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Abstract. Many problems arising in the context of multiphase porous media flows that take the form of degen-
erate parabolic equations have a dissipative structure, so that the energy of an isolated system is decreasing along
time. In this paper, we discuss two approaches to tune a rather large family of numerical method in order to en-
sure a control on the energy at the discrete level as well. The first methodology is based on upwinding of the
mobilities and leads to schemes that are unconditionally positivity preserving but only first order accurate in
space. We present a second methodology which is based on the construction of local positive dissipation
tensors. This allows to recover a second order accuracy w.r.t. space, but the preservation of the positivity is con-
ditioned to some additional assumption on the nonlinearities. Both methods are based on an underlying numer-
ical method for a linear anisotropic diffusion equation. We do not suppose that this building block is monotone.

1 Introduction

1.1 Two-phase porous media flows

Incompressible two-phase porous media flows are often
modeled by the following set of equations. In the absence
of source terms, the volume of the phase a 2 fn; wg
(n and w stand for non-wetting and wetting respectively)
is locally conserved along time as a consequence of

/@tsa þ $ � va ¼ 0; ð1Þ

where / denotes the porosity of the rock (supposed to be
constant w.r.t. time), where sa denotes the saturation of
the phase a and va denotes the filtration speed of the
phase a. It is classically assumed that the phase filtration
speeds obey the generalized Darcy law

va ¼ � kr;aðsaÞ
la

K $pa � qagð Þ: ð2Þ

The intrinsic permeability tensor K of the porous med-
ium is a definite positive and symmetric tensor field whereas
the relative permeability kr;a of the phase a is an increasing
function of the saturation satisfying kr;að0Þ ¼ 0 (we neglect
the residual saturations). The variations of the viscosities
la and of the densities qa are neglected, and g ¼ $ðg � xÞ
denotes the gravity vector. The phase pressures
p ¼ ðpn; pwÞ are the main unknowns of the system together
with the saturations s ¼ ðsn; swÞ. Two algebraic relations are
imposed to close the problem. The first one is a constraint

coming from the fact that the whole pore volume is satu-
rated by the fluid:

sn þ sw ¼ 1: ð3Þ

The second one links the capillary pressure to the non-
wetting phase saturation in a monotone way:

pn � pw 2 pðsnÞ ð4Þ

where p is a maximal monotone graph from ½0; 1� to R that
may also depend on the space variable in the case where
the geological environment is made of several different
rocks (see for instance [1–5]).

Once complemented by no-flux conditions on the
boundary of the porous domain X, the model (1)–(4) has
a very particular variational structure. As depicted in [6]
(see also [7–9]), this problem can be reinterpreted as the
generalized gradient flow [10] of the energy

EðsÞ ¼
Z

X
EðsÞ/dx; ð5Þ

with

EðsÞ ¼ PðsnÞ �
X

a2fn;wg
saqag � x þ vðsÞ:

This energy is made of the capillary energy, of the grav-
itational potential energy, and of a contribution related to
the constraint (3):

vðsÞ ¼
0 if sn þ sw ¼ 1;

þ1 otherwise:

�

Numerical methods and HPC
A. Anciaux-Sedrakian and Q. H. Tran (Guest editors)

* Corresponding author: clement.cances@inria.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 78 (2018) Available online at:
� C. Cancès, published by IFP Energies nouvelles, 2018 ogst.ifpenergiesnouvelles.fr

https://doi.org/10.2516/ogst/2018067

REGULAR ARTICLEREGULAR ARTICLE

http://creativecommons.org/licenses/by/4.0/
https://www.ifpenergiesnouvelles.fr/
https://ogst.ifpenergiesnouvelles.fr
https://doi.org/10.2516/ogst/2018067


The capillary potential P : R ! R [ fþ1g is a convex
function that is finite in [0,1], infinite outside of [0,1], and
satisfies

pðsÞ ¼ @PðsÞ for s 2 ½0; 1�; ð6Þ

where

@P sð Þ ¼ p 2 Rf jP �sð Þ � P sð Þ � p �s � sð Þ � 0

for all �s 2 DðPÞg

is the subdifferential of P at s. The functional
E : R2 ! R [ fþ1g is convex and its subdifferential
@EðsÞ is made of the couples h ¼ hn; hwð Þ ¼
ðpn � qng � x; pw � qwg � xÞ such that the relation (4)
holds.

