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A Probabilistic Framework for Comparing Syntactic and Semantic Grounding of Synonyms through Cross-Situational Learning

Natural human-robot interaction requires robots to link words to objects and actions through grounding. Although grounding has been investigated in previous studies, none of them considered grounding of synonyms. In this paper, we try to fill this gap by introducing a Bayesian learning model for grounding synonymous object and action names using crosssituational learning. Three different word representations are employed with the probabilistic model and evaluated according to their grounding performance. Words are grounded through geometric characteristics of objects and kinematic features of the robot joints during action execution. An interaction experiment between a human tutor and HSR robot is used to evaluate the proposed model. The results show that representing words by syntactic and/or semantic information achieves worse grounding results than representing them by unique numbers.

I. Introduction

In 2016, 67,000 service robots have been sold worldwide resulting in a slowly growing number of human-robot interactions in peoples everyday life. To enable robots to efficiently collaborate with human users in complex environments, they must be able to converse in natural language and understand the instructions of a user so that they execute the desired actions appropriately, such as pick up a drink or grab a box [START_REF] Kemp | Challenges for robot manipulation in human environments[END_REF][START_REF]World robotics 2017 -service robots[END_REF]. To achieve this goal, robots have to do "Symbol Grounding", which was first described in Harnad [START_REF] Harnad | The symbol grounding problem[END_REF], to relate words and sensory data that refer to the same object or action to each other. Although, previous studies investigated the use of cross-situational learning for grounding of objects [START_REF] Fontanari | Cross-situational learning of objectword mapping using neural modeling fields[END_REF][START_REF] Taniguchi | Crosssituational learning with bayesian generative models for multimodal category and word learning in robots[END_REF] as well as spatial concepts [START_REF] Aly | A Generative Framework for Multimodal Learning of Spatial Concepts and Object Categories: An Unsupervised Part-of-Speech Tagging and 3D Visual Perception Based Approach[END_REF][START_REF] Dawson | A generative probabilistic framework for learning spatial language[END_REF][START_REF] Tellex | Approaching the symbol grounding problem with probabilistic graphical models[END_REF], they ensured that one word appears several times together with the same perceptual feature vector to allow the creation of a corresponding mapping [START_REF] Fontanari | A cross-situational algorithm for learning a lexicon using neural modeling fields[END_REF]. However, natural language is ambiguous due to homonymy, i.e. one word refers to several objects or actions, and synonymy, i.e. one object or action can be referred to by several different words. The latter does not need to be actual synonyms, especially, considering that according to the "Principle of Contrast" no two words refer to the exact same meaning, i.e. there are no true synonyms [START_REF] Clark | The principle of contrast: A constraint on language acquisition[END_REF]. Consequently, words are only synonyms as references to an object or action in a particular set of situations. Examples are words that refer to the purpose or content of an object, instead of the object itself, such as: tea or coffee instead of cup.

In this paper, we take a step towards grounding synonyms through a developmentally plausible approach so as to infer the meaning of objects and actions. More specifically, we present an unsupervised learning model for sensory-motor coupling using a probabilistic learning model and a robot. In the model, words are represented in three different ways: as indices, Part-of-Speech tags, or syntactic-semantic vectors, thereby, allowing the investigation of the influence of syntactic and semantic information on grounding of synonyms. The rest of this paper is structured as follows: Section (II) provides an overview of the framework. The experimental design and the obtained results are described in Sections (III and IV). Finally, Section (V) concludes the paper.

II. System Overview

The used grounding system consists of five parts: (1) Neural Network Language Model (Word2Vec), which creates a vector space in which the distance between two vectors represents their syntactic and semantic similarity, (2) Partof-Speech (POS) tagging system, which grammatically tags words in an unsupervised manner (i.e., it assigns numerical tags to words without using any pre-tagged corpus or tagging dictionary), (3) 3D object segmentation system, which determines the geometric characteristics of objects by segmenting them into point clouds, (4) Action recording system, which creates action feature vectors by recording the state of several joints while the robot is executing actions, and (5) Multimodal probabilistic learning model, which grounds object and action names through visual perception and proprioception. The inputs and outputs of the individual parts are highlighted in Figure [START_REF] Aly | Towards understanding objectdirected actions: A generative model for grounding syntactic categories of speech through visual perception[END_REF], and described in detail in the following subsections.

