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A Generative Framework for Multimodal Learning of Spatial Concepts

and Object Categories: An Unsupervised Part-of-Speech Tagging and

3D Visual Perception Based Approach

Amir Aly1 and Akira Taniguchi2 and Tadahiro Taniguchi3

Abstract— Future human-robot collaboration employs lan-
guage in instructing a robot about specific tasks to perform
in its surroundings. This requires the robot to be able to
associate spatial knowledge with language to understand the
details of an assigned task so as to behave appropriately
in the context of interaction. In this paper, we propose a
probabilistic framework for learning the meaning of language
spatial concepts (spatial prepositions) and object categories
based on visual cues representing spatial layouts and geometric
characteristics of objects in a tabletop scene. The model
investigates unsupervised Part-of-Speech (POS) tagging through
a Hidden Markov Model (HMM) that infers the corresponding
hidden tags to words. Spatial configurations and geometric
characteristics of objects on the tabletop are described through
3D point cloud information that encodes spatial semantics and
categories of referents and landmarks in the environment. The
proposed model is evaluated through human user interaction
with Toyota HSR robot, where the obtained results show the
significant effect of the model in making the robot able to
successfully engage in interaction with the user in space.

I. INTRODUCTION

The growing omnipresent role of robots in the social life

of human users requires high level cognitive functions that

could allow them to efficiently work with humans in different

tasks. Developing the robot spatial intelligence to discover

its physical environment involves using multimodal sensory

information to semantically interpret and reason about spa-

tial relationships between world referents and landmarks

[19, 28]. This embodied spatial cognition bridges between

spatial knowledge and language so as to make the robot able

to understand and express spatial concepts through language

during interaction [20, 22].

Grounding language in perception has been long con-

sidered as a major challenge both in cognitive science

and artificial intelligence. Harnad [15] defined the “Symbol

Grounding” problem, which refers to assigning a meaning to

each meaningless symbol (e.g., a new word) in a structure

through sensorimotor interaction with the environment. An

early initiative to investigate the important effect of visual

cues on understanding spoken language was discussed in
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Tanenhaus et al. [37]. Similarly, Siskind [33] discussed a

primary logic-based model for grounding language (verbs

of motion) in perception. Roy [29] successfully developed

a model to visually ground words describing a task, where

the system learns the visual semantics of phrases through a

“show-and-tell” training procedure. A further step towards

making robots able to easily engage in conversations was

discussed in Roy et al. [30], where they proposed an archi-

tecture to provide perceptual and affordance representations

of grounded words. Another interesting study was discussed

in Matuszek et al. [21], where they proposed a probabilistic

joint learning model that uses a categorial grammar for

creating compositional meaning representations of language

and visually perceived objects in space.

Similarly, grounding spatial concepts has been extensively

studied in the related literature during the last years. An

early study about understanding spatial concepts and events

of objects in a movie was discussed in Regier [27], who de-

veloped a computational connectionist model to learn spatial

prepositions for static and dynamic objects, and to ground

semantics of language spatial terms. The connectionist learn-

ing model takes as input the trajectories between objects

for several movie frames and outputs labels representing

the corresponding spatial prepositions. Similarly, Cangelosi

et al. [4] integrated a computational connectionist model that

encodes the dynamics of a visual scene in a neural represen-

tation using an Elman network. Afterwards, the model uses a

dual-route vision-language network to estimate spatial terms

that best describe the perceived scene. These two previous

approaches; however, do not investigate spatial concepts and

relationships through a language-based analysis. On the other

hand, Tellex et al. [40] presented a probabilistic graphical

model for grounding spatial relationships of natural language

commands in an open environment. This model is trained

on images indicating spatial relationships, route directions,

and mobile manipulation, paired with command texts repre-

senting the required robot actions in space. Dawson et al.

