
HAL Id: hal-01953483
https://hal.science/hal-01953483v1

Submitted on 13 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adding Contextual Guidance to the Automated Search
for Probabilistic Test Profiles

Hélène Waeselynck, Simon Poulding

To cite this version:
Hélène Waeselynck, Simon Poulding. Adding Contextual Guidance to the Automated Search for
Probabilistic Test Profiles. 7th IEEE International Conference on Software Testing, Verification and
Validation (ICST 2014), Mar 2014, Cleveland, United States. �hal-01953483�

https://hal.science/hal-01953483v1
https://hal.archives-ouvertes.fr


Adding Contextual Guidance to the Automated
Search for Probabilistic Test Profiles

Simon Poulding
Department of Computer Science,

University of York, York, UK
Email: simon.poulding@york.ac.uk

Hélène Waeselynck
LAAS-CNRS,

Univ. Toulouse, Toulouse, France
Email: helene.waeselynck@laas.fr

Abstract—Statistical testing is a probabilistic approach to test
data generation that has been demonstrated to be very effective
at revealing faults. Its premise is to compensate for the imperfect
connection between coverage criteria and the faults to be revealed
by exercising each coverage element several times with different
random data. The cornerstone of the approach is the often
complex task of determining a suitable input profile, and recent
work has shown that automated metaheuristic search can be a
practical method of synthesising such profiles.

The starting point of this paper is the hypothesis that, for
some software, the existing grammar-based representation used
by the search algorithm fails to capture important relationships
between input arguments and this can limit the fault-revealing
power of the synthesised profiles. We provide evidence in support
of this hypothesis, and propose a solution in which the user
provides some basic contextual knowledge to guide the search.
Empirical results for two case studies are promising: knowledge
gained by a very straightforward review of the software-under-
test is sufficient to dramatically increase the efficacy of the profiles
synthesised by search.

I. INTRODUCTION

Statistical testing is a probabilistic approach for test gen-
eration pioneered by Thévenod-Fosse and Waeselynck in the
1990s [1]–[3]. Its premise is to compensate for the imperfect
connection of common test adequacy criteria with the faults
to be revealed: the coverage elements identified by a criterion
are exercised several times with different random data. As a
result, there is no need for a perfect match between coverage
elements and fault-revealing inputs.

The approach requires an input profile that typically differs
from the uniform profile that is used in (blind) random testing,
and from the operational profile, i.e. the distribution of inputs
that the software will encounter in operation [4], [5]. Statistical
testing instead utilises a profile that is optimised to both the
chosen adequacy criterion and the specific software-under-
test (SUT) so as to enable efficient structural or functional
coverage.

Statistical testing has been shown to be very effective at
revealing faults, both mutations as well as genuine faults, in
software ranging in size up to thousands of lines of code.
However, the determination of a profile that is effective for
the chosen adequacy criterion remains a complex, and so
potentially costly, optimisation problem. To address this prob-
lem, Poulding et al. have recently demonstrated an automated
search-based technique for synthesising profiles [6], [7]. The
input profile is represented by a stochastic grammar which is

incrementally modified using a metaheuristic search algorithm
until the adequacy criterion is met.

The motivation for this paper is the observation that while
automated search can synthesise profiles quickly and cheaply,
the test sets generated from the synthesised profiles may
demonstrate surprisingly poor fault-revealing power. This is
because the search is tasked only with optimising the coverage
required to satisfy the adequacy criterion, not the ultimate
objective of revealing faults. As a result, it is possible for the
synthesised profile to be ‘degenerate’ in the sense that inputs
are sampled from only a small region of the input domain:
such a degenerate profile can satisfy the adequacy criterion in
terms of coverage, but the SUT is exercised with inputs that
are not sufficiently diverse to reveal some of the faults.

Our hypothesis is that degeneracy arises because the exist-
ing grammar-based representation is unable to properly express
the relationships between input arguments that govern the
logic implemented by the software-under-test. In an attempt to
maximise coverage, the search attempts to approximate these
relationships but is only able to do so over small regions of
the input domain.

In this paper we propose that degeneracy may be reduced,
and therefore the fault-revealing power of profiles improved,
by augmenting the grammar with new operators that express el-
ementary relationships between input arguments. We envisage
that the user will be able to choose which of these operators
to incorporate into the grammar for a specific SUT based on a
straightforward review of the specification or implementation:
the operators enable the user to provide contextual knowledge
that guides the search algorithm. The results of two case-
studies demonstrate that augmenting the grammar with our
proposed operators significantly increases the fault-revealing
power of profiles synthesised by automated search.

In section II, we explain the adequacy criterion of statistical
testing and the automated search algorithm that synthesises
input profiles to satisfy this criterion. We expand on our
hypothesis of degeneracy in search-synthesised profiles in
section III, and demonstrate two case studies that support
this hypothesis in section IV. In section V, we propose the
new operators that augment the grammar representation, and
in section VI we evaluate the improved fault-revealing power
enabled by the augmented grammars. We discuss our approach
in relation to other automated techniques for statistical testing
in section VII. In section VIII, we reflect on the impact of
augmenting the profile representation and outline future work.



II. BACKGROUND

A. Statistical Testing

The key feature of statistical testing is an adequacy criterion
that constrains the properties of the input profile from which
test inputs are sampled. As for deterministic coverage testing,
the criterion is expressed in terms of a finite set of coverage
elements, C, that are based on the structure of the implemented
code, e.g. control-flow branches [1], or the functionality that
the SUT should exhibit [2].

Let pc denote the probability that coverage element c ∈ C
is exercised by a test input sampled at random from the profile,
and pmin be the lowest of all the pc over the set C. The value
of the minimum coverage probability, pmin, influences the test
size, N , at which all coverage elements are exercised by a test
set generated from the profile. Since the sampling of inputs is
stochastic, full coverage can never be guaranteed; instead let
0 ≤ Q < 1 denote the probability that the least likely element
(the element with lowest value of pc) is covered by the test
set. Then, these values are related by the equation:

1−Q = (1− pmin)
N (1)

Therefore if the number of test inputs is fixed—for example, if
the cost of applying the oracle is too expensive to increase the
test size—a high value of pmin increases the likelihood that all
coverage elements are exercised at least once. Alternatively, a
value of Q may be chosen in advance and the test set sized to
achieve this likelihood; in this case a high value pmin reduces
the number of test cases required. Thus the objective is for
pmin to be as high as possible.