A. Syntactic-Semantic Representation of Words

Neural Network Language Models (NNLM) represent words as high-dimensional real-valued vectors. Several different NNLM architectures are described in the literature [START_REF] Bengio | A neural probabilistic language model[END_REF][START_REF] Mikolov | Recurrent neural network based language model[END_REF][START_REF] Schwenk | Continuous space language models[END_REF]. One of the main advantages of these models is the level of generalization, which is not possible to attain with simple n-gram models [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF]. Word2Vec, a recently developed NNLM, uses a 2-layer neural network to create word embeddings, i.e. a vector space, for a given text corpus. Syntactically and semantically similar words are located close together [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF][START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF]. A corpus of 100MB of Wikipedia articles was used to train Word2Vec 1 . Several names used Fig. 1: Overview of the language grounding system. in this study are bigrams, i.e. they consist of two words, which would lead to two separate word vectors. Therefore, an underscore has been inserted between the two words to convert the original bigrams into unigrams as shown in Tables (I and II). Multi-Dimensional Scaling (MDS) has been used to transform the vector space generated by Word2Vec to an Euclidean space [START_REF] Cox | Multidimensional Scaling[END_REF]. Afterwards, the high vector dimensionality (100 dimensions) has been reduced through PCA to 7 dimensions so as to efficiently ground vectors in perception.

B. Unsupervised Part-of-Speech Tagging

Through Part-of-Speech (POS) tagging words in sentences are marked with grammatical attributes (e.g., noun, verb, adjective, etc.). The literature reveals a variety of supervised, semi-supervised, and unsupervised POS tagging approaches [START_REF] Brill | A simple rule-based part of speech tagger[END_REF][START_REF] Brill | Unsupervised learning of disambiguation rules for part-of-speech tagging[END_REF][START_REF] Toutanova | A bayesian LDA-based model for semi-supervised part-of-speech tagging[END_REF]. In this study, an unsupervised POS tagging approach is used that induces grammatical tags for word sequences through a first-order Bayesian Hidden Markov Model (HMM), i.e., without using any pre-tagged training corpus2 . The POS tagging model assigns a grammatical tag T = (t 1 , . . . , t n ) to each word in the sequence w = (ω 1 , . . . , ω n ). The first-order Bayesian HMM uses words as observations and tags as hidden states (Figure 2) [START_REF] Gao | A comparison of bayesian estimators for unsupervised hidden markov model pos taggers[END_REF].

The probability distribution of tag states for the word sequence w is defined as follows:

(t 1 , . . . , t n ) = n i =1 (t i | t i-1 ) (1) 
TABLE II: Overview of the used actions.

Name 1 Name 2 Description lift up raise The object will be lifted up. grab take The object will be grabbed, but not displaced. push poke The object will be pushed with the closed gripper i.e. it will not be grabbed. pull drag The object will be grabbed and moved towards the robot. move shift The object will be grabbed and moved. where the transition probability to the tag t i is conditioned on the tag t i-1 . This could encode the intuitive grammar that parts of speech might follow, like having a noun after a determiner. Emission distributions of numerical tags over words are defined through the probability (ω i | t i ) of the word ω i being conditioned on the tag t i . For each tag state the generative transition and emission parameters of the proposed HMM model (φ, θ) are characterized through multinomial distributions with Dirichlet priors (α φ , α θ ) (where K denotes the number of tag states):

t i t i-1 = t ∼ Mult (φ t ) , φ t α φ ∼ Dir (α φ ) ω i t i = t ∼ Mult (θ t ) , θ t α θ ∼ Dir (α θ ) (2) 
For an unannotated training corpus containing a set of m sentences W = {w 1 , . . . , w m }, the POS tagging model tries to induce the most likely numerical tag set T = {T 1 , . . . , T m } for each sentence in the corpus that maximizes the following expression:

(T, W) = (T ,w) ∈ (T ,W) (T , w | φ, θ) = (T ,w) ∈ (T ,W) n i=1 (t i | t i-1 , φ t ) (ω i | t i , θ t ) (3)
Inferring the latent tag variables uses the Gibbs sampling algorithm [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF][START_REF] Neubig | Simple, correct parallelization for blocked gibbs sampling[END_REF], which produces a set of samples from the posterior distribution (T |W), i.e., it loops over the possible tag assignments to words that could maximize Equation (3) expressed as follows, where -i denotes all samples except the i-th sample: 

(T i , T (i) T -i , W , T (-i) , w, α φ , α θ ) (4) 

