Amir Aly 
email: amir.aly@em.ci.ritsumei.ac.jp
  
Tadahiro Taniguchi 
email: taniguchi@em.ci.ritsumei.ac.jp
  
Daichi Mochihashi 
email: daichi@ism.ac.jp
  
  
  
  
A Bayesian Approach to Phrase

HAL is

INTRODUCTION

Different studies in the related literature of artificial intelligence discussed probabilistic frameworks for understanding the underlying syntactic structure of language. In cognitive robotics, [16, [START_REF] Church | A stochastic parts program and noun phrase parser for unrestricted text[END_REF][START_REF] Aly | A generative framework for multimodal learning of spatial concepts and object categories: An unsupervised part-of-speech tagging and 3D visual perception based approach[END_REF][START_REF] Aly | Towards understanding object-directed actions: A generative model for grounding syntactic categories of speech through visual perception[END_REF]18] proposed computational models for grounding nouns, verbs, adjectives, and prepositions encoding spatial relationships between objects. However, these studies, inter alia, have not discovered grammar understanding at the phrase level. In computational linguistics, [4,11] proposed models for inducing Combinatory Categorial Grammar (CCG); however, they used annotated databases (i.e., each word has a corresponding syntactic tag as a noun, verb, etc.) for grammar induction. In this study, we build on the model of Bisk and Hockenmaier [4] for categorial grammar induction, and propose an extended probabilistic Bayesian framework for unsupervised syntactic grounding of parts of speech 1and grammar induction (based on the grounded parts of speech and without using any annotated databases) within a cross-situational learning context between a human user and a robot [22,3]. This paves the way towards grounding phrases and their induced CCG complex categories so as to allow a robot to understand phrases (not only words) composing sentences, which constitutes a direction of future research.

RELATED WORK

The "Symbol Grounding" problem was defined by Harnad [START_REF] Bisk | An HDP model for inducing combinatory categorial grammars[END_REF], which refers to assigning a meaning to a meaningless symbol through interaction with the environment. Tanenhaus et al. [START_REF] Tanenhaus | Integration of visual and linguistic information in spoken language comprehension[END_REF] discussed the effect of visual cues on language understanding. Tellex et al. [START_REF] Church | A stochastic parts program and noun phrase parser for unrestricted text[END_REF] and Dawson et al. [7] proposed probabilistic frameworks for grounding verbs and prepositions in utterances that encode spatial relationships between referents and landmarks. Marocco et al. [16] proposed a framework for grounding action words through sensorimotor interaction with the environment. These interesting approaches, inter alia, have not discussed inferring grammatical structure of phrases, which constituted our motivation for the proposed study.

Different approaches to inferring syntactic structure of language have been investigated in the literature of computational linguistics. Church [6], Brill [START_REF] Brill | A simple rule-based part of speech tagger[END_REF], and Goldwater and Griffiths [13], inter alia, discussed different approaches -supervised, semi-supervised, and unsupervised -for tagging parts of speech with syntactic attributes. Klein and Manning [15] proposed a generative model for learning constituency and dependency in language for unsupervised grammar induction using induced Part-of-Speech (POS) tags, but they can not detect non-local structures efficiently. Bisk and Hockenmaier [4], Garrette et al. [11] discussed probabilistic approaches to Combinatory Categorial Grammar (CCG)2 induction; however, these approaches disregarded learning lexical information of words and used annotated corpora.

In this paper, we bridge between cognitive robotics and computational linguistics, and propose a generative framework for grounding lexical information of words through visual perception so as to infer the combinatorial syntactic structure of phrases within a situated human-robot interaction context. The rest of the paper is organized as follows: Section (3) describes the system architecture, Section (4) illustrates the visual perceptual system, Sections (5 and 6) describe the lexical tagging of words and the proposed grounding model, Section (7) presents the experimental setup, Section (8) introduces the CCG syntactic formalism of language, Section (9) discusses the obtained results, and Section (10) concludes the paper.

SYSTEM ARCHITECTURE

The proposed framework in this study is coordinated through: (1) System for visual perception: which outputs position coordinates of the human arm joints while manipulating objects, in addition to position coordinates of objects on a tabletop and their color and geometrical characteristics (Section 4), (2) Systems for syntactic structural representation of language: which represents language through syntactic tags and combinatorial categories (Sections 5 and 8), and (3) Probabilistic generative model: which grounds words and their syntactic tags through visual perception (Section 6). The following sections in the paper discuss the proposed approach in detail.