Although the relationship between coverage criteria and
fault exposure will be imperfect, it is reasonable to expect
that a profile which uses some information about the SUT to
exercise all elements as frequently as possible will typically
reveal faults more efficiently than the uniform distribution
that uses no such information. Indeed, Thévenod-Fosse and
Waeselynck demonstrate the superior fault-revealing power of
statistical testing over uniform random testing for test sets of
the same size [1], [2].

For values of Q close to 1, not only is it likely that every
coverage element is exercised by at least one test case in the
test set, but many coverage elements will be exercised by
multiple test cases. This is a significant advantage of statistical
testing: the imperfect relationship between coverage criteria
and fault location can be compensated for by exercising each
coverage element with multiple different inputs. Moreover, it
is relatively easy to generate a test set that has this property by
simply sampling enough inputs at random from the profile. In
contrast, deterministic coverage testing techniques often derive
a minimal test set in which many of the coverage elements
are exercised only one. Thévenod-Fosse and Waeselynck show
that this posited advantage is demonstrated in practice: test
sets generated by statistical testing can reveal more faults that
minimal sets generated by deterministic techniques [1].

B. Synthesis of Profiles By Automated Search

It is possible to determine the optimal profile by analytical
analysis for relatively simple SUTs and coverage types [1].
Alternatively, a suitable profile may be found by manual

experimentation: based on the coverage induced by a sample of
inputs drawn from a candidate profile, the profile is iteratively
refined until the minimum coverage probability, pmin is deemed
sufficiently high. The latter approach was successful in cases
for which analytical analysis was not practical [2] but at the
expense of additional human effort.

To minimise costly human effort, Poulding et al. have
developed an automated technique for profile synthesis using
metaheuristic search. In their initial work, the search algorithm
optimised a representation of the input profile as a Bayesian
network in which node represented one of the input arguments
to the SUT [6]. However, this representation has limited
applicability: it can be used only if the SUT’s input domain
consists of a fixed number of numeric input arguments. In
subsequent work they have used a more flexible grammar-
based representation that is capable of representing highly-
structured inputs that may include variable-length compound
datatypes and contain both numeric and categorical data [7].
It is the search-based algorithm using this representation that
we use as the basis for our work in this paper, and that we
describe in this section.

1) Grammar-Based Representation: The representation is
an enhanced form of stochastic context-free grammar. A gram-
mar, specific to the SUT, defines the inputs that form the SUT’s
input domain using a set of production rules. In the following
example grammar, S, X and Y are variable symbols; and ‘a’
to ‘d’ are terminal symbols (distinguished from variables by
the use of single quotes):

S → X
X → ‘a’ | ‘b’ Y
Y → ‘c’ X | ‘d’ X

Starting with, by convention, a sequence consisting of the
single variable S, the production rules specify how variables
may be replaced with other symbols until the sequence of
symbols consists only of terminals. In the above example, there
are two production rules for X separated by the notation |. The
first rule replaces X with the terminal ‘a’; the second replaces
X with the terminal ‘b’ followed by the variable Y. The set of
terminal sequences that could be emitted from the grammar—
with an appropriate choice of production rule whenever more
than one could be applied—corresponds to the set of inputs to
the SUT.

In order to represent a profile, i.e. a probability distribution
over the input domain, the production rules are annotated with
weights to create a stochastic grammar. Each time a variable
is encountered with more than one production rule, one of
the rules is selected at random according the weights. For
example, if the rules X → ‘a’ and X → ‘b’ Y in the
example grammar above have weights 0.7 and 0.3 respectively,
a sequence sampled from the grammar is likely to contain more
‘a’ than ‘b’ terminals.

The representation includes two additional features not
present in standard stochastic context-free grammars and
which improve the efficiency with which search is able to
synthesis profiles that meet the adequacy criterion [7]. We
outline both features here, and refer the reader to [7] for further
details.

Firstly, weights may be conditionally dependent on the
production rules that were most recently applied by other



variables. This enables a limited form of context-sensitivity.
For example, if the rule X → ‘a’ has a probability of 0.8
when the most recently applied rule for Y is Y → ‘c’ X,
and 0.4 when it is Y → ‘d’ X, the subsequence ‘ca’ is
more likely to occur than ‘cb’, but ‘db’ is more likely than
‘da’. These conditional dependencies are not (necessarily)
specified by the user: they are instead explored by the search
algorithm.

Secondly, a compact notation is introduced when terminal
symbols represent a large range of numeric values. The mo-
tivation for this enhancement is that the following idiom for
numeric variables,

Num → ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’

does not scale well when the range to be represented is, say,
[0, 999] rather than [0, 4]: it would require an excessively large
number of production rules and associated weights that would
not be amenable to optimisation by search. In such cases, we
introduce a special notation whereby the production rules refer
to a set of intervals that partition the range:

Num → [0,422] | [423,543] | [544,999]

When one of these production rules is chosen according to the
weights, such as Num → [544,999], the terminal symbol
emitted is a number sampled at random from the chosen
interval (using a uniform distribution), e.g. ‘604’. The user
need only specify the full range (e.g. Num → [0,999]) in
the grammar to be optimised; the search algorithm explores
suitable partitions over this range. We refer to grammar vari-
ables represented in this way as ‘partition variables’.

2) Fitness Evaluation: In order to compare candidate
profiles, the search algorithm requires a fitness metric that
quantifies how ‘good’ each profile is. Since the objective is to
synthesise a profile with a high value of the minimum coverage
probability, pmin, in order to satisfy the adequacy criterion, the
chosen fitness metric is an estimate of this probability.

In order to calculate this estimate, a set of inputs, size K,
is sampled from the candidate profile and used to execute an
instrumented version of the SUT. For each input in the sample,
the instrumentation identifies which of the coverage elements
are exercised by that input. (There is no need to record nor
check the output of the instrumented SUT using an oracle.)
An estimate, p̂c, of the coverage probability, pc, for coverage
element c, is the proportion of the K sampled inputs that
exercise c. The fitness metric—the estimate of the minimum
coverage probability—is then lowest value of p̂c across the set
of coverage elements, C.