C. 3D Object Features

In order to obtain object feature vectors a model based 3D point cloud segmentation approach is used due to its speed, reliability, and the fact that not much prior knowledge about the environment is required, such as object models and the number of regions to process [START_REF] Craye | Environment exploration for object-based visual saliency learning[END_REF][START_REF] Nguyen | 3D point cloud segmentation: A survey[END_REF]. The applied model detects the major plane in the environment 3 via the RANSAC algorithm [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF], and keeps track of it in consecutive frames. Planes that are orthogonal to the major plane and touch at least one border of the image are defined as wall planes, while points that are neither part of the major nor the wall planes are voxelized and clustered into blobs. Blobs of reasonable size, i.e. neither extremely small nor large, are treated as objects. Each point cloud of a segmented object is characterized through a Viewpoint Feature Histogram (VFH) [START_REF] Rusu | Fast 3D recognition and pose using the viewpoint feature histogram[END_REF] descriptor, which represents the geometry of the object taking into account the viewpoint and ignoring scale variance. Figure [START_REF] Bengio | A neural probabilistic language model[END_REF] shows an example of the obtained 3D point cloud information.

D. Action Features

Action feature vectors were formulated to represent the dynamic characteristics of actions during execution through teleoperation, which could afford variations in the obtained action feature vectors. Overall, five different characteristicseach representing a possible subaction -are recorded using the sensors of the robot [START_REF] Hsr | [END_REF]. The employed characteristics are:

1) The distance from the actual to the lowest torso position in meters.

2) The angle of the arm in radians.

3) The angle of the wrist in radians. 4) Binary state of the gripper.

(1: closing, 0: opening or no change) 5) Velocity of the base. They are then combined into the following vector

            a 1 1 a 2 1 a 3 1 a 4 1 a 5 1 . . . . . . . . . . . . . . . a 1 6 a 2 6 a 3 6 a 4 6 a 5 6            
where a 1 represents the difference of the distances from the lowest torso position in meters, while a 3 and a 4 represent the difference in the angles of the arm and wrist in radians, respectively. The differences are calculated by subtracting 3 The major plane in the conducted experiment is a tabletop. the value at the beginning of the subaction from the value at the end of the subaction. a 2 represents the mean velocity of the base (forward/backward), and a 5 represents the binary gripper state. Each action is characterized through six subactions. Consequently, if an action consists of less than six subactions, rows with zeros will be added at the end.

E. Probabilistic Learning Model

Figure ( 4) outlines the employed Bayesian learning model, which grounds object and action names through perception. A Bayesian network is a directed acyclic graph representing a set of probability distributions that can handle uncertainty represented by noisy perceptual data obtained from the environment [START_REF] Jordan | Graphical models[END_REF]. Three different versions of the Bayesian learning model are employed that represent words differently: (1) Word indices, i.e. each word is represented by a unique number, e.g. (coke, 1) and (lemonade, 2), (2) POS tags, i.e. each word is represented by the grammatical category it belongs to, (3) syntactic-semantic vectors, i.e. each word is represented by a vector in a syntactic-semantic vector space. When words are represented by indices or POS tags a categorical and Dirichlet distribution are used for w i and θ m,Z , respectively. If words are represented by syntacticsemantic vectors a Gaussian and Gaussian Inverse-Wishart distribution are used instead.

In the probabilistic learning model, words are represented by the observed state w i , which can be syntactic-semantic vectors, POS tags or indices (Sections II-A and II-B). The observed state g represents the geometric characteristics of objects expressed through the VFH descriptor (Section II-C). Actions are represented by the observed state a (Section II-D). Table (III) provides a summary of the definitions of the learning model parameters. The corresponding probability distributions, which characterize the different modalities in the graphical model, are defined in Equation [START_REF] Brill | Unsupervised learning of disambiguation rules for part-of-speech tagging[END_REF], where N denotes a multivariate Gaussian distribution, GIW denotes a Gaussian Inverse-Wishart distribution, Dir denotes a Dirichlet distribution, and Cat denotes a categorical distribution. The latent variables of the Bayesian learning model are inferred using the Gibbs sampling algorithm [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF]. 