[10] employed a probabilistic framework for understanding

utterances representing spatial relationships between static

referents and landmarks in a virtual space. The proposed

graphical model learns correspondences between sentences

and spatial relationships by observing an interacting human

describing a scene (and pointing to a location) repeatedly.

This model is trained over a limited range of utterances so

that the parser can not handle spatial relationships represent-

ing more than one landmark (e.g., BETWEEN object A and
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object B). This restricted relational vocabulary of the model

constitutes a limitation with complex spatial configurations.

Guadarrama et al. [14] presented an interesting system for

learning the meaning of spatial relationships through visual

perception of objects in space. This robot system integrates

several modules of different functionalities, such as: object

segmentation, action-template matching that compares an

utterance to manually constructed templates representing

specific actions of the robot, and syntactic supervised parsing

to segment the different parts of speech, like spatial prepo-

sitions and nouns representing objects from input texts.

Although these studies, among many others, discuss inter-

esting approaches for language grounding whether through

2D or 3D visual perception, they all lack the ability to

tag parts of speech in an unsupervised manner so as to

understand syntactic structure of speech - and hence to infer

the meaning of a sentence - in a developmentally plausible

approach. This could open the door to study unsupervised

grammar induction so as to make a robot understand syntac-

tic dependencies between words composing a verbal instruc-

tion, which is a future scope of this study [16]. Additionally,

this approach could allow for addressing another important

problem in cognitive science and artificial intelligence, which

is the “Symbol Emergence” problem [26, 39]. Investigating

this bottom-up development of symbols has attracted much

attention of researchers during the last decade [25], espe-

cially after Steels [35] argued that the “Symbol Grounding”

problem had been, conceptually, solved.

To the best of our knowledge, no similar study in the

related literature investigated the integration of unsupervised

Part-of-Speech (POS) tagging with grounding spatial con-

cepts and object categories in language through 3D visual

perception, which constituted our inspiration for this work.

The rest of the paper is structured as follows: Section (II)

presents a detailed description of the proposed framework,

Section (III) illustrates the experimental design, Section (IV)

provides a description of the experimental results, and finally,

Section (V) concludes the paper.

II. SYSTEM ARCHITECTURE

The proposed system in this paper is coordinated through

four different sub-systems: (1) Speech recognition system

(Google HTML5 API speech recognition toolkit), which

recognizes the instructions of the human tutor during inter-

action with the robot, (2) 3D Object segmentation system,

which segments objects and planes into point clouds so

as to determine their spatial relationships and geometric

characteristics, (3) Part-of-Speech (POS) tagging system,

which grammatically tags the recognized sentences in an

unsupervised manner (i.e., it assigns numerical tags to words

without using any pre-tagged corpus or tagging dictionary,

and the role of the system would be to ground the meaning

of these numerical tags through visual perception), and

finally (4) Multimodal graphical model for grounding spatial

concepts and object categories of sentences through visual

perception. The inputs and outputs of these sub-systems are

summarized as follows:

1) 3D object segmentation:

• Output: Centroid coordinates and geometric fea-

tures of objects.

2) Part-of-Speech (POS) tagging:

• Input: Sentence(s) (i.e., instructions of the human

tutor to the robot).

• Output: Numerical tags - representing syntactic

categories of words - to be grounded by the

graphical learning model.

3) Multimodal graphical learning model:

• Input: The outputs of points 1 & 2.

• Output: In case of a test sentence and a corre-

sponding spatial layout of objects, the model deter-

mines the spatial relationship between the referent

and the landmark (Section IV). The following sub-

sections shed light on each sub-system in detail.

A. Unsupervised Object Segmentation in 3D Point Cloud

Object discovery and segmentation in complex environ-

ment have been extensively studied in the computer vision

community [24]. Different approaches for 3D point cloud

segmentation have been investigated in the related literature.

Edge-based methods determine the boundaries of regions in

point cloud through detecting the points with a big change

in intensity [17]. Region-based methods focus on clustering

nearby points of similar properties using neighboring infor-

mation [18]. Graph-based methods search on point cloud

segmentation through graph representations of points [36].