We will not go deep into details on the description of the
gradient flow structure since it is not the purpose of this
paper. We refer to [7, 11] for a more complete discussion
on the Wasserstein gradient flow interpretation of porous
media flows and to [7, 12] for a general presentation on
gradient flows in metric spaces. Let us only stress important
points that will motivate our discussion on numerical
schemes. First, the gradient flow structure implies that
EðsÞ is a decreasing function of time and that the dynam-
ics aims at maximizing this decay. This yields an energy/
dissipation of the form

EðsÞðtÞ þ
Z t

0

Z
X

X
a2fn;wg

kr;aðsaÞ
la

K$ha � $hadxds ¼ EðsiniÞ

ð7Þ

for all t � 0. The energy/dissipation relation (7) can be
obtained by multiplying formally the equation (1) by ha

and by summing over a 2 fn; wg. As a consequence, stable
steady states s1 are local minimizers of E for which each
phase is hydrostatic on its support, i.e.,

s1
a ¼ 0 or $p1

a ¼ qag: ð8Þ

In order to compute in a accurate way the long-time
behavior of the system (this is very important in the con-
text of basin modeling), the numerical scheme has to be
designed to make the discrete counterpart of the energy
EðsÞ decay along time and, as much as possible, to be exact
on the equilibrium (8) (see [13]). In the hydrostatic zones,
the equilibrium consists in a balance between the diffusion
and the convection. Thus we will avoid operator splitting
and discretize the convection and the diffusion simultane-
ously to recover this equilibrium.

1.2 A simplified model problem

Our purpose can already be illustrated on the single scalar
equation

@ts � $ � gðsÞKð$p þ �Þð Þ ¼ 0; with p 2 pðsÞ ¼ @PðsÞ;
ð9Þ

P being a convex and coercive internal energy
functional as previously and � being a smooth external

(possibly gravitational) potential. The mobility function g
is nondecreasing on DðPÞ \ Rþ and satisfies gð0Þ ¼ 0 and
gðsÞ > 0 if s > 0. Here, we used the notation
DðPÞ ¼ fs 2 R j PðsÞ < 1g for the domain of P and we
assume that 0 2 DðPÞ. If P is defined on the whole Rþ,
i.e., DðPÞ \ Rþ ¼ Rþ, then we assume moreover that P
is superlinear:

lim
s!þ1

PðsÞ
s

¼ þ1:

The solutions to (9) corresponding to nonnegative initial
data remain nonnegative along time. This property might
be destroyed by the numerical approximation, so that we
need to extend the definitions of the functions P, p, and
g for negative values of s when this is possible. In the case
where @Pð0Þ contains a finite value, i.e., if

p�ð0Þ :¼ lim
e!0þ

PðeÞ � Pð0Þ
e

> �1; ð10Þ

then P can be artificially extended on ð�1; 0Þ [ DðPÞ
into a convex function (still denoted by P) with a single
valued subdifferential at 0, i.e., @Pð0Þ ¼ p�ð0Þ ¼ pð0Þ.
This can be done for instance by prescribing

PðsÞ ¼ Pð0Þ þ sðpð0Þ þ sÞ ð11Þ

hence

pðsÞ ¼ pð0Þ þ 2s

if s < 0. The function g can for instance be extended by
setting gðsÞ ¼ �s if s < 0.