                                                                   w i ∼ Cat(θ m i ,Z m i ) N(θ m i ,Z m i ) θ m,Z L 1 ∼ Dir(γ) , L 1 = (1, . . . , L) GIW(γ) φ a K 1 ∼ GIW(β a ) , K 1 = (1, . . . , K a ) φ g K 2 ∼ GIW(β g ) , K 2 = (1, . . . , K g ) π w ∼ Dir(λ) π g ∼ Dir(α g ) π a ∼ Dir(α a ) m i ∼ Cat(π v ) Z g ∼ Cat(π g ) Z a ∼ Cat(π a ) g ∼ N(φ Z g ) a ∼ N(φ Z a ) (5) 

III. Experimental Setup

A human tutor and HSR robot 4 are interacting in front of a tabletop. The robot does not have any preexisting knowledge about the world, and its syntactic-semantic knowledge is limited to the word vector space and the HMM-based POS tagging model, which were created prior to training. One of the five different objects {bottle, cup, box, car, and book} is placed on the table (Figures 3 and5). Each of the objects can be referred to by five different names as shown in Table (I). During the cross-situational learning phase [START_REF] Fontanari | Cross-situational learning of objectword mapping using neural modeling fields[END_REF], the robot performs five different actions on each object (Figure 5), where each action can be described by two different names as illustrated in Table (II). A total of 75 different sentences are given to the robot 4 The Human Support Robot from Toyota is used for the experiment. It has a cylindrical shaped body, which can move omnidirectional, and is equipped with one arm and a gripper to grasp objects. The robot has 11 degrees of freedom and is equipped with stereo and wide-angle cameras, a microphone, a display screen, and a variety of different sensors. [Official Toyota HSR Website] by the human tutor in order to allow it to ground object and action names using the recorded perceptual data. Each sentence consists of either two or three words and has one of the following two structures: "action the object" or "action object", respectively 5 , where action and object are substituted by the corresponding names (Tables I andII). The experimental procedure consists of three phases as described below:

1) Collection of syntactic, semantic, and perceptual information for the different situations. a) An object is placed on the table and the robot determines its geometric characteristics so as to calculate its feature vector. b) A sentence is given by the human tutor to the robot, and the corresponding index, POS tag or vector of each word is obtained (Sections II-A and II-B). c) The human tutor teleoperates the robot to execute the given action while several kinematic characteristics are recorded and converted into an action feature vector (Section II-D).

2) The probabilistic model is used to ground words using the geometric characteristics of objects and the action feature vectors (Section II-E). 3) For the test phase, a total of 50 sentences are used to evaluate the learning framework. In the investigated scenario, the sentences are assigned randomly to the training and test sets. Consequently, most words are used during the training and test phases, thereby, allowing the investigation whether syntactic and semantic information provides any benefit when most synonyms have already been encountered before in the cross-situational learning phase.

IV. Results and Discussion

In several previous studies, probabilistic models have been used for language grounding [START_REF] Aly | Towards understanding objectdirected actions: A generative model for grounding syntactic categories of speech through visual perception[END_REF][START_REF] Dawson | A generative probabilistic framework for learning spatial language[END_REF][START_REF] Tellex | Approaching the symbol grounding problem with probabilistic graphical models[END_REF]. However, to the best of our knowledge, none of them included synonyms and they differed in their approaches, experimental setups, or corpora from the current study, which makes the comparison of results between our study and these studies, among many others in the literature, difficult to attain. 20 fold crossvalidation has been used, i.e. 20 different training and test Three different word representations have been investigated (Section II-E). The obtained accuracies show that the Word Indices representation achieved the best grounding for all modalities (Table IV). For the POS Tags representation the model did not learn the Object modality, which might be caused by the different object positions in the two sentence structures, i.e. "action the object" or "action object". We argue that this performance is due to the relatively short sentences with less syntactic word categories, which did not allow the first-order Bayesian HMM to learn the Object modality with respect to the previous parts of speech. For example, in the first sentence structure, the object was preceded by an action and a determiner, while in the second sentence structure, it was directly preceded by an action. Unlike our previous studies [START_REF] Aly | Towards understanding objectdirected actions: A generative model for grounding syntactic categories of speech through visual perception[END_REF][START_REF] Aly | A Generative Framework for Multimodal Learning of Spatial Concepts and Object Categories: An Unsupervised Part-of-Speech Tagging and 3D Visual Perception Based Approach[END_REF], where the POS tagging model achieved better results using more informative sentences containing more syntactic word categories. When the Word Vectors representation was used the model did not learn the Others modality 6 because it only contains one word (the article the), which is not sufficient to create an independent cluster for the learning model. Figure [START_REF] Clark | The principle of contrast: A constraint on language acquisition[END_REF] shows the probability distributions of all word categories over the different modalities. For the Word Indices representation, all object categories, except the car names, have been correctly assigned to the Object modality, while the action names and the article the had the highest probability for the Action modality. In comparison, for the POS Tags representation the Action modality achieved the highest probability for all categories, while for the Word Vectors representation the Object modality achieved the highest probability for all categories, except the car names, which had the highest probability for the Action modality. The performance of the POS Tags was, generally, worse than the performance of the Word Indices due to the short sentences of the employed corpus that could not give the model enough syntactic information to learn, as explained earlier. Similarly, Word Vectors achieved less results with respect to Word Indices due to the clustering performance for the different categories based on the encoded syntacticsemantic information in vectors. Overall, this study shows that grounding of synonyms in perception, so as to allow the robot to collaborate efficiently with human users, does not necessarily benefit from the use of syntactic and/or semantic information based on the actual experimental setup of this study. However, in our future work, we will try to enhance the syntactic and semantic representation so as to achieve better results that could allow the robot to better infer the syntactic and semantic structures of a sentence.