Model-based methods efficiently create point clusters based

on geometric criteria so that points with similar mathematical

representations would create together one segment (e.g.,

points representing a plane) [32]. In this study, a model-

based method is employed for segmenting objects lying in a

plane into separate point clouds in an unsupervised manner

[7, 8]. Unlike the other highlighted methods, this model is

fast, reliable, and does not require much prior knowledge

about the environment, such as object models and the number

of regions to process, as with the region-based methods.

The integrated visual perception methodology to the pro-

posed model detects the major plane in the environment

(i.e., floor or tabletop) using the RANSAC algorithm [11],

and tracks it through consecutive frames. Having calculated

the representative equation of the major horizontal plane,

orthogonal planes to the detected major plane touching at

least one image border are considered as wall planes. After

filtering out the corresponding points to floor (or tabletop)

and wall planes in the processed point cloud, the remaining

points are voxelized and clustered into blobs representing

object candidates. Finally, the algorithm excludes very small

and large blobs, in addition to blobs with very close centroids

to a detected wall or at a border of the depth image. Figure

(1) shows the segmentation results of objects lying in a

tabletop in different spatial configurations.

In this research study, both objects and the major tabletop

plane they are lying in are segmented into point clouds,

where the centroids represent their (x,y,z) coordinates with

377



(a) Spatial concepts: ON and BEHIND

(b) Spatial concepts: BESIDE, ON, and BETWEEN

Fig. 1: Different spatial concepts of objects in a tabletop scene expressed through 3D point cloud information

reference to the robot camera. Each point cloud is char-

acterized through the Viewpoint Feature Histogram (VFH)

descriptor [31] that encodes both the geometry and viewpoint

of an object while being invariant to pose and scale. Having

known the locations of objects on the tabletop, the robot

employs a graphical learning model (Section II-C) in order

to ground the meaning of spatial concepts and object cate-

gories through cross-situational learning [34], as indicated in

Section (III).

B. Unsupervised Part-of-Speech Tagging

Part-of-Speech (POS) tagging is the process of marking

words in sentences with grammatical attributes (e.g., noun,

verb, preposition, adjective, etc.). The related literature re-

veals different supervised, semi-supervised, and unsuper-

vised approaches towards syntactically tagging words. Super-

vised tagging methods employ pre-tagged training corpora in

order to create tagging dictionaries indicating possible tags

of words and word-tag frequencies, which are used to tag

test words through appropriate models, such as the rule-

based tagging model of Brill [2] and the stochastic tagging

models of Church [6] and Cutting et al. [9]. However, these

models would not be, probably, able to tag new words as

this process requires using complete dictionaries of language,

which is a difficult condition to fulfill. Semi-supervised

tagging methods try to overcome this obstacle, partially, as

they do not require large and high quality pre-tagged corpora,

where the statistical models can estimate appropriate tags for

new word sequences [41]. On the other hand, unsupervised

tagging methods do not need any training corpus, where

they induce grammatical tags for word sequences through

rule-based models [3] or statistical models [5]. Consequently,

integrating this unsupervised approach for tagging word se-

quences (i.e., without using any pre-tagged training corpus1)

to our model would be an efficient step towards creating

a developmentally plausible system for grounding spatial

concepts and object categories of speech during human-robot

interaction in space.