The framework of (9) is already interesting since it
includes Richards equation for which s is the water satura-
tion and W ¼ �qg � x. The capillary energy function P is
then defined on Rþ as the antiderivative of the capillary
pressure function. In usual models (see [14], pp. 343–345),
DðPÞ ¼ ½0; 1� and condition (10) does not hold. This also
includes a linear Fokker-Planck equation (but written in a
nonlinear form) when gðsÞ ¼ s and pðsÞ ¼ logðsÞ or models
for crowd motions [15]. We are interested in the computa-
tion of non-negative solutions corresponding to initial data
sini 2 L1ðX; RþÞ with

Z
X

PðsiniÞdx < 1: ð12Þ

There is still a generalized gradient flow structure corre-
sponding to (9), the energy being given by

EðsÞ ¼
Z

X
PðsÞ þ sWð Þdx: ð13Þ

The counterpart to (7) is obtained by multiplying for-
mally (9) by p þ W and writes

EðsÞðtÞ þ
Z t

0

Z
X

gðsÞK$ p þ Wð Þ � $ p þ Wð Þdxds

¼ EðsiniÞ < 1: ð14Þ
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Similarly to what was discussed in Section 1.1, one aims
to build numerical schemes for (9) that are accurate in the
long-time limit. The steady states for (9) are now given by

s1 ¼ 0 or $p1 ¼ �$W: ð15Þ
One of the difficulties arising in the resolution of the

problem (9) is that the variable p and s are related by the
maximal monotone graph p that may have vertical or
horizontal parts. Similar difficulties occur for instance in
the context of reactive flows in porous media, cf. [16]. For
Richards equation, the graph p has vertical parts as
depicted on Figure 1. The solution ðs; pÞ to the problem
(9) can be deduced from the knowledge of p, but not from
s. But the choice of p as a primary unknown in a naive
numerical method can yield severe difficulties. Typically
mass conservation can be lost, and severe troubles can be
encountered in the convergence of the iterative procedure
to compute the solution to the nonlinear system arising
from the numerical scheme. These difficulties motivated
the development of several strategies to optimize the con-
vergence properties of the iterative procedures. An popular
approach consist in making used of robust fixed point
procedures with linear convergence speed rather than with
Newton’s method (see for instance [17–22]). There were also
important efforts carried out to fix the difficulties of
Newton’s method [23–25]. Comparisons between the fixed
point and the Newton’s strategies are presented for instance
in [26, 27] (see also [28]). In [29], the authors combine a
Picard-type fixed point strategy with Newton’s method
(i.e., they perform a few fixed points iterations before run-
ning Newton’s algorithm). An alternative approach would
consist in keeping both s and p as unknowns together with
the additional equation p 2 pðsÞ that is often rephrased as a
complementary constraint and then solving the problem
with a non-smooth Newton method (see for instance
[30–32]). Another classical solution consists in partitioning
X at each time t into a part XsðtÞ where s is chosen as a
primary variable and a part XpðtÞ where p is chosen as a
primary variable. Switching from one variable to another
is then compulsory [33] in this case. This can be seen as a
particular case of the approach proposed recently in
[34, 35], which consists in parametrizing the graph p in a
suitable way. More precisely, the graph can be described
by two functions w 7! sðwÞ and w 7! pðwÞ such that

p 2 pðsÞ () 9 w s:t: s ¼ sðwÞ and p ¼ pðwÞ; ð16Þ

cf. Figure 1. We assume moreover that the parametriza-
tion is non-degenerate in the sense that s þ p is a strictly
increasing function.

Then the knowledge of the unphysical variable w allows
to reconstruct both s and p, so that on can use w as a pri-
mary variable in the computations. There are an infinity of
possible choices for the parametrization ðs; pÞ of p. One
example is the resolvents of p and p�1, i.e., s ¼ ðid þ pÞ�1

and p ¼ ðid þ p�1Þ�1. The idea in [34] is to take advantage
of this flexibility and to choose the parametrization in order
to optimize the convergence of the Newton’s method.

Before discretizing the nonlinear transient problems
(1)–(4) or (9), we need to introduce some material concern-
ing the discretization of elliptic equations.