V. Conclusions and Future Work

We investigated a multimodal framework for grounding synonymous object and action names through the robot visual perception and proprioception during its interaction with a human tutor. Our Bayesian learning model was set up to learn the meaning of object and action names using geometric characteristics of objects obtained from point cloud information and kinematic features of the robot joints recorded during action execution. Our proposed model allowed the grounding of synonyms, while also showing that representing words by simple indices, instead of syntactic tags or syntactic-semantic vectors, achieves the best grounding. In future work, we will obtain grounding results for more complex sentences containing more syntactic word categories. Furthermore, we will investigate the effect of different syntactic and semantic information as well as the combination of both on grounding.
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 2 Fig. 2: Graphical representation of the HMM-based Part-of-Speech tagging model.
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 3 Fig. 3: Examples of the used objects and the corresponding 3D point cloud information: (A) car, (B) bottle, and (C) cup.
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 4 Fig. 4: Graphical representation of the probabilistic model. Indices i, g and a denote the order of words, object geometric features and action features, respectively.

Fig. 5 :

 5 Fig. 5: Illustration of action lift up executed by the robot in a tabletop scene.
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 6 Fig. 6: Probability distributions of word categories over the different modalities for all word representations, where dark blue represents high probability.

TABLE I :

 I Overview of the objects with their corresponding names.

	Object			Names		
	Bottle	coca cola	soda	pepsi	coke	lemonade
	Cup	latte	milk	milk tea	coffee	espresso
	Box	candy	chocolate	confection	sweets	dark chocolate
	Car	audi	toyota	mercedes	bmw	honda
	Book	harry potter	the godfather	narnia	lord of the rings	the hobbit

TABLE III :

 III Definitions of learning parameters in the graphical model.

	Parameter	Definition
	λ	Hyperparameter of the distribution πw
	αg	Hyperparameter of the distribution πg
	αa	Hyperparameter of the distribution πa
	mi	Modality index of each word. (modality index ∈ {Action, Object, Others})
	Za	Index of action feature vector distributions
	Zg	Index of object geometry distributions
	vi	Word vectors
	g	Observed state representing geometric characteristics of object using VFH descriptor
	a	Observed state representing characteristics of action
	γ	Hyperparameter of the distribution θm,Z
	βa	Hyperparameter of the distribution φa
	βg	Hyperparameter of the distribution φg

TABLE IV :

 IV Accuracies for all modalities.

		Object	Action	Others
	Word Indices	76.71%	55.14%	41.76%
	POS Tags (Syntactic)	4.58%	49.56%	33.84%
	Word Vectors (Syntactic-Semantic)	66.19%	33.13%	0.00%
	sets have been created. 75 sentences have been used for
	training, while the remaining 50 sentences have been used
	for the test phase.			

O. Roesler and Y. Hayashi are with Biomedical Engineering, School of Biological Sciences, University of Reading, UK (email: oliver@roesler.co.uk, y.hayashi@reading.ac.uk).

A. Aly and T. Taniguchi are with the Emergent Systems Laboratory, Ritsumeikan University, Japan (email: amir.aly@em.ci.ritsumei.ac.jp, taniguchi@em.ci.ritsumei.ac.jp).

The corpus can be downloaded at http://mattmahoney.net/dc/text8.zip.

For example, the POS tagging system could assign these numerical tags to words of the sentence: (Push,7) (the,5) (Coffee,9).

The latter is only used for sentences with the book object. For example: "lift up harry potter" represents the structure "action object", while "lift up the lemonade" represents the structure "action the object".

In fact, it does not assign the Others modality to any word as shown in Figure[START_REF] Clark | The principle of contrast: A constraint on language acquisition[END_REF].