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Introduction

Since 2012, the concept of Radiomics is expanding [START_REF] Gillies | Radiomics: Images Are More than Pictures, They Are Data[END_REF] in oncology with the objective to characterize tumor heterogeneity from medical images. Radiomics extracts features from medical images that quantify tumor shape, intensity histogram and texture of the lesions more precisely and more accurately than visual assessment by a radiologist, in order to build models involving such features to assist patient management.

In particular, texture analysis from CT images has led to promising results to distinguish between tumor lesions with different histopathological characteristics and to predict treatment response or patients survival [START_REF] Lubner | CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges[END_REF]. However, several studies have highlighted the sensitivity of radiomic features to CT acquisition and reconstruction parameters using phantoms [START_REF] Zhao | Exploring Variability in CT Characterization of Tumors: A Preliminary Phantom Study[END_REF][START_REF] Mackin | Measuring Computed Tomography Scanner Variability of Radiomics Features[END_REF][START_REF] Mackin | Harmonizing the pixel size in retrospective computed tomography radiomics studies[END_REF][START_REF] Shafiq-Ul-Hassan | Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels[END_REF][START_REF] Caramella | Can we trust the calculation of texture indices of CT images? A phantom study[END_REF][START_REF] Berenguer | Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters[END_REF] or patient data [START_REF] Kim | Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra-and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability[END_REF][START_REF] Lu | Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings[END_REF][START_REF] Shafiq-Ul-Hassan | Voxel size and gray level normalization of CT radiomic features in lung cancer[END_REF][START_REF] He | Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule[END_REF]. Indeed, feature values are affected by slice thickness, pixel size, reconstruction kernel, tube voltage, tube current and contrastenhancement. They also differ between different scanners with the same settings [START_REF] Berenguer | Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters[END_REF]. Moreover, the impact of imaging protocols varies according to the texture pattern and the radiomic feature [START_REF] Mackin | Measuring Computed Tomography Scanner Variability of Radiomics Features[END_REF].

One of the most widely cited studies in radiomics [START_REF] Aerts | Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[END_REF], which included 1019 patients, used different CT imaging protocols involving different CT scanners, different pixel size and slice thickness, with or without intravenous contrast, without accounting for this variability in the data analysis. To reduce that variability, it has been proposed to resample images with a fixed voxel size, to filter the images [START_REF] Mackin | Harmonizing the pixel size in retrospective computed tomography radiomics studies[END_REF] or to change the definition of features [START_REF] Shafiq-Ul-Hassan | Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels[END_REF][START_REF] Shafiq-Ul-Hassan | Voxel size and gray level normalization of CT radiomic features in lung cancer[END_REF]. These approaches require a modification of the CT images or are not applicable to all radiomic features. The same issue is encountered in PET imaging, where radiomic features are sensitive to the acquisition protocol and reconstruction algorithm [START_REF] Yan | Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET[END_REF]. A compensation method was initially described in genomics [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF], where the so-called batch effect is the source of variations in measurements caused by the handling of samples by different laboratories, different technicians and on different days. The batch-effect is conceptually similar to variations induced by the scanner or the protocol effects in radiomics. The compensation method identifies a batch-specific transformation to express all data in a common space devoid of batch effects. It has been shown to be effective in PET to realign the radiomic feature distributions between 3 different protocols for healthy liver tissue and breast lesions, without altering the biological information [START_REF] Orlhac | A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET[END_REF].

The purpose of this study was therefore to determine whether this compensation method could also correct for the CT protocol effect, using phantom and patient data.

Materials and Methods

All patient data were anonymized and publicly available in supplemental data of ( 9) and [START_REF] Lu | Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings[END_REF]. All authors had control of the data and information submitted for publication.