A Part-of-Speech (POS) tagging model assigns a gram-

matical tag T = (t1, . . . , tn) to each word in the sequence

w = (ω1, . . . ,ωn). The first-order Bayesian Hidden Markov

Model (HMM) employs words as observations and tags as

hidden states (Figure 2) [12]. The probability distribution of

tag states for the word sequence w is defined as follows:

�(t1, . . . , tn) =
n
∏

i=1

�(ti | ti−1) (1)

where the transition probability to the tag ti is conditioned

on the tag ti−1. This could encode the intuitive grammar that

parts of speech might follow, like having a noun after a deter-

miner. Emission distributions of numerical tags over words

are defined through the probability �(ωi | ti) of the word ωi

being conditioned on the tag ti. The generative transition

and emission parameters of the proposed HMM model (φ,θ)
for each tag state are characterized through multinomial

distributions with Dirichlet priors (αφ,αθ) (where K denotes

the number of tag states):

ti
∣

∣

∣ ti−1 = t ∼ Mult (φt) , φt

∣

∣

∣αφ ∼ Dir (αφ)

ωi

∣

∣

∣ ti = t ∼ Mult (θt) , θt
∣

∣

∣αθ ∼ Dir (αθ)
(2)

1 For example, the POS tagging system could assign these numerical
tags to words of the sentence: (Push,2) (the,7) (Ball,4) (Beside,9) (the,7)
(Cup,4) so that the framework grounds the meaning of these tags through
visual perception.
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Fig. 2: Graphical representation of the Hidden Markov Part-

of-Speech tagging model

For an unannotated training corpus containing a set of m

sentences W = {w1, . . . ,wm}, the POS tagging model tries to

induce the most likely numerical tag set T = {T1, . . . ,Tm} for

each sentence in the corpus that maximizes the following

expression:

�(T,W) =
∏

(T ,w)∈ (T ,W)

(

�(T ,w | φ,θ)
)

=

∏

(T ,w)∈ (T ,W)

( n
∏

i=1

�(ti | ti−1,φt)�(ωi | ti, θt)
)

(3)

Inferring the latent tag variables employs the Gibbs sam-

pling algorithm [13, 23], which produces a set of samples

from the posterior distribution �(T |W) (i.e., it loops over

the possible tag assignments to words that could maximize

Equation 3) expressed as follows (where “-i” denotes all

samples except the i-th sample):

�(Ti , T
(i)
∣

∣

∣ T−i ,W , T (−i) ,w, αφ , αθ) (4)

C. Multimodal Graphical Learning Model

Grounding spatial concepts and object categories through

visual perception employs the probabilistic learning model

illustrated in Figure (3). This model, basically, investigates

dyadic spatial relationships between referents and landmarks

(i.e., between two objects or between an object and the

tabletop). In this study, we focus on four prepositions

that encode dyadic spatial relationships: {BESIDE, IN, ON,

and BEHIND} (referent, landmark), in addition to one

preposition that encodes a complex spatial relationship:

{BETWEEN} (landmark, referent, landmark) (i.e., a triadic

layout, which might be considered as a composite of dyadic

spatial relationships). We investigate the ability of the model

to learn complex spatial relationships that employ more

than one landmark after being divided into sub-groups of

corresponding dyadic relationships in order to reduce the

complexity of the probabilistic learning model.

The employed Gaussian mixture learning model in this

study - inspired by the model of Taniguchi et al. [38] - is

illustrated in Figure (3). The observed state ωi represents

each token in the word sequence w = (ω1, . . . ,ωn), and

Fig. 3: Graphical representation of the learning model. The

index “i” denotes the order of words and their corresponding

syntactic tags, the index “d” denotes a spatial dyadic layout

between a referent and a landmark, and the index “f ” denotes

object geometric features.

the observed state Z
t
i

represents the corresponding tags to

words (Section II-B). The observed state dc represents a

dyadic spatial configuration of a referent and a landmark

expressed through their centroid coordinates
(

i.e., the state dc

= f (PAx,y,z , PBx,y,z ), where A and B denote the referent and the

landmark
)

(Section II-A). The observed state fc represents

the geometric characteristics of observed objects expressed

through the point-cloud-based VFH descriptor (each training

sentence describes a spatial layout involving O objects)

(Section II-A). For a complex spatial relationship with more

than one landmark (e.g., a triadic layout), the possible dyadic

relationships between objects could be expressed as follows:

Observed Objects O× (O−1) (Figure 3). The definitions of

the learning model parameters are summarized in Table (I)2.