3) Search Algorithm: The metaheuristic search algorithm
used to optimise the input profile is random mutation hill-
climbing. The hill-climb begins from a single randomly-
generated ‘current’ profile. During each iteration of the al-
gorithm a small number of neighbouring profiles are created
by making small, random changes (‘mutations’) to the current
profile. The fitness of each of the neighbouring profiles is
evaluated using the metric described above, and if the best
of the neighbouring profiles (the one with the highest fitness)
is better than current profile, that neighbouring profile becomes
the current profile in the next iteration of the algorithm. For
the work described in this paper, the search terminates after

a fixed number of iterations and returns the profile with the
highest fitness encountered during the search process1.

The search is able to mutate the following parts of the
grammar: the production rule weights, the conditional de-
pendencies between variables, and the number and length of
intervals of each partition variable. These mutations, and the
algorithm parameters that are related to them, are described in
detail in [7].

4) Efficacy of the Search-Based Technique: Poulding et
al. evaluated the capabilities of the algorithm and grammar
representation on a set of three diverse SUTs [7]. This work
demonstrated the algorithm’s effectiveness in terms of perfor-
mance (and thereby cost): profiles could be synthesised in
approximately 20 minutes or less using hardware typical of
a desktop PC. However, this work did not evaluate whether
the search algorithm optimised the profiles for fault-revealing
power, in addition to optimising for coverage.

In their earlier work using the Bayesian network rather
than grammar representation for profiles, there was evidence
that the fault-revealing power of synthesised profiles could
be relatively poor: for some SUTs, random testing using
the uniform distribution found more faults at large test sizes
[6]. It is our concern that the synthesised profiles using the
grammar representation continue to have relatively poor fault-
revealing power that motivates for the research described in
the remainder of this paper.

III. HYPOTHESISED PROBLEM

Our hypothesis is that—for some SUTs—optimal profiles
may be difficult to represent because parts of the SUT’s
functionality are guarded by predicates requiring relationships
between the input arguments that are not easily expressed by
the grammar representation. As a result, the profiles synthe-
sised by search have a relatively poor fault-revealing power.

We came to this hypothesis by taking examples of opti-
mal profiles from Thévenod-Fosse and Waeselynck’s work,
and considering how they would be encoded into grammar
representation used by Poulding et al. For optimal profiles
that required certain simple relationships between the input
arguments, the grammar encoding is so convoluted that we
conjecture it unlikely that the search would synthesise it in a
realistic time.

As an illustration, consider a SUT with two numeric
arguments, each taking values between 0 and 999. We could
represent the input domain using the following grammar, where
grammar variables X1 and X2 correspond to the two input
arguments:

S → X1 X2
X1 → [0,999]
X2 → [0,999]

Let us assume that there are two main subroutines in the SUT:
one that implements functionality for the case when the two

1Normally in a hill climbing search, the fittest profile would be the
current profile at the point of termination. However, for reasons related to
a enhancement employed to accommodate sampling noise in the evaluation of
fitness, this is not necessarily the case here. We do not have space to describe
the enhancement in this paper, but refer the reader to [6].



input arguments, X1 and X2, are equal, and the other when
they are not; and that these subroutines are guarded by the
branch predicate X1==X2. Let us also assume an optimal
input profile would exercise these two subroutines with equal
frequency, i.e. we would like the search to exhibit a profile
such that X1==X2 occurs with probability 0.5.

Using the stochastic grammar representation, this might
be achieved by first partitioning the two variables into 1000
intervals, one for each integer:

X1 → [0,0] | [1,1] | ... | [999,999]
X2 → [0,0] | [1,1] | ... | [999,999]

The required probability distribution could then be achieved by
making X2 dependent on X1 such that if the interval sampled
for X1 was [m,m], then the interval [m,m] for X2 is
annotated with a weight of 0.5, while the remaining weight
is shared over the other intervals of X2. In this grammar, the
probability of input arguments X1 and X2 being equal is 0.5,
and the value that X1 and X2 share could be any between 0 and
999. This is the closest representation of the kind of profiles
derived by Thévenod-Fosse and Waeselynck which required a
similar equality relation between two of the input arguments.

Alternatively, a near-optimal profile could be achieved with
much simpler grammars, such as:

X1 → [0,217] | [218,218] | [219,999]
X2 → [0,217] | [218,218] | [219,999]

In this grammar, the interval [218,218] for both variables
would have a probability of 1/

√
2 and there is no dependency

between the two variables. Thus, input arguments X1 and X2
are equal, with a shared value of 218, with a probability 0.5.
There is only a small chance the arguments are equal but share
a value other than 218, and so the probability that X1 and X2
are unequal is also approximately 0.5.

Both these grammars are near-optimal in terms of exer-
cising the two subroutines with equal probability, and would
both meet the statistical testing adequacy criterion. However,
we would expect the first grammar to reveal more faults since
it exercises the subroutine guarded by X1==X2 using a diverse
range of values, while the second grammar would exercise it
with the value 218 in the majority of test cases. The benefit
of statistical testing is that each coverage element is likely to
be exercised multiple times, each time with a different input;
the second ‘degenerate’ grammar would not demonstrate this
property.

The search algorithm would assess both these grammars
to have similar minimum coverage probabilities, and therefore
similar fitnesses. But we hypothesise that the first grammar
would require very many iterations to synthesise using the
mutations described in section II-B: each variable must be
partitioned into 1000 rules, and 1000 conditional weights
for X2 must take the correct values. In contrast, a more
parsimonious grammar similar to the second would be much
easier to synthesise using search, and so a more likely output
of the search algorithm. However it would express a degenerate
profile that, in practice, reveals fewer faults than a more diverse
profile with the same minimum coverage probability. Such a
poor fault-revealing power would reduce the economic case for
using search to synthesise profiles, and so motivates a solution
that avoids degeneracy.

IV. DEMONSTRATION OF HYPOTHESISED PROBLEM

In this section we provide empirical evidence in support of
the hypothesis described in the previous section: that profiles
synthesised by automated search can show relatively poor
fault-revealing power despite satisfying the adequacy criterion
required by statistical testing.