VISUAL PERCEPTUAL INFORMATION

Skeleton Tracking: Representation of Action Verbs

The left-to-right HMM-based gesture model uses the tracked position coordinates3 of the human right-arm joints (Figure 1) (converted to the local coordinate system of the referent) as observations [START_REF] Aly | Towards understanding object-directed actions: A generative model for grounding syntactic categories of speech through visual perception[END_REF]. Five HMM models are used to represent five action verbs (Section 7). Each HMM model is trained, during the cross-situational learning phase [22], on position coordinates of the arm joints while performing an action in different ways using the Expectation-Maximization (EM) algorithm [8]. The probabilities of evaluation of the test joint coordinates, through the trained HMM models, are used to represent actions as observations in the probabilistic grounding model (Section 6).

Object Segmentation into Point Cloud: Representation of Spatial Concepts

The unsupervised object segmentation model in the framework segments objects lying on a tabletop into distinct 3D point clouds with centroids representing their coordinates in respect of the robot camera (Figure 2)4 . These coordinates allow the learning model to understand spatial concepts and relationships between objects. Each point cloud is characterized using its RGB color histogram 

PART-OF-SPEECH TAGGING: UNGROUNDED TAGS OF WORDS

The unsupervised Part-of-Speech (POS) tagging (tags induction) model assigns the numerical syntactic tag T = (t 1 , . . . , t n ) to the word sequence w = (ω 1 , . . . , ω n ). The first-order Hidden Markov Model (HMM) employs tags as hidden states and words as observations [10]. The probability distribution (transition) of the hidden tag states of the word sequence w is expressed as follows:

(t 1 , . . . , t n ) = n ∏︁ i =1 (t i | t i-1 ) (1) 
The emission distribution of tags over words is expressed through the probability (ω i | t i ) of word ω i conditioned on tag t i . The emission and transition parameters (θ, φ) are characterized using multinomial distributions with Dirichlet priors (α θ , α φ ) (K stands for the number of tag states):

ω i ⃒ ⃒ ⃒ t i = t ∼ Mult (θ t ) , θ t ⃒ ⃒ ⃒ α θ ∼ Dir (α θ ) t i ⃒ ⃒ ⃒ t i-1 = t ∼ Mult (φ t ) , φ t ⃒ ⃒ ⃒ α φ ∼ Dir (α φ ) (2) 
Having an unannotated corpus with a set of m sentences W = {w 1 , . . . , w m }, the model assigns the most likely tag set T = {T 1 , . . . , T m } -inferred using the Gibbs sampling algorithm [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF] -to every sentence in the untagged corpus so as to maximize the following expression:

(T, W) = ∏︁ (T ,w) ∈ (T ,W) (︂ (T, w | φ, θ) )︂ = ∏︁ (T ,w) ∈ (T ,W) (︂ n ∏︁ i=1 (t i | t i-1 , φ t ) (ω i | t i , θ t ) )︂ (3) 
The calculated numerical tags by the HMM-based tagging model are used as observations in the probabilistic generative model (Section 6) in order to ground words, and tags, through visual perception.

WORD GROUNDING: A PROBABILISTIC GENERATIVE MODEL

The generative Bayesian model used for grounding words through visual perception with six observed states ω i , Z t i , a p , c p , s p , and g p is illustrated in Figure (3). The parameters of the model are defined in 

Index of object geometry categories

Table [START_REF] Aly | Towards understanding object-directed actions: A generative model for grounding syntactic categories of speech through visual perception[END_REF]. The state ω i stands for each word in the sequence w = (ω 1 , . . . , ω n ), and the state Z t i stands for syntactic categories of words (Section 5). The state g p stands for the geometrical characteristics of O observed objects represented through the VFH descriptor (Section 4.2). The state s p stands for a spatial layout between a referent and a landmark represented through their centroid coordinates (Section 4.2). The state c p stands for the RGB color characteristics of O observed objects (Section 4.2). The state a p stands for the arm joints locations while making actions on objects (Section 4.1). Having a spatial configuration between a referent and a landmark, the potential existing relationships between them could be expressed as follows: Observed Objects O × (O -1). The probabilistic distributions that characterize the Bayesian generative model are defined as follows (where GIW, Dir, Cat, and Gauss stand for a Gaussian Inverse-Wishart distribution, a Dirichlet distribution, a categorical distribution, and a multivariate Gaussian distribution):

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ θ m,z L 1 ∼ Dir (γ) , L 1 = (1, . . . , L) φ a K 1 ∼ GIW (β a ) , K 1 = (1, . . . , K a ) φ c K 2 ∼ GIW (β c ) , K 2 = (1, . . . , K c ) φ s K 3 ∼ GIW (β s ) , K 3 = (1, . . . , K s ) φ g K 4 ∼ GIW (β g ) , K 4 = (1, . . . , K g ) π t K 5 ∼ Dir (λ) , K 5 = (1, . . . , K POS Tag States ) π a ∼ Dir (α a ) π c ∼ Dir (α c ) π s ∼ Dir (α s ) π g ∼ Dir (α g ) p i ∼ Cat (δ) m i ∼ Cat (π Z t i ) ω i ∼ Cat (θ m,z ) Z a p ∼ Cat (π a ) Z c p ∼ Cat (π c ) Z s p ∼ Cat (π s ) Z g p ∼ Cat (π g ) a p ∼ Gauss (φ Z a p ) c p ∼ Gauss (φ Z c p ) s p ∼ Gauss (φ Z s p ) g p ∼ Gauss (φ Z g p ) (4) 
The latent variables are inferred using the Gibbs sampling algorithm [START_REF] Geman | Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images[END_REF] to allow the model to learn correspondences between words and their syntactic categories. The resulting grounded categories of words are: Verb (representing action verbs), Adjective (representing object color), Preposition (representing spatial prepositions and relationships), Noun (representing object geometry: object name), and Determiner (representing an others category: the), which are used for grammar induction.