The probabilistic distributions that characterize the different

channels of the model are defined as follows:
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
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

θm,z
L1
∼ Dir (γ) , L1 = (1, . . . ,L)

φdK1
∼ GIW (βd) , K1 = (1, . . . ,Kd)

φ fK2
∼ GIW (β f ) , K2 = (1, . . . ,Kf)

πtK3
∼ Dir (λ) , K3 = (1, . . . ,K)

πd ∼ Dir (αd)

π f ∼ Dir (α f )

ci ∼ Cat (δ)

mi ∼ Cat (πZt
i
)

ωi ∼ Cat (θm,z)

Z
d
c ∼ Cat (πd)

Z
f
c ∼ Cat (π f )

dc ∼ Gauss (φ
Z

d
c
)

fc ∼ Gauss (φ
Z

f
c
)

(5)

The inference of the latent variables in the learning model

employs the Gibbs sampling algorithm [13] (Table II), which

repeatedly creates samples from the posterior distributions of

the model parameters indicated as follows:

2 The mathematical definitions of the probabilistic distributions of the
proposed learning model in this study are illustrated, in detail, in Bishop
[1].
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φd ∼ � (φd

∣

∣

∣ dc , βd)

φ f ∼ � (φ f

∣

∣

∣ fc , β f )

πt ∼ � (πt

∣

∣

∣m , Zt , λ)

πd ∼ � (πd

∣

∣

∣Z
d
c , αd)

π f ∼ � (π f

∣

∣

∣Z
f
c , α f )

Z
d
c ∼ � (Zd

c

∣

∣

∣ dc , πd , w)

Z
f
c ∼ � (Z

f
c

∣

∣

∣ fc , π f , w)

θm,z ∼ � (θm,z
∣

∣

∣W , m , c , Zd
c , Z

f
c , γ)

ci ∼ � (ci

∣

∣

∣ωi , θm,z , mi , Z
d
c , Z

f
c , δ)

mi ∼ � (mi

∣

∣

∣ωi , Z
t
i
, θm,z , ci , Z

d
c , Z

f
c , πt)

(6)

Having calculated the latent variables, the model learns

the correspondences between syntactic categories of words

and visual cues so as to successfully collaborate with the

human tutor in different spatial tasks.

TABLE I: Definitions of the learning model parameters in

the different channels: word sequence, spatial dyadic layout,

and object geometric features

Parameter Definition

λ Hyperparameter of the Dirichlet distribution πt

ci Index of spatial relationship (Object A →← Object B) of each word

mi Modality index ∈ {Preposition, Object, Others} of each word

θm,z Word distribution over modalities

L Number of word distribution categories over modalities = Kd + K f + 1

γ Hyperparameter of the Dirichlet distribution θm,z
αd Hyperparameter of the Dirichlet distribution πd

βd Hyperparameter of the Gaussian Inverse Wishart distribution φd

Kd Number of categories in the spatial layout modality

α f Hyperparameter of the Dirichlet distribution π f

β f Hyperparameter of the Gaussian Inverse Wishart distribution φ f

K f Number of categories in the object features modality

Z
d
c Index of spatial layout distributions

Z
f
c Index of object features distributions

TABLE II: Inference of the latent variables of the graphical

learning model

III. EXPERIMENTAL SETUP

In this section, we introduce the experimental design and

the scenario of interaction between a human tutor and Toyota

HSR robot (Figure 4)3 in front of a table (the major land-

3The Human Support Robot (HSR) is developed by Toyota for assisting
people in their daily life activities. It has a full-motion lightweight body
with a total of 11 degrees of freedom. The robot is equipped with stereo,
Asus Xtion, and wide-angle cameras, a display screen, in addition to an
array of sensors including a force-torque sensor, a laser range sensor, and
an IMU sensor. The robot has one arm with a gripper that allows it to grasp
objects at different heights efficiently [Toyota HSR Robot Website].