A. Case Study SUTs

We collect evidence from two case study SUTs: FCT3
and TCAS. Since the objective is to demonstrate that there
exist one or more SUTs for which the search-based technique
synthesises profiles that have relatively poor fault-revealing
power—rather than to evaluate the technique’s average be-
haviour across all SUTs to which it could be applied—
we subjectively chose these two SUTs because we suspect
their optimal input profiles are difficult to represent using the
grammar-based representation.

FCT3 is a C function that forms part of a nuclear reactor
safety shutdown system. This SUT was used by Thévenod-
Fosse, Waeselynck and Crouzet in their evaluation of statistical
testing [1]. Its purpose is to filter out doubtful measures of
the position of the reactor’s control rods. The function takes
8 integer input arguments; a grammar representing the input
domain is shown in figure 1a. The argument X1 is the current
measure of a rod position and X4 the previous measure. A
major requirement is that a measure is not considered stable
unless successive identical values are read. Hence, the function
challenges the search process to account for relation X1==X4.

To assess the fault-revealing power of the synthesised
profiles, we use a set of 1355 mutants—versions of the SUTs
with systematically-made syntax changes—created as part of
the early work on investigating statistical testing for this SUT
[1]. All of these 1355 mutants are non-equivalent, meaning
that they are not functionally equivalent to the original SUT,
and therefore each one could be detected (or ‘killed’) by an
incorrect output when supplied an appropriate test input.

The C function TCAS implements the resolution logic
for an early version of a collision avoidance system used in
commercial aircraft. It aims to maintain the vertical separation
between aircraft that is greater than a specific threshold, and to
decide whether a downward or upward manoeuvre would yield
the greatest separation. This SUT is widely used in software
testing research, and is provided by the Software-artifact
Infrastructure Repository [8]. The function takes 12 integer
input arguments; a grammar representing the input domain
is shown in figure 1b. The argument UpSep is the vertical
separation that would be induced by an upward manoeuvre,
DownSep the one induced by a downward manoeuvre, and
AltLayVal selects the threshold to maintain (it indexes an
array of thresholds). We expect this function to be challenging
since it requires the discovery of suitable ‘greater than’ and
‘less than’ relations between these input arguments. The source
code of the function also contains numerical comparisons
between other input arguments and constants, and complex
logic that combines all these comparisons in order to derive
the output.

The Software-artifact Infrastructure Repository provides 41
variants of TCAS, created by manually seeding faults, and we



S → X1 X2 X3 X4 X5 X6 X7 X8
X1 → [0,63]
X2 → [0,1]
X3 → [0,1]
X4 → [0,63]
X5 → [0,63]
X6 → [0,1]
X7 → [0,1]
X8 → [0,15]

(a) FCT3

S → CurVerSep HighConf TwoRepVal
OwnTrkAlt OwnAltRat OthTrkAlt
AltLayVal UpSep DownSep
OthRAC OthCap CliInh

CurVerSep → [0,1999]
HighConf → [0,1]
TwoRepVal → [0,1]
OwnTrkAlt → [0,9999]
OwnAltRat → [0,999]
OthTrkAlt → [0,9999]
AltLayVal → [0,3]

UpSep → [0,1999]
DownSep → [0,1999]
OthRAC → [0,2]
OthCap → [1,2]
CliInh → [0,1]

(b) TCAS

Fig. 1: The grammars defining the input domains of the case
study SUTs.

use these variants to assess the fault-revealing power of input
profiles synthesised for this SUT.

B. Search Algorithm Settings

We use the same algorithm configuration and parameter
settings as in the most recent work of Poulding et al. [7]. These
settings are based on earlier work that tuned the configuration
and parameters to minimise the time and resources required
to synthesise a profile [9]. Since there was not space to
provide a full description of the algorithm and its parameters
in section II, we omit details of the specific parameter settings
here and instead refer the reader to [7].

In this work, the search terminates after a fixed number
of iterations—rather than terminating once a profile target
minimum coverage probability is found—as we believe this
is consistent with how the algorithm would often be used
in practice. For a previously-unseen SUT a suitable target
probability would not be known and so the algorithm would
be run for a fixed time to obtain a ‘best effort’ profile. A limit
of 100,000 iterations was chosen based on initial experimen-
tation that showed that the fittest profiles could consistently
be reached well within this limit. When the algorithm is
run on hardware typical of a desktop PC, 100,000 iterations
corresponds to a run time of approximately 2.5 minutes for
FCT3, and approximately 5 minutes for TCAS.

For FCT3, the adequacy criterion was coverage of all 19
branches. For TCAS, the criterion was coverage of all 62
conditions, including those in assignment statements.

C. Empirical Method

The following method was performed for each SUT:

1) The algorithm was run 10 times, each run with a
different seed to the pseudo-random number generator, and
the profile synthesised by the algorithm collected. By running
the algorithm multiple times, variance in the results arising
from the stochastic nature of the algorithm is reduced.

2) One set of random test inputs was sampled from each of
the 10 synthesised profiles. The size of the set was (somewhat
arbitrarily) chosen at 405 for FCT3, corresponding to the size
that enables coverage of all paths with a probability of 0.9999
for a profile derived by analytical analysis [1]; and 1608 for
TCAS, corresponding to the size of the ‘universe’ test set
provided by Software-artifact Infrastructure Repository.

3) The number of mutants (or variants) killed by each of the
10 sets was assessed. The count of killed mutants was recorded
after the first test input in the set, then after the second test
input, and so on until the set had been exhausted. This enables
a comparison of the mutation scores—-and therefore estimates
of the fault-revealing power of the profiles—at different test
sizes.

4) As a baseline, 10 sets were sampled from the uniform
profile (a uniform distribution over the input domain) and
their mutation score assessed as above. To create a uniform
distribution, the stochastic grammars of figure 1 are used
without applying search: since there is only a single interval
for all partition variables, the values sampled for each input
argument are from a marginal uniform distribution, and there
is no dependency between the variables.

For FCT3 only, we use two further baselines: two pro-
files derived analytically for all-paths and all-c-uses adequacy
criteria in earlier work [1]. In this earlier work, the all-paths
sets consistently killed all mutants, while the all-c-uses ones
consistently killed all but 17 mutants. These 17 mutants are
missed due to some lack of diversity in the latter profile:
ignoring the contribution of two paths simplified the analytical
derivation of the all-c-uses profiles, hence the corresponding
input configurations were assigned a zero probability and this
has a direct impact on the revealing conditions of the 17
mutants. Thus, the all-c-uses profile can be seen as an early
example of degeneracy while the all-paths one exemplifies a
structural profile that is diverse by construction.

