <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 <.001 >.99 

 

  



Supplemental Table 7: p-values of Friedman tests before and after realignment corrected using 

Benjamini-Hochberg procedure for patient dataset #1. Values in red demonstrate significant differences 

at p<0.05. 

 
 

w/o 
realignment 

with 
realignment 

i.Mean (HU) <.001 .003 

i.SD (HU) <.001 .003 

i.Skewness <.001 .35 

i.Kurtosis <.001 .50 

i.Entropy <.001 .50 

i.Homogeneity <.001 .90 

i.GLCM moments <.001 .32 

i.GLCM IDM <.001 .99 

i.GLCM Contrast <.001 .001 

i.GLCM Entropy <.001 .90 

 

  



Supplemental Table 8: p-values of Friedman tests before and after realignment corrected using 

Benjamini-Hochberg procedure for patient dataset #2. Values in red demonstrate significant differences 

at p<0.05. 

 

 
 

w/o realignment with realignment 

Uni <.001 .99 

Bi <.001 .27 

Vol <.001 .01 

Intensity_Mean <.001 .02 

Intensity_SD <.001 .98 

Intensity_Skewness <.001 >.99 

Intensity_Kurtorsis <.001 .86 

Intensity_Mean_MaxD <.001 .02 

Intensity_SD_MaxD <.001 .98 

Intensity_Skewness_MaxD <.001 >.99 

Intensity_Kurtorsis_MaxD <.001 .98 

Shape_Compact-Factor <.001 .21 

Shape_Eccentricity_MaxD .70 .38 

Shape_Solidity_MaxD <.001 .98 

Shape_Round-Factor_MaxD <.001 .98 

Shape_SI2 <.001 .001 

Shape_SI3 <.001 .01 

Shape_SI4 <.001 .24 

Shape_SI5 <.001 .49 

Shape_SI6 <.001 .39 

Shape_SI7 .08 .27 

Shape_SI8 <.001 .14 

Shape_SI9 <.001 .10 

Boundary_Sigmoid-Amplitude-Mean-d5 <.001 .001 

Boundary_Sigmoid-Slope-Mean-d5 <.001 .98 

Boundary_Sigmoid-Offset-Mean-d5 <.001 .87 

Wavelet_DWT-D <.001 .86 

Wavelet_DWT-V <.001 .27 

Wavelet_DWT-H <.001 .91 

Wavelet_DWT-LD <.001 .57 

Wavelet_DWT-LV <.001 .39 

Wavelet_DWT-LH <.001 .49 

EdgeFreq_Mean-d1 <.001 .98 

EdgeFreq_Coarseness-d1 <.001 .001 

EdgeFreq_Contrast-d1 <.001 .39 

Fractal_Dimension-Mean <.001 .85 



GTDM_Coarseness-d1 <.001 <.001 

GTDM_Contrast-d1 <.001 .39 

GTDM_Busyness-d1 <.001 .005 

GTDM_Complexity-d1 <.001 >.99 

GTDM_Strength-d1 <.001 .39 

Gabor_Energy-sum-w5 <.001 .97 

Gabor_Energy-dir0-w5 <.001 .39 

Gabor_Energy-dir45-w5 <.001 .98 

Gabor_Energy-dir90-w5 <.001 .98 

Gabor_Energy-dir135-w5 <.001 .86 

Laws_Energy-1 <.001 .39 

Laws_Energy-2 <.001 .77 

Laws_Energy-3 <.001 .72 

Laws_Energy-4 <.001 .85 

Laws_Energy-5 <.001 .64 

Laws_Energy-6 <.001 .98 

Laws_Energy-7 <.001 .57 

Laws_Energy-8 <.001 .39 

Laws_Energy-9 <.001 .42 

Laws_Energy-10 <.001 .57 

Laws_Energy-11 <.001 .85 

Laws_Energy-12 <.001 .57 

Laws_Energy-13 <.001 .39 

Laws_Energy-14 <.001 .21 

LoG_MGI-s1 <.001 .48 

LoG_Entropy-s1 <.001 .98 

LoG_Uniformity-s1 <.001 .98 

LoG_MGI-s4 <.001 .57 

LoG_Entropy-s4 <.001 .98 

LoG_Uniformity-s4 <.001 .14 

Run_SPE <.001 .98 

Run_LPE <.001 .98 

Run_GLU <.001 <.001 

Run_PLU <.001 .07 

Run_PP <.001 .98 

Spatial_Corr-d1 <.001 .02 

GLCM_ASM-mean-d1 <.001 .57 

GLCM_Contrast-mean-d1 <.001 .98 

GLCM_Corr-mean-d1 <.001 .71 

GLCM_Sum-Squares-mean-d1 <.001 .86 

GLCM_Homogeneity-mean-d1 <.001 .98 

GLCM_IDM-mean-d1 <.001 .98 

GLCM_Sum-Average-mean-d1 <.001 .007 



GLCM_Sum-Variance-mean-d1 <.001 .005 

GLCM_Sum-Entropy-mean-d1 <.001 .39 

GLCM_Entropy-mean-d1 <.001 .41 

GLCM_Diff-Variance-mean-d1 <.001 .98 

GLCM_Diff-Entropy-mean-d1 <.001 .57 

GLCM_IMC1-mean-d1 <.001 .86 

GLCM_IMC2-mean-d1 <.001 .86 

GLCM_MCC-mean-d1 <.001 .50 

GLCM_Max-Prob-mean-d1 <.001 .64 

GLCM_Cluster-Tendency-mean-d1 <.001 .52 

 

 

 

 