1.3 A diffusion building block for numerical
approximation

The goal of this section is to introduce a rather general
framework that can fit to many numerical methods to solve
the elliptic equation

�$ � K$u ¼ f in X with
Z

X
f dx ¼ 0 ð17Þ

subject to no-flux boundary conditions. There is a huge
literature about the numerical resolution of the above
problem. Besides classical conforming and non-
conforming finite elements (see for instance [36, 37]), let
us mention some approaches based on mixed finite ele-
ments [38, 39], Multi-Point Flux Approximation (MPFA)
finite volumes [40–43], or Discontinuous Galerkin method
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Fig. 1. The maximal monotone graph p depicted on top is
parametrized as ðsðwÞ; pðwÞÞ with some monotone functions s
(red) and p (blue) depicted in the bottom picture. Here, s and p
satisfy maxðs0ðwÞ; p0ðwÞÞ ¼ 1.
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[44–46]. The list of aforementioned methods and related
publications is of course far from being exhaustive, and
some other numerical methods will be discussed in what
follows.

Let U be the set of geometrical entities to which corre-
spond the unknowns (i.e., the cells for cell centered meth-
ods, the edges for hybrid methods, or the vertices for
vertex centered methods), then we are interested in numer-
ical methods for solving (17) that reduce into a linear
system of the formX

L2U
aKLðuK � uLÞ ¼ mKfK ; 8K 2 U; ð18Þ

where mKð ÞK2U � Rþ are such that
P

K mK ¼ jXj. The
compatibility condition on the right-hand side
f ¼ fKð ÞK2U reduces to

P
K mK fK ¼ 0: We denote by

u ¼ uKð ÞK2U the vector unknown and by A the matrix
corresponding to the system (18), i.e., Au ¼ b where
bK ¼ mK fK . We require the transmissivity coefficients
aKL (and thus the matrix A) to be symmetric

aKL ¼ aLK ; 8ðK; LÞ 2 U2; K 6¼ L: ð19Þ

In what follows, S denotes the set of the couples
ðK; LÞ 2 U2 such that the transmissivity aKL is different
from 0. Thanks to the symmetry property (19), the scheme
(18) is equivalent to: 8v ¼ vKð ÞK2U 2 RU ,X

ðK;LÞ2S
aKLðuK � uLÞðvK � vLÞ ¼

X
K2U

mKfKvK ¼: hf ; vi0;U :

ð20Þ

Many numerical schemes can write as (18) and (19).
This is for instance the case of the classical Two-Point Flux
Approximation (TPFA) finite volume scheme [47–49],
where

aKL ¼ jKL
jrKLj

distðxK ; xLÞ � 0 ð21Þ

as soon as the cells K and L share an edge rKL. In (21), xK

(resp. xL) denotes the center of the cell K , whereas the
coefficient mK in (18) is the Lebesgue measure of the cell
K . The TPFA scheme requires strong assumptions for its
consistency. The permeability tensor K ¼ jI must be
isotropic – jKL in (21) is the harmonic mean of the perme-
abilities jK and jL associated to the cells K and L –, and
the edge rKL must be orthogonal to the straight line
½xK ; xL� joining the cell centers K and L.

Another classical example of scheme satisfying (18) is
the classical conformal P1 finite elements with mass
lumping, which can be seen as a particular box scheme
[50]. In this case, the unknowns are located at the vertices
U of a simplicial mesh T of X. Denoting by /K the Lagrange
basis function associated to the vertex K 2 U, the transmis-
sivities aKL are defined by

aKL ¼ �
Z

X
K$/K � $/Ldx; ðK; LÞ 2 U2; K 6¼ L ð22Þ

and the lumped mass associated to the vertex K is
mK ¼

R
X /K dx: Note that in this context, the transmissiv-

ities aKL may be negative (for instance in the case where T
does not satisfy the Delaunay condition if K ¼ I).