Phantom experiments

The phantom data used in our study have been produced by Mackin et al [START_REF] Mackin | Measuring Computed Tomography Scanner Variability of Radiomics Features[END_REF] and are publicly available in supplemental data of (4). The Credence Cartridge Radiomics (CCR) phantom consists of 10 layers with different materials corresponding to different texture patterns. This phantom was scanned using 17 different imaging protocols from four medical institutes involving various reconstruction kernels, scan types, slice thickness, pixel spacing, spiral pitch factor and effective milliamperage. Additional information on phantom and acquisition characteristics are provided in Supplemental Tables 1 and2. For each layer, 16 non-overlapping volumes of interest (VOI) with a cubic volume, on average, of 8 cm 3 (range: [7.6 -9 cm 3 ] corresponding to [2708 -14332 voxels] depending on the imaging protocols) are also made available in Dicom-RTstruct format. For each VOI and each imaging protocol, we (FO with 7 years and CN with 20 years of research experience in medical imaging) computed 40 radiomic features using the LIFEx freeware (17) (www.lifexsoft.org, Inserm, Orsay, France, Supplemental Table 3), with a fixed bin size [START_REF] Orlhac | 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer[END_REF] set to 10 HU between -1 000 UH and 3 000 UH without any spatial resampling. We performed the radiomic analysis for 16 imaging protocols out of 17 due to a reading issue with acquisition CCR1-GE2.

Patients

Publicly available radiomic features from two patient databases (#1 and #2) were used in our study. First set of features was derived from cohort #1 of 42 patients with a lung cancer between September and October 2013 [START_REF] Kim | Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra-and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability[END_REF], including 19 males (mean age, 60.4 years; range, 31-81 years, Table 1). All patients underwent a CT scan with the same machine and protocol (Supplemental Table 4), and CT images were reconstructed using three algorithms: filtered back projection (FBP), Sinogram Affirmed Iterative Reconstruction (Siemens Healthcare, Forchheim, Germany) with a noise reduction strength of level 3 (called S3 thereafter) and 5 (called S5). For each patient, the dominant tumor lesion was segmented manually three times, twice by a radiologist and once by a technologist. For each of the 3 VOIs per patient and each reconstruction, 15 radiomic features were calculated. We (FO) excluded 5 geometric features (volume, diameter, surface, sphericity and compactness) from the analysis as they mostly depend on the segmentation.

Second set of features was obtained from 32 patients of cohort #2 between January and September 2007 (16 males; mean age, 62.1 years; range, 29-82 years, Table 1) with a lung cancer who underwent two CT scans (Supplemental Table 4) within 15 minutes [START_REF] Lu | Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings[END_REF]. This dataset was originally collected in the clinical trial NCT00579852 to evaluate the reproducibility of tumor volume and diameter measurements and is part of the Reference Image Database to Evaluate therapy Response (RIDER) project [START_REF] Armato | The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software[END_REF]. The CT images were reconstructed using 6 protocols combining two reconstruction algorithms (lung and standard abbreviated as L and S) and three slice thicknesses (1.25 mm, 2.5 mm and 5 mm) [START_REF] Lu | Assessing Agreement between Radiomic Features Computed for Multiple CT Imaging Settings[END_REF]. For one lesion per patient (29 primary and 3 metastatic lesions), a tumor VOI was obtained from a consensus among the manual segmentations by 3 radiologists. After resampling the VOI voxels to 0.5x0.5x0.5 mm 3 using a trilinear interpolation, 89 radiomic features were calculated for the 6 imaging protocols (2 reconstructions x 3 slice thicknesses) and for each of the 64 scans (32 patients with 2 scans).

Compensation method

To correct for differences in features caused by the various imaging protocols, we (FO) used the ComBat compensation method [START_REF] Johnson | Adjusting batch effects in microarray expression data using empirical Bayes methods[END_REF]. This method has been used for cortical-thickness measurements from MR images [START_REF] Fortin | Harmonization of cortical thickness measurements across scanners and sites[END_REF] and for radiomic features from different PET protocols [START_REF] Orlhac | A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET[END_REF]. It is a data-driven method that identifies the protocol effect assuming that the value of each feature y measured in VOI j with imaging protocol i can be written as:

y ij =α+ γ i +δ i ε ij Equation 1
where α is the average value for feature y ij , γ i is an additive protocol effect, and δ i is a multiplicative protocol effect affected by an error term (ε ij ). The compensation consists in estimating the model parameters α, γ i and δ i using a maximum likelihood approach based on the set of available observations y:

y ij ComBat = y ij -α ̂-γ i δi ̂+α ̂ Equation 2
where α ̂, γ i ̂ and δ i ̂ are estimators of α, γ i and δ i .