D. Results and Discussion

The results are summarised in figure 2 which shows the
median mutation scores at different test sizes for each type of
profile. The number of mutants tested for FCT3 is sufficiently
large at 1355 to present the results as a mutation score, i.e. the
proportion of mutants killed by the test set. For TCAS only 41
variants were tested and so only a limited number of distinct
mutation scores are possible; therefore we present results for
TCAS as the actual number of variants killed.

For FCT3, the profiles synthesised by search have a higher
fault-revealing power than the uniform profiles for all test sizes.
At all test sizes, the differences are statistically significant
using the Wilcoxon-Mann-Whitney test to compare the ten
samples of each type of profile. While the search-synthesised



0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Test Size

M
ut

at
io

n 
Sc

or
e

Profile
Analytical All−Paths
Analytical All−C−Uses
Search
Uniform

(a) FCT3

0/41

10/41

20/41

30/41

40/41

0 500 1000 1500
Test Size

Va
ria

nt
s 

Ki
lle

d

Profile
Search
Uniform

(b) TCAS

Fig. 2: The mutation score (FCT3) and number of variants
killed (TCAS) plotted against the size of test set. The lines in-
dicate the median score, and the shaded ribbon the interquartile
range.

profiles are similar to the analytically-derived all-paths and
all-c-uses profiles for the very small test sizes, they are
outperformed by the analytically-derived profiles and fail, even
at the largest test sizes, to kill all the mutants. This behaviour
is consistent with our hypothesis that the search-synthesised
profiles are degenerate: at small test sizes, the lack of diversity
caused by degeneracy is not apparent, but in larger tests,
there is insufficient diversity in the test inputs to kill the
mutants whose revealing conditions are loosely related to the
coverage conditions imposed by the adequacy criterion. Note
that the adoption of a weak criterion (all-branches) for the
search is not by itself an explanation for the observed results:
for FCT3’s source code, all-branches subsumes all-c-uses [1],
hence the search-synthesised all-branches profile would be
normally expected to outperform the analytical all-c-uses one.

For TCAS, the profiles synthesised by search have a
higher fault-revealing power than the uniform profile, and
the difference is again statistically significant. For this SUT,
however, the magnitude of the difference is small. Moreover,
for the ten search-synthesised sets, between 7 and 16 of the 41
variants remain unkilled even for test sets with extremely large
sizes of 1608. The relatively poor fault-revealing power of
the search-synthesised profile compared to the uniform profile,
despite a much higher minimum coverage probability, is again
consistent with our hypothesis of degenerate profiles.

In order to further illustrate potential degeneracy, let us
first consider the search-synthesised profiles for FCT3. As
discussed previously, a key requirement of this function is
to compare the current and previous measures (X1 and X4,
respectively) and this requirement corresponds to a branch
predicate in the code that tests their equality. In all of the
ten search-synthesised profiles, the branch requiring equality
was exercised often, but every time using the same value of
X1 and X4 (the specific value differed between profiles). This
lack of diversity is unlikely to reveal many faults in the code
guarded by this branch.

Degeneracy is less easy to demonstrate for TCAS, as the
function performs many numerical comparisons. If we focus on
the conditions comparing UpSep and DownSep to a selected
threshold, we observe that in three of the search-synthesised
profiles, 90% of the comparisons occur using the same value
of threshold. This includes the profile with lowest mutation
score, where the same threshold value is selected for more than
99% of the comparisons. We speculate that this degeneracy
may exist because the coverage of a condition of the form
X < Y is easier to control if one of the values is fixed. While
it is not possible to draw conclusions as to the precise impact
the threshold selection has on the fault revealing power, we
consider it an issue that some synthesised profiles do not show
diversity in the threshold value.

V. PROPOSED SOLUTIONS

In this section we propose two complementary solutions to
reduce the problem of degenerate profiles that show poor fault-
revealing power. In the initial work of Poulding et al. [6], there
was some evidence of degeneracy in the profiles synthesised
for SUTs other than the two considered in this paper, and
the authors proposed a solution whereby a simple diversity
metric is included in the fitness used by the search algorithm.



While this enhancement did improve the fault-revealing power,
the effect was small. Here we propose two new solutions:
operators that augment the grammar in order to better express
relationships between input variables that would otherwise
be difficult to represent; and a constraint on the production
weights in the grammar.

1) Grammar Operators: Our hypothesis of section III, sup-
ported by empirical evidence in section IV, was that one source
of degeneracy is the inability of the grammar to concisely
express some basic relationships between input arguments. To
address this problem, we propose to augment the grammar with
new operators that express these relationships. As a proof of
concept, we focus on relationships between numerical integer
arguments, which are exemplified by FCT3 and TCAS.

The proposed operators take the form of additional terminal
symbols in the grammar, and express relationships in terms
of a logical comparison between an input argument and an
expression built from other input arguments and constants,
such as X1 being equal to the value taken by X2+1; or X1
being less than a constant. In our current implementation, the
relationships are enforced in post-processing of the terminals
sampled from the grammar; we intend in future work to extend
the grammar with a notation for these relational operators and
arithmetic expressions to avoid the need for much of this post-
processing.

For example, we might augment the simple grammar of
section III with the rules indicated in bold to produce the
following:

S → X1 X2 X1Aug
X1 → [0,999]
X2 → [0,999]

X1Aug → ‘==X2+1’ | ‘<LIMIT’ | ‘none’ |

Here the production rules for variable X1Aug indicate which
relationship to apply. The terminal ‘==X2+1’ indicates that
the input argument X1 should be set equal to value already
sampled for argument X2, plus 1, in post-processing. The
terminal ‘<LIMIT’ indicates that X1 should taken a value
randomly sampled from a uniform distribution over the interval
[m,LIMIT) where m is the lower end of the valid range for
argument X1 and LIMIT is a constant used in the SUT. The
terminal ‘none’ indicates that no relationship is enforced:
the value emitted for the partitioned variable X1 in the original
part of the grammar should be used for the input argument X1
without change. Including this terminal in the augmentation
enables the search algorithm, should it be desirable, to avoid
the specified relationships by weighting this production rule
suitably high.