Fig. 4: The robot in front of a table at home environment

and 5 objects: TOY, BALL, BOX, BOTTLE, and CUP

mark), where objects in different spatial configurations lie in.

We used 5 objects of different categories (i.e., TOY, BALL,

BOX4 , BOTTLE, and CUP) as referents and landmarks, and 5

prepositions (i.e., BESIDE, BEHIND, IN, ON, and BETWEEN)

to indicate the referent-landmark spatial relationships (Figure

1). Over and above, the robot performs 5 actions on the

objects within a human-robot interaction context: {TOUCH,

HOLD, PUSH, RAISE, and THROW} (robot, object)5.

During the cross-situational learning phase [34], the hu-

man tutor uses a total of 60 sentences in order to teach

the robot different spatial configurations of objects, such as:

“RAISE the BOTTLE ON the TABLE” and “HOLD the BALL

BETWEEN the TOY and the CUP”. The experimental scenario

is described as follows:

• The human tutor trains the robot on randomly-ordered

spatial layouts of different objects lying in a tabletop

through visual cues and descriptive sentences.

• For each observed scene in the training phase, the robot

uses the visual perception system in order to segment

objects into point clouds so as to determine their geo-

metric characteristics, and to define the relative spatial

relationships between the centroid of each object’s point

cloud to those of the other objects and the tabletop

(Section II-A).

• For each descriptive sentence, the robot uses the POS

tagging system to define numerical tags representing

syntactic categories of words (e.g., “(Push,2) (the,7)

(Ball,4) (Beside,9) (the,7) (Cup,4)”) (Section II-B).

• The robot employs the learning model to ground the

numerical tags of spatial concepts and object categories

(Section II-C).

• During the test phase, the human tutor uses a total of

30 sentences in order to evaluate the robustness of the

learning phase. At this phase, the robot performs the

5 programed actions on objects - mentioned earlier5 -

4The object “BOX” is used only as a landmark in this study.
5In the context of this study, these action verbs were directly modeled and

programmed on the robot for generating object-directed behaviors. The robot
used the calculated distances to objects through point cloud information
(Section II-A) to control its joins and the end-effector so as to perform
predefined behaviors representing the indicated action verbs. In the future,
we would consider making the robot able to learn - in the training phase
- body behavior of the human tutor while doing different actions so as to
generate adaptive behaviors to the context of interaction on its own.
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TABLE III: Modality estimation results of the different parts

of speech during the test phase

Modality Index ( /Sentences )

Correct (Parts of Speech)
Wrong (Parts of Speech)

Action Verbs And Others (Box, the)

79.7% 14.5% 4.3% 1.5%

TABLE IV: Modality estimation results of spatial preposition

and object-referring words in the different sentences during

the test phase

Preposition
Modality Index ( /Sentences )

Object
Modality Index ( /Sentences )

Correct Wrong Correct Wrong

BESIDE 6 0 TOY 15 0

BEHIND 6 0 BALL 8 0

IN 6 0 BOX 13 2

ON 6 0 BOTTLE 15 0

BETWEEN 6 0 CUP 10 0

based on its learning experience of spatial concepts and

object categories.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The system was trained offline on a total of 60 sentences

describing different spatial configurations of referents and

landmarks in space, and was tested on other 30 sentences.

The framework was evaluated on its ability to determine the

modality of each word in a test sentence to be: Preposition

(dyadic layout), Object (point-cloud-based object geometric

features), or Others, and to determine the referent and the

landmark(s) of the sentence so as to define the direction of

the spatial relationship (i.e., Object A →← Object B) that the

robot needs to understand in order to be able to perform a

spatial task.