We used the non-parametric form of the model in which no assumptions are made regarding the laws followed by the parameters. In this setting, ComBat determines a transformation for each feature separately. For each texture pattern of phantom data and of each patient dataset, we used the R (version 

Statistical analysis

To determine whether the protocol setting (independent variable i in Equation 1) impacted the distributions of radiomic feature values (dependent variables yij in Equation 1), we (FO, FF with 30 years of experience) performed 2-sided Friedman tests before and after ComBat compensation for each feature as summarized in Supplemental Table 5. Null hypothesis is that there is no difference between the distributions. Benjamini-Hochberg procedure was used to control the false discovery rate [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF]. P-values less than .05 were regarded as statistically significant. As the goal of the compensation is to realign the distributions in terms of mean and standard deviation, a p-value of the Friedman test greater than .05 means that the realignment was successful.

For the phantom data, we also performed a principal component analysis (PCA) of the 2 560 samples (16 VOI x 10 texture patterns x 16 imaging protocols) described by 40 variables (radiomic features). PCA was performed before and after ComBat to visualize the impact of the compensation method on the distinction between patterns. We also studied whether two textural patterns could be distinguished when pooling data from the 3 imaging protocols before and after compensation and for balanced and un-balanced groups.

The statistical analysis was performed using R software.

Results

Patient characteristics are shown in Table 1.

Phantom experiments

In the phantom data, 399/400 p-values of the Friedman tests performed for all features based on 16

imaging protocols and 10 texture patterns were lower than .05 before compensation (Table 2, Supplemental Table 6). Only one p-value for Skewness was larger than .05 for pattern 7 (dense cork, p=.46).

After compensation, all p-values of Friedman tests were higher than .05, demonstrating that the protocol effect was no longer detectable.

These results were confirmed visually using the projection of the data in the space spanned by the first 2 principal components of PCA. Figure 1 shows an overlapped between textural patterns before ComBat, due to the large variability of radiomic feature values computed from 16 different CT protocols. For each textural pattern (each color), several clusters corresponding to different CT protocols could be identified.

After ComBat, textural patterns could be clearly distinguished and were no longer composed of different clusters, demonstrating that the compensation method properly corrected for the scanner effect while retaining the specific characteristics of each texture pattern. Interestingly, the variance explained by the first two components was higher after ComBat (65.6% versus 53.2%), with approximately the same features contributing to the first two principal components before and after compensation (data not shown).

Based on three CT acquisitions (GE1, P2 and S2, see Supplemental Table 2), Figure 2 shows that when data were pooled without realignment, the sensitivity for distinguishing cork from dense cork was 67% (32/48 VOI) with a specificity of 98% (47/48 VOI) using the cutoff maximizing the Youden index. After ComBat, both sensitivity and specificity were 100% (48/48 VOI). For unbalanced groups, Supplemental Figure 1 shows that the compensation method also yielded a perfect distinction between these two patterns.

Patient data

For patient datasets #1 and #2, 100% (10/10) and 98% (87/89) of Friedman tests respectively were lower than .05 between imaging protocols before ComBat (Table 2, Supplemental Tables 78). After ComBat, 30% (3/10) of p-values for dataset #1 and 15% (13/89) of p-values for dataset #2 were lower than .05.

Visual inspection of the radiomic feature value distributions when Friedman tests remained significant after ComBat showed that the residual difference between protocols was always small and that the protocol effect was much reduced (Supplemental Figure 2), demonstrating the effectiveness of the compensation. As illustrated in Supplemental Figure 3 for Homogeneity feature, ComBat corrects the protocol effect with a realignment of feature values among the three protocols for dataset #1 and among the 6 protocols for dataset #2. For instance, before ComBat, the plot shows a shift in distribution with greater Homogeneity values for reconstruction S5 than for S3 and FBP. This was expected since S5 involved higher noise reduction. After compensation, the distributions between the three reconstructions better overlapped. Figure 3 shows three examples of realignment of features between different reconstruction algorithms, reconstruction kernels and slice thicknesses.