EXPERIMENTAL SETUP

A human tutor and the HSR robot (Figure 4) are interacting in front of a table on which there are five different objects: {Cup, Ball, Bottle, Toy, and Box} with five different colors: {Green, Yellow, Blue, Red, and White} as referents and landmarks. In addition, we use five different prepositions: {Above, Beside, Near, Behind, and Inside} to represent spatial relationships between objects. Moreover, the robot executes five different actions: {Put, Raise, Hold, Pull, and Push} (robot, object). The scenario of interaction between the tutor and the robot is summarized as follows:

• The tutor teaches the robot different spatial configurations of referents and landmarks lying in a tabletop -described through 60 sentences -using visual perceptual information (Section 4). The unsupervised POS tagging model calculates numerical tags representing the syntactic categories of words for every training sentence (Section 5). • The visual perceptual information characterizes the dynamics of actions, object characteristics, and spatial relationships between objects (Section 4). • A probabilistic model grounds words through perception in order to define the necessary atomic categories for unsupervised CCG categories induction (Sections 6 and 8). • The human tutor uses 30 test sentences describing different spatial layouts of objects in order to validate the robustness of the word grounding process (Section 9).

COMBINATORY CATEGORIAL GRAMMAR: INFERRING SYNTACTIC STRUCTURE OF PHRASES

Combinatory Categorial Grammar (CCG) is an expressive and a lexicalized syntactic formalism [START_REF] Steedman | The Syntactic Process[END_REF]. Any two syntactic categories amongst the atomic (S, N, and NP), functor (e.g., NP/N), or modifier (e.g., N/N) categories of neighboring constituents could be combined through a group of rules [START_REF] Steedman | The Syntactic Process[END_REF] so as to create complex categories corresponding to higher level constituents. The slash operators: "/" indicates forward combination (e.g., an argument follows a functor), and "∖" indicates backward combination (e.g., an argument precedes a functor). The Bayesian nonparametric HDP-CCG induction model (Figure 5) employs Dirichlet Processes (DP) [25] to generate an infinite set of CCG categories defined through stick-breaking processes [21] and multinomial distributions over categories. Grounding each word and its induced POS tag (Sections 7 and 5) through visual perceptual information (Section 4) using the probabilistic generative model (Section 6) produces the categories: Verb, Determiner, Adjective, Preposition, and Noun. These syntactic categories define the atomic categories of the CCG formalism 5 . Having induced these atomic categories, the CCG induction model [4] learns the latent syntactic structure of sentences in the learning database, and generates combinatory syntactic categories for sentences in the test database (Section 7) so as to validate the robustness of the grammar induction process through comparison to a gold-standard parse structure.

RESULTS AND DISCUSSION

The framework is evaluated through its ability to induce correct CCG categories using the grounded POS tags. In this section, we provide evaluation for the accuracies of the different sub-models:

Part-of-Speech Tagging: Table (2) illustrates different measures for evaluating the robustness of the POS tagging process: V-Measure6 , VI-Measure7 , and Many-to-One (M-1)-Measure8 . Having a referent and a landmark in each sentence in the corpus, the POS tagging model assigned two different tags to all referents and landmarks in the corpus (i.e., all referents had a similar tag and all landmarks had another similar tag), which could clearly reduce the completeness score (i.e., V-Measure) of the model. However, this did not affect the accuracy of the word grounding process as the model reasonably succeeded in clustering both the referents and landmarks in the "Object" category.