Estimating the modality of each word in a sentence during

the test phase showed a reasonable performance of the

probabilistic learning model. Tables (III and IV) reveal that

the modalities of the majority of parts of speech of the test

corpus were correctly estimated. Action verbs were totally

considered by the framework to be objects, which is a

logical result considering that the graphical model did not

contain a learning modality for the human body behavior.

This interesting rational result shows that the learning model

assigned action verbs the same modality index of objects

upon which they were performed, despite the fact that

they could have been considered - even partially - to be

dyadic-layout-referring words (i.e., prepositions) according

to the word probability distribution illustrated in Figure (5),

however the model estimated the most relevant modality.

A similar tendency was shown with the coordination word

“AND”, which was totally considered to be a dyadic-layout-

referring word (i.e., preposition) (Table III and Figure 5)

instead of belonging to the modality “Others”. This last

interesting finding represents an important insight towards

understanding complex spatial relationships that employ

more than one landmark as in the case of the preposition

BETWEEN (landmark, referent, landmark). In this case,

the preposition “BETWEEN” was correctly considered to be

a dyadic-layout-referring word (similarly to all the other

prepositions, as indicated in Table IV and Figure 5), in

addition to the coordination word “AND” that encodes a

relationship between the two landmarks. Consequently, this

model was able to successfully perceive the number of dyadic

spatial relationships composing a complex relationship with

more than one landmark.

Fig. 6: Correct referent-landmark spatial relationships for the

different prepositions

On the other hand, defining the referent and the land-

mark(s) in sentences was successful in dyadic spatial rela-

tionships, while being the contrary in complex relationships

as indicated in Figure (6). The figure shows that in case of

the preposition “BETWEEN”, the framework was not able

to correctly perceive the first and second referent-landmark

relationships, unlike the cases of the other prepositions

(Figure 7). This means that this framework can perceive

the number of dyadic relationships within complex layouts,

but still needs development in order to be able to perceive

the correct referent-landmark arrangements within complex

spatial configurations. This point constitutes a follow up of

this current research study so as to make the robot able to

efficiently collaborate with human users in space.

(a) The robot determines the referent and the landmark in the sentence

(b) The robot successfully raises the bottle

Fig. 7: The robot successfully performs the required action

on the BOTTLE located beside the CUP based on point cloud

information
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Fig. 5: Probability distribution of words over the different modalities (the dark blue color represents high probability

distribution)

V. CONCLUSION AND FUTURE WORK

This paper discusses a multimodal framework for ground-

ing spatial concepts and object categories of language

through visual perception during interaction between a hu-

man tutor and Toyota HSR robot. The illustrated system

learns, in an unsupervised manner, the meaning of the

numerical syntactic tags of parts of speech based on point

cloud information that encodes dyadic spatial relationships

between referents and landmarks, in addition to their geo-

metric characteristics.

The proposed model succeeded in determining referent

and landmark-referring words in most of the sentences that

describe dyadic spatial layouts so that the robot was able

to perform the required actions on objects based on their

point cloud information (Figure 7). On the other hand, the

system was not successful in understanding triadic spa-

tial relationships between one referent and two landmarks

through analyzing their corresponding in-between dyadic

relationships. However, the framework raised an interesting

insight on grounding complex spatial relationships, where

the probability distribution of the coordination word “AND”

was considered to be a dyadic-layout-referring word. This

means that the system is able to understand that a complex

spatial relationship expressed through the preposition BE-

TWEEN (landmark, referent, landmark) encodes two spatial

relationships. However, the proposed model needs further de-

velopment in order to appropriately define referent-landmark

arrangements in complex spatial layouts.

To meet this target, and for our future work, we would

extend the proposed learning model in this study in order to

be able to successfully learn referent-landmark relationships

in complex spatial configurations. Besides, we are consider-

ing adding other modalities to the learning model in order to

ground the meaning of color-referring words through visual

perception, and to learn the dynamics of human actions (i.e.,

associated body movements to action verbs) based on visual

cues so as to manipulate objects in space autonomously and

adaptively to the context of interaction5.
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