The augmented grammar now has the capacity to concisely
represent profiles arising from previous work on statistical
testing, notably the all-paths and all-c-uses profiles of FCT3.
For synthesised profiles, we do not propose that the search
determines the comparison operators and expressions automat-
ically. Our initial experimentation with this approach suggested
that it is unlikely to be practical: even when severely constrain-
ing the form of the expressions to explore, the search was
unable to provide useful results in a realistic amount of time.
Instead, we propose that the user suggests potentially useful
relationships under the form of additional production rules.
The search has then to find an appropriate weighting for these

rules in combination with the optimisation of the original part
of the grammar. To keep the additional effort required of the
user small, we consider relationships that could be identified
by a very straightforward review of the SUT. These could
be obvious relationships from functional requirements (e.g.,
for FCT3, the delivery of stable measures obviously implies
a comparison of the current and previous values) or from
explicit conditions in the source code (e.g., the comparison of
current and previous values is explicit in a branch condition).
In the latter case, the extraction of conditions could even be
automated using a lightweight static analysis of the code.

2) Constraints on Production Weights: This second pro-
posed solution is not directly related to the relationships
between input variables discussed above. Instead it is moti-
vated by the assumption that a profile will more diverse if
all production rules in the grammar have a relatively high
weight. In the current search algorithm, there is nothing to
prevent some production rules taking very low weights, and we
conjecture that the ease with which the search can synthesise
a grammar in which some rules are only very rarely applied
is, in part, responsible for types of degeneracy such as that
observed for the TCAS threshold value in section IV.

We therefore propose a constraint that, for a variable with
N production rules, the search may not reduce the weight of
any rule below r

N , where 0 ≤ r < 1 is a parameter to the
algorithm2.

VI. DEMONSTRATION OF PROPOSED SOLUTION

In this section, we show that the proposed solutions—
grammars augmented by new operators, and constraints on pro-
duction rule weights—can improve the fault-revealing power
of profiles synthesised for our two case study SUTs.

The augmentation of the original grammars of figure 1
is shown in figure 3. For FCT3, we add a single rule for
equality of X1 and X4. We claim that this relationship would
be identified by any straightforward review of either the
requirements or the code of FCT3. Other relationships could
be considered—and exist in the analytical profiles—but we
refrain from using our knowledge of these profiles. For TCAS,
we felt free to explore a higher number of relationships as
we had not previously analysed optimal profiles for this SUT.
From a quick review of the code, we extracted all explicit
conditions of the form X rel E, where X is an input argument,
rel is any comparison operator, and E is an expression
involving only constants and/or input arguments. Whatever
the comparison operator, we then systematically introduce a
decomposition into three cases: ‘==E’, ‘<E’ and ‘>E’. For
example, in figure 3b, the first rule accounts for the compar-
ison of input argument CurVerSep to constants MINSEP and
MAXALTDIFF; the last rule accounts for the comparisons of
input argument DownSep to the selected threshold (constant
array Positive RA Alt Thresh[] indexed by input AltLayVal)
as well as to argument UpSep.

The constraint on the minimum value of production
weights is set to 3

16N where N is the number of productions

2As a result of how the search algorithm is implemented, weights are already
constrained in the current search algorithm to a minimum of 1

256N
, but we

propose here to use a much higher values of r.



X1Aug → ‘none’ | ‘==X4’

(a) FCT3

CurVerSepAug → ‘none’ | ‘<MINSEP’ | ‘==MINSEP’
| ‘>MINSEP’ | ‘<MAXALTDIFF’
| ‘==MAXALTDIFF’ | ‘>MAXALTDIFF’

OwnTrkAltAug → ‘none’ | ‘<OthTrkAlt’
| ‘==OthTrkAlt’ | ‘>OthTrkAlt’

OwnAltRatAug → ‘none’ | ‘<OLEV’ | ‘==OLEV’ | ‘>OLEV’
UpSepAug → ‘none’

| ‘<Positive_RA_Alt_Thresh[AltLayVal]’
| ‘==Positive_RA_Alt_Thresh[AltLayVal]’
| ‘>Positive_RA_Alt_Thresh[AltLayVal]’

DownSepAug → ‘none’
| ‘<Positive_RA_Alt_Thresh[AltLayVal]’
| ‘==Positive_RA_Alt_Thresh[AltLayVal]’
| ‘>Positive_RA_Alt_Thresh[AltLayVal]’
| ‘<UpSep’ | ‘==UpSep’ | ‘>UpSep’

(b) TCAS

Fig. 3: The production rules that augment the grammars of the
case study SUTs. These rules are added to grammars shown
in figure 1, and the new variables added to the production rule
for starting variable S.

for the grammar variable. This value was found by preliminary
experimentation: higher values constrained the search too
greatly and prevented the synthesis of profiles that satisfied
the adequacy criterion.

A. Method

We repeat the method of section IV-C for the following
profiles:

1) Profiles synthesised by search using the original gram-
mars of figure 1, but with a constraint on production weights.

2) Profiles synthesised by search using the augmented
grammars.

3) Profiles synthesised by search using the augmented
grammar in combination with the constraint on production rule
weights. The above three steps therefore evaluate the impact
of the two proposed solutions separately and in conjunction.

4) A uniform augmented profile unmodified by search. This
is equivalent of the uniform profile used section IV-C, but using
the augmented grammars of figure 3 with all production rules
of a variable having the same weights. This profile provides
a check whether any change in revealing power is only due
to the user-supplied information, or there is added value in
applying search to the augmented grammar.

B. Results and Discussion

The results are summarised in figure 4 which shows the
median mutation scores at different test sizes for each type of
profile. The original search-synthesised profiles from figure 2,
and—for FCT3—the analytical all-paths profile, are included
for comparison. For clarity, we omit the original uniform
profile and modify the starting point on the y-axis to focus
on the higher mutation scores.

0.7

0.8

0.9

1.0

0 100 200 300 400
Test Size

M
ut

at
io

n 
Sc

or
e

Profile
Analytical All−Paths
Search (Augmented, Constrained)
Search (Augmented)
Uniform (Augmented)
Search (Original, Constrained)
Search (Original)

(a) FCT3

10/41

20/41

30/41

40/41

0 500 1000 1500
Test Size

Va
ria

nt
s 

Ki
lle

d

Profile
Search (Augmented, Constrained)
Search (Augmented)
Uniform (Augmented)
Search (Original, Constrained)
Search (Original)

(b) TCAS

Fig. 4: The mutation score (FCT3) and number of variants
killed (TCAS) plotted against the size of test set. The lines in-
dicate the median score, and the shaded ribbon the interquartile
range.