Word Grounding: Grounding words and POS tags through visual perception has the objective of defining word modality and spatial relationships between objects9 . Table (3) shows that the modalities of the different parts of speech (i.e., Verb (Action), Adjective (Color), Noun (Object), and Preposition) were correctly determined. This finding is explained in Figure ( 6), which illustrates the probability distribution of words over the different modalities, and shows that the patterns of data in the four modalities are highly distinctive, among each other, and appropriately clustered. Table (4) shows that the model appropriately defined the referent and landmark referring words and the direction of their spatial relationship (i.e., Referent A → ← Landmark B) for each preposition. CCG Categories Induction: For the CCG induction process, we use the grounded parts of speech expressed through the standard tag set of the Penn Treebank Project10 : Verb: VB, Determiner: DT, Adjective: JJ, Preposition: IN, and Noun: NN as input to the CCG induction model, which learns the latent syntactic structure of sentences in the learning corpus so as to generate parse trees for sentences in the test corpus. These syntactic parses are highly dependent on the grounded tags, so that wrong tags could generate imprecise parse trees. To evaluate the robustness of the CCG induction process, we use a gold-standard parse file of all sentences in the test corpus to compare against. This file contains correct POS tags and dependency relations between words in each sentence that indicate edges of standard parse trees11 . We compare these edges to those resulting from the CCG model's predicted parses by calculating the number of matching edges. induction so as to investigate the combinatorial syntactic structure of language. These findings open the door to extend this framework to ground the generated CCG categories through perception in order to allow a robot to understand complex phrases during interaction.

CONCLUSION

This study presents a probabilistic framework for unsupervised induction of combinatory syntactic structure of language within a human-robot interaction context. The framework calculates numerical tags representing words in an unsupervised manner, and grounds them through visual perception so as to understand the syntactic categories and meaning of words. These grounded words and tags are used for inducing CCG categories, which builds on the current state-of-the-art where a fully annotated corpus is used for grammar induction [4]. The evaluation score of the generated CCG parses is promising and could be further improved through ameliorating the inference process of the HDP-CCG model, which we are considering to implement.
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Figure 1 :

 1 Figure 1: Human body tracking and action characterization for object manipulation.

Figure 2 :

 2 Figure 2: Spatial concepts represented through 3D point cloud information.

Figure 3 :

 3 Figure 3: Graphical representation of the probabilistic generative model.

Figure 4 :

 4 Figure 4: The robot achieves the assigned task (i.e., Raise the Red Bottle Near the Box) through grounding words and the calculated numerical POS tags in visual perception.

Figure 5 :

 5 Figure 5: Graphical representation of the HDP-CCG probabilistic generative model and an example of a resulting CCG parsing through forward and backward application combinators.

Figure 6 :

 6 Figure 6: Probability distribution of words over the different modalities (the dark blue color represents high probability).

Table 2 :

 2 Evaluation of unsupervised POS tagging through different measures.

	M-1 Measure (%) V-Measure (%) VI-Measure
	100	88,67	0,57

Table 3 :

 3 Estimation of word modality grounded through visual perception.

			Correct Word Grounding (%)
	Verb Adjective Preposition Noun (Referent & Landmark)
	73,3	100	63,3	71,7

Table ( 5

 ( ) illustrate the accuracy of CCG categories induction in case of the grounded and gold-POS tags. It illustrates the ability of the framework to associate correct word and tag grounding to grammar

Table 4 :

 4 Correct referent-landmark spatial relationships represented through the different prepositions.

	Correct Spatial Relationships (%)
	Above Beside Near Behind Inside
	100	66,7	57,1	83,3	50

Table 5 :

 5 Accuracy of CCG categories induction for the grounded and gold-POS tags.

	CCG Categories Induction / Matching Edges (%)
	Grounded-POS Tags (with grounding model) Gold-POS Tags (without grounding model)
	59,4	68,2

For example, the following instruction could be tagged as follows: (Raise, 1) (the, 5) (Red,

2) (Bottle, 4) (Near, 6) (the, 5) (Box, 4), where these numerical tags represent the syntactic categories of words (i.e., Verb, Determiner, Adjective, Preposition, and Noun) that would be grounded through visual perception.32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Steedman [23] introduced the formalism: Combinatory Categorial Grammar (CCG), where each constituent is associated with a syntactic category that determines its relationship to adjacent constituents in a sentence.

The 3D tracking system uses the SDK OpenNI2 and the middleware NITE2.

The model detects the tabletop plane using the RANSAC algorithm [9] and the orthogonal wall planes. The remaining points in the cloud are voxelized and clustered into distinct blobs representing object candidates.

Noun Phrase (NP) = Determiner + Noun (N).

It measures homogeneity (i.e., optimal case: each cluster (separate word category) contains fewer classes of tags) and completeness (i.e., optimal case: classes of tags referring to the same cluster are equal) of clusters and classes[19].

It measures the variation of information of a clustering solution, so that the more the clustering is complete (i.e., high V-Measure), the lower the VI-Measure would be[START_REF] Meila | Comparing clusterings -an information based distance[END_REF].

It measures mapping between clusters and tags.

Despite the rich literature in language grounding, we could not find a similar study in the approach, experimental setup, or corpus to the current one, which makes comparing these results to those of the other studies difficult to achieve.

Penn Treebank Part-of-Speech Tag Set.

These syntactic dependencies between words are calculated using Stanford Parser for evaluation only.