Discussion

As widely reported in the literature, radiomic features are sensitive to the acquisition and reconstruction parameters of CT images. Feature values are therefore not directly comparable between different imaging protocols, limiting their use in multicenter studies. Here, we demonstrated that the ComBat method can realign radiomic features computed from different CT imaging protocols. Using phantom data, we showed that ComBat removed the scanner and protocol effect while preserving the differences between texture patterns. The correction for the scanner effect was confirmed using patient images reconstructed with different imaging protocols.

The use of this compensation method should facilitate multicentric radiomic analyses that are absolutely needed to demonstrate the practical usefulness of radiomic features for patient management. Data harmonization is currently a hot topic in the international imaging community with increasing awareness of the need to reduce the variability in image quality between centers and machines [START_REF] Sullivan | Metrology Standards for Quantitative Imaging Biomarkers[END_REF][START_REF] O'connor | Imaging biomarker roadmap for cancer studies[END_REF]. ComBat offers a solution to realign radiomic features with several advantages. ComBat is easily available to all and fast (a function available for free in R software). The transformations are estimated based on the measured feature values, without the need to go back to images or to perform phantom experiments. No learning set is needed. Unlike other options described in the literature, ComBat does not change the feature definitions [START_REF] Shafiq-Ul-Hassan | Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels[END_REF][START_REF] Shafiq-Ul-Hassan | Voxel size and gray level normalization of CT radiomic features in lung cancer[END_REF] and can therefore be used with all software/algorithms and with any radiomic features. This is illustrated in three datasets using three different implementations for the radiomic feature calculation (Supplemental ComBat can model these covariates in the compensation process as illustrated in PET imaging with different proportions of cancer subtypes in different departments [START_REF] Orlhac | A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET[END_REF], as long as enough patients with the same characteristics are available.

As demonstrated using the phantom data (Table 2), before compensation, the values of radiomic features were significantly different between imaging protocols for a given pattern. Ignoring this effect in multicentric studies might bias the findings and lower statistical power. A recent study highlighted that the 4 features selected in (13) to build the radiomic signature were highly correlated with tumor volume [START_REF] Vallieres | Dependency of a validated radiomics signature on tumor volume and potential corrections[END_REF], which might explain why the model remained robust on data from different centers. Using ComBat might help determine whether radiomic features reflecting the lesion biological heterogeneity but affected by the center effect more than the lesion volume also have some predictive value.

Our study has some limitations: our findings should be confirmed on other cancer types, for other imaging protocols and scanners and the actual impact on diagnostic performance on clinical data needs to be demonstrated. Independent multi-center validation of radiomic models is also essential for them to become mainstream [START_REF] Gillies | Radiomics: Images Are More than Pictures, They Are Data[END_REF][START_REF] Buvat | Tumor Texture Analysis in PET: Where Do We Stand?[END_REF][START_REF] Reuzé | Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges[END_REF].

In summary, ComBat makes it possible to pool radiomic features from different CT protocols. This method appears promising to deal with the center effect in multicenter radiomic studies and to possibly raise the statistical power of such studies. ComBat is data-driven meaning that the transformations identified by

ComBat to set all data in a common space should be estimated for each study involving data from different centers/protocols. Our analysis was based on less than 50 patients for each acquisition protocol demonstrating the efficiency of the method even for small patient cohorts. Using simulations in which we gradually removed patient data (results not shown), we found satisfactory results with as few as 20

patients per imaging protocol. The minimum number of patients required per imaging protocol to successfully apply ComBat remains to be comprehensively investigated. 2). When pooling all radiomic feature values, the optimal cutoff could not perfectly distinguish the patterns while after compensation of scanner effects, a perfect distinction was observed. 