TABLE I: Median mutation scores at selected test sizes for
FCT3. The labels O, C, and A stand for Original, Constrained
and Augmented Search respectively; Uni. A is the Uniform
Augmented profile; All-P is the Analytical All-Paths profile.)
The rows labelled Sig. are p-values assessing the statistical
significance; bold values are significant at the 5% level.

Test Set Size
Profile 50 100 200 405
Search O 0.847 0.860 0.864 0.894
Search O,C 0.870 0.880 0.890 0.893
Sig. O vs. O,C 36.4% 18.6% 15.1% 57.0%
Uniform A 0.765 0.863 0.930 0.968
Search A 0.948 0.967 0.975 0.983
Search A,C 0.950 0.976 0.988 0.999
Sig. A vs. A,C 97.0% 27.3% 8.1% 7.1%
Analytic. All-Paths 0.952 0.988 1.000 1.000
Sig. A,C vs. O 0.1% 0.0% 0.0% 0.0%
Sig. A,C vs. Uni. A 0.0% 0.0% 0.0% 0.1%
Sig. A,C vs. All-P 91.2% 19.8% 2.4% 0.6%

TABLE II: Median number of variants killed, from a total of
41, at selected test sizes for TCAS.

Test Set Size
Profile 100 500 1000 1608
Search O 19.0 25.0 26.0 28.0
Search O,C 18.0 25.0 26.5 27.5
Sig. O vs. O,C 78.9% 39.3% 96.9% 78.8%
Uniform A 15.5 31.5 35.5 38.0
Search A 28.0 34.5 36.5 37.5
Search A,C 33.5 40.0 40.0 41.0
Sig. A vs. A,C 1.8% 0.3% 0.1% 0.0%
Sig. A,C vs. O 0.0% 0.0% 0.0% 0.0%
Sig. A,C vs. Uni. A 0.0% 0.1% 0.1% 0.0%

In addition, we show the median mutation scores at selected
test sizes in tables I and tables II. In these tables we also
indicate whether the differences in median scores between
profiles are significant at the 5% level, calculated using the
Wilcoxon-Mann-Whitney test to compare the ten samples of
each type of profile.

1) Augmented vs. Original Grammars: For both SUTs,
the profiles synthesised from the augmented grammars signif-
icantly outperform the profiles from the original grammars, at
all test sizes. Even the uniform augmented profile significantly
outperforms the original search-synthesised ones at large sizes.
This latter result is again evidence of the hypothesised lack of
diversity in original grammars and search algorithm. The orig-
inal search-synthesised profiles are optimised to quickly attain
structural coverage of the SUT, and hence catch more faults
at small test sizes. However, as the test size increases, there
might be insufficient data diversity to reveal the most hard-
to-find faults, the revealing conditions of which are loosely
connected to coverage conditions. On the contrary, the uniform
augmented profile needs larger test sizes to cover the structure
of the SUT, but has inherent diversity allowing it to reveal
more faults at these sizes.

Thus we may conclude, key relationships identified by
a very straightforward review of the SUTs are sufficient to
dramatically increase the efficacy of the test profiles, whether

one compares search-synthesised augmented profiles, or even
the uniform augmented profiles, to the original profiles.

2) Search-Synthesised Augmented vs. Uniform Augmented
Profiles: For both SUTs, the profiles synthesised from the
augmented grammar significantly outperform the uniform pro-
file from the same grammar. They do so at all test sizes if
one considers the search-synthesised profiles with constrained
weights. The synthesised profiles without constrained weights
are approached by the uniform augmented profiles, but only
at large test sizes.

There is thus an added value in the optimisation performed
by the search. The search-synthesised profiles reveal the faults
significantly more quickly and do not lose their power as the
test size increases. This may be an indication that the search
has retained diversity while optimising for coverage.

3) Constrained Weights: Adding constraints on production
rule weights does not make a statistical difference, whether
using the original or augmented grammars. The exception is for
the TCAS augmented grammar for which profiles synthesised
using weight constraints are significantly better than those
synthesised without. Constraining weights is thus less effective
than the augmentation of the grammars, but—at least for
these two SUTs—it is not detrimental, and for one SUT
improves the fault revealing-power. Moreover, if one considers
the search augmented, constrained profiles in tables I and II,
the combination of the two proposed solutions enables perfect
median mutation scores of 1.0 to be reached for both SUTs.

4) FCT3 All-Paths: For FCT3, we had the opportunity to
compare the search-synthesised profiles to analytically derived
ones. We focus here on the comparison of the search aug-
mented, constrained profiles to the analytical all-paths profile.
The results are statistically different only at the highest test
sizes, and at these sizes the actual difference in scores, i.e.
the effect size, is small: at size 405, 7 search-synthesised sets
obtain the same score of 1.0 as the all-paths ones, 2 sets have
a score of 0.999, and the remaining one has 0.994. These
results show profiles synthesised by automated search can be
competitive with analytical profiles.

We also note that the specific types of degeneracy observed
in section IV no longer occur to the same degree. For FCT3,
the branch requiring equality of X1 and X4 is now exercised
by between 8 and 27 different values in each of the ten sets
generated from the augmented and constrained grammar. For
TCAS, it is no longer the case that comparisons focus on a
single threshold value of vertical separation.

VII. RELATED WORK

Since the original work by Thévenod-Fosse and Waese-
lynck, alternative implementations of statistical testing have
been studied. Gouraud et al. proposed a method that first
selects a path in the control-flow graph using a uniform
generation of combinatorial structures, and then feeds the path
predicates to a randomised constraint solver to produce diverse
data [10], [11]. Petit and Gotlieb also investigated path-based
statistical testing using a probabilistic extension of constraint
programming [12]. In contrast, search-based statistical testing,
as investigated by Poulding et al. [6], [7], [9], does not
require the derivation and solution of path constraints, and thus



provides a more flexible method of satisfying any adequacy
criterion—whether path-based or not—provided that structural
or functional coverage measures can be used by the search
algorithm for fitness evaluation.