Figure 1 :

 1 Figure 1: Phantom data: principal component scores for 2560 samples corresponding to 16 VOI x 10 texture patterns (in colors) x 16 imaging protocols described by 40 radiomic features on the first two principal components before (A) and after ComBat (B). After compensation, each texture pattern was no longer composed of different clusters, demonstrating that the scanner effect has been correctly compensated.

Figure 2 :

 2 Figure 2: Example of ComBat application in phantom experiments: two texture patterns (cork and dense cork) were scanned using three different imaging protocols with 16 volumes of interest in each case (GE1, P2, S2, see Supplemental Table2). When pooling all radiomic feature values, the optimal cutoff could not perfectly distinguish the patterns while after compensation of scanner effects, a perfect distinction was observed.

Figure 3 :Supplemental Figure 1 :Supplemental Figure 2 :Supplemental Figure 3 :Supplemental Table 1 :

 31231 Figure 3: Probability density function(%) of Homogeneity before (left) and after ComBat (right) in patient data using two CT reconstruction algorithms (FBP and S5), two reconstruction kernels (Standard and Lung) and two voxel thicknesses (1.25 mm and 5 mm). CT images are from Kim et al, PLoS ONE 2016;11:e0164924 and Lu et al, PLoS ONE 2016;11:e0166550. Displayed p-values are given for Friedman tests.

  

  

  

  3.4.2, R foundation for Statistical Computing, Vienna, Austria) function called ComBat, available at https://github.com/Jfortin1/ComBatHarmonization to identify the transformation parameters.

Table 5

 5 

). ComBat does not require spatial resampling of the CT images to a single pixel size and/or image filtering (5). It is applicable when only radiomic features values are available or when images are not available. ComBat can account for covariates of interest if the patients scanned with different imaging protocols do not have the same characteristics (eg, different age distributions).

Table 1 :

 1 Patient characteristics.

	Patient dataset #1	Patient dataset #2

Table 2 :

 2 number of significant Friedman tests (p<.05) without and with compensation in the phantom and clinical datasets.

	w/o realignment	with realignment

Table 2 :

 2 acquisition characteristics for phantom experiments.

	Designation	Manufacturer/Model	Reconstruc tion kernel	Scan type	Voxel size (mm 3 )	Spiral factor pitch	kVp	mAs
	GE1	GE/Discovery CT750 HD	standard	helical	0.49x0.49x2.5	0.98	120	81
	GE3	GE/Discovery CT750 HD	standard	helical	0.78x0.78x2.5	0.98	120	122
	GE4	GE/Discovery ST	standard	helical	0.98x0.98x2.5	1.35	120	143
	GE5	GE/LightSpeed RT	standard	helical	0.98x0.98x2.5	0.75	120	1102
	GE6	GE/LightSpeed RT16	standard	helical	0.98x0.98x2.5	0.94	120	367
	GE7	GE/LightSpeed VCT	standard	helical	0.74x0.74x2.5	0.98	120	82
	P1	Philips/Brilliance Big Bore	B	helical	0.98x0.98x3	0.94	120	320
	P2	Philips/Brilliance Big Bore	C	helical	0.98x0.98x3	0.94	120	369
	P3	Philips/Brilliance Big Bore	B	helical	1.04x1.04x3	0.81	120	320
	P4	Philips/Brilliance Big Bore	B	helical	1.04x1.04x3	0.81	120	369
	P5	Philips/Brilliance 64	B	helical	0.98x0.98x3	0.67	120	372
	S1	Siemens/Sensation Open	B31s	axial	0.52x0.52x2	1.00	120	26-70
	S2	Siemens/Somatom Definition Flash	170f, 2	helical	0.54x0.54x3	0.60	120	17-28
	T1	Toshiba/Aquilion	FC18	helical	0.63x0.63x3	1.11	120	135
	T2	Toshiba/Aquilion	FC18	helical	0.63x0.63x3	1.11	120	135
	T3	Toshiba/Aquilion One	FC18	helical	0.98x0.98x3	0.99	120	

Supplemental