A number of authors utilise stochastic grammars to gen-
erate test data; for example, Maurer [13] uses a grammar to
test VLSI circuits in simulation. Most such techniques adjust
the production weights manually to meet testing objectives;
the algorithm of Beyene and Andrews [14], used to generate
HTML and XML inputs, is one of the few that optimises the
weights automatically. The algorithm of Poulding et al. used in
this paper also optimises the weights, but additionally modifies
the production rules themselves.

The augmented grammars in this paper were motivated by
the need to avoid degenerate profiles, but their use may also
facilitate scalability: it seems reasonable to expect that complex
cases cannot be handled unless some contextual knowledge is
injected into the search process. In this sense, the augmented
grammar approach is consistent with that adopted in the early
work on statistical testing: for cases that could not be solved
analytically, the user had to iteratively try some interesting
generation patterns and tune their probabilities [2]. Here,
the grammar-based framework provides convenient support to
suggest the patterns at a high level of abstraction, and the
tuning then proceeds automatically.

VIII. CONCLUSION

Using search to synthesise input profiles is a cost-effective
method of implementing statistical testing. However, we hy-
pothesised in this paper that the fault-revealing power of the
synthesised profiles may be poorer than those created by
analytical techniques. Our reasoning was the standard grammar
representation is unable to concisely express the relationships
between input arguments that are important to satisfying the
adequacy criterion, and so the search produced degenerate
profiles that demonstrated these relationships only over a small
part of the input domain. Two case studies provided evidence in
support of this hypothesis. They exemplified challenging cases
for relationships, and both demonstrated a lack of diversity in
generated input data together with a fault-revealing power that
was less than expected.

We proposed two enhancements to the search algorithm
in order to prevent such degeneracy. Firstly, the use of new
grammar operators that express relationships between input
arguments that a user might identify based on a straightforward
analysis of the SUT. Secondly, a constraint on the minimum
weight that can be assigned to production rules during the
search. Applying these enhancements to the case studies con-
firm that both enhancements, but particularly the SUT-specific
knowledge encapsulated in the new operators chosen by the
user, can significantly improve the fault-revealing power of
the generated test sets. As a result, the potential time and
cost advantages of search-based statistical testing may now
be better realised in practice.

As future work, we plan to review additional software in
order to identify the most common relationships between input
arguments that should be represented in the grammar. So far,
our work has addressed numerical inputs, but the grammar
extension need not be limited to them. Other relationships

could be expressed, such as regular expression matches for
strings or membership/inclusion relations for collections of
items. Our intention is to improve usability by extending
the grammar notation to facilitate these most often-used re-
lationships without the need for post-processing the terminals
sampled from the grammar. Facilities for post processing will
still be retained to accommodate the less common, usually
SUT-specific, relationships between input arguments, hence
providing a very flexible framework.

ACKNOWLEDGMENTS

This work is funded in part by EPSRC grant EP/J017515/1,
DAASE: Dynamic Adaptive Automated Software Engineering,
and in part by RTRA STAE, the French Space and Aeronautic
Sciences & Technologies foundation (IFSE project on formal
system engineering). The experiments used the SESAME mu-
tation environment [15] from Yves Crouzet at LAAS-CNRS.

REFERENCES

[1] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet, “An experimental
study on software structural testing: deterministic versus random input
generation,” in Twenty-First Int’l Symposium Fault-Tolerant Computing
(FTCS-21), Digest of Papers, 1991, pp. 410–417.

[2] P. Thévenod-Fosse and H. Waeselynck, “Statemate applied to statistical
testing,” in Proc. Int’l Symp. Software Testing and Analysis (ISSTA),
1993, pp. 99–109.

[3] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet, “Software statistical
testing,” in Predictably Dependable Computing Systems, B. Randell, J.-
C. Laprie, H. Kopetz, and B. Littlewood, Eds. Oxford: Springer Verlag,
ESPRIT Basic research Series, 1995, pp. 253–272.

[4] J. D. Musa, “Operational profiles in software-reliability engineering,”
IEEE Softw., vol. 10, no. 2, pp. 14–32, Mar. 1993.

[5] J. Whittaker and M. Thomason, “A Markov chain model for statistical
software testing,” IEEE Trans. Software Eng., vol. 20, no. 10, pp. 812–
824, 1994.

[6] S. Poulding and J. A. Clark, “Efficient software verification: Statistical
testing using automated search,” IEEE Trans. Software Eng., vol. 36,
no. 6, pp. 763–777, 2010.

[7] S. Poulding, R. Alexander, J. A. Clark, and M. J. Hadley, “The opti-
misation of stochastic grammars to enable cost-effective probabilistic
structural testing,” in Proc. Genetic and Evolutionary Computation
Conference (GECCO), 2013, pp. 1477–1484.

[8] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empir. Software Eng., vol. 10, no. 4, pp. 405–435, 2005.

[9] S. Poulding, J. A. Clark, and H. Waeselynck, “A principled evaluation
of the effect of directed mutation on search-based statistical testing,”
in Proc. 4th Int’l Workshop on Search-Based Software Testing (SBST
2011), 2011, pp. 184–193.

[10] S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre, “A new way
of automating statistical testing methods,” in Proc. IEEE Int’l Conf. on
Automated Software Eng., 2001.

[11] A. Denise, M.-C. Gaudel, and S.-D. Gouraud, “A generic method for
statistical testing,” in Proc. 15th Int’l Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2004, pp. 25–34.

[12] M. Petit and A. Gotlieb, “Uniform selection of feasible paths as a
stochastic constraint problem,” in Proc. Seventh Int’l Conference on
Quality Software (QSIC). IEEE, 2007, pp. 280–285.

[13] P. Maurer, “Generating test data with enhanced context-free grammars,”
IEEE Softw., vol. 7, no. 4, pp. 50–55, July 1990.

[14] M. Beyene and J. Andrews, “Generating string test data for code
coverage,” in Proc. IEEE Int’l Conf.. on Software Testing, Verification
and Validation (ICST). IEEE, 2012, pp. 270–279.

[15] Y. Crouzet, H. Waeselynck, B. Lussier, and D. Powell, “The SESAME
experience: from assembly languages to declarative models,” in Second
Workshop on Mutation Analysis, 2006.