The Hybrid-Mixed-Mimetic (HMM) methods [51]
containing Hybrid Finite Volumes (HFV, see [52]), Mixed
Finite Volumes [53], and Mimetic Finite Differences
[54, 55] also enter the framework (18)–(19), as well as
Discrete Duality Finite Volumes (DDFV) [56]. We refer to
Droniou’s review paper [57] and to the book [58] for a more
complete overview of the methods entering our framework.

In the case where the transmissivities are nonnegative

aKL > 0; 8ðK; LÞ 2 S; ð23Þ

the scheme (18) is monotone and it fulfills the maximum
principle. The property (23) is lost as soon as the mesh
and the anisotropy tensor do not fulfill restrictive
conditions. But for many methods, the transmissivities
remain blockwise positive. This means that there exist
geometrical entities M 2 M and positive definite symmet-
ric matrices AM 2 R‘M �‘M , M 2 M, such that the scheme
(20) rewrites X

M2M
dMu � AMdMv ¼ hf ; vi0;U : ð24Þ

The vector dMu represents the inner variations of u
inside M 2 M. Let us illustrate formula (24) on some
classical methods. First, for the TPFA scheme, since
aKL > 0, then one can choose M ¼ S, as the set of the
edges, ‘M ¼ 1, and AM ¼ aKL where M is the diamond cell
corresponding to the edge ðK; LÞ. The case conformal P1

finite elements is more interesting. In this case, M ¼ T
denotes the set of the simplices, whereas ‘M is equal to
the space dimension d. The vertices of the simplex M 2 T
are denoted by KM

0 ; . . . ; KM
d , and

dMv ¼

vKM
1

� vKM
0

..

.

vKM
d

� vKM
0

0
BB@

1
CCA 2 Rd ; 8v 2 RU ;

whereas the matrix AM ¼ aM
ij

� �
1	i;j	d

is defined by

aM
ij ¼

Z
M

K$/KM
i

� $/KM
j

dx ¼ aM
ji ; 8ði; jÞ 2 f1; . . . ; dg2

:

ð25Þ

A crucial property of the local diffusion matrices AM is
that the condition number of AM can be bounded by a
quantity depending only on the condition number of
KM ¼ 1

jM j
R

M

R
Kdx and on the regularity (in Ciarlet’s sense

[36], see also [37]) of the simplex M , i.e.,

CondðAMÞ 	 C; 8M 2 M: ð26Þ

The HFV (or SUSHI [52]) also enter the framework
(24). In this case, M is the set of the control volumes that
can be quite general (non-convex cells having various
number of edges). To each cell M , there is one cell unknown
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uM ;0 and ‘M edge unknowns uM ;1; . . . ; uM ;‘M where ‘M

denotes the number of edges of the element M , and the
inner variation vector dMv is given by

dMv ¼

vM ;1 � vM ;0

..

.

vM ;‘M � vM ;0

0
BB@

1
CCA 2 R‘M ; 8v 2 RU :

The matrix AM is built thanks to a formula similar to
(25) but with an approximate gradient that is piecewise
constant on the half diamonds. Here again, the conditioning
of the matrix only depends on the one of K and on the reg-
ularity of the mesh. The Vertex Approximate Gradient
(VAG) scheme [59, 60] has a very similar structure and also
enters our framework (see [61]). The main difference with
SUSHI is that the unknowns are located at the vertices of
the cells M 2 M instead of the edges. A last example con-
cerns the DDFV method that, at least in 2D, also enters the
framework (24) as highlighted in [62, 63]. In this context,
M is the set of the diamond cells and once again, the local
matrices AM have bounded conditioning numbers if K has a
bounded conditioning number and if the mesh fulfills some
weak regularity assumption.

Before coming back to our nonlinear parabolic problem,
there is a last point that we need to point out here. The
coercivity of the numerical method (20) amounts to claim-
ing that the matrix A is a symmetric definite positive
matrix, the lowest eigenvalue of A being bounded away
from 0 uniformly w.r.t. the mesh size:

Av � v ¼
X

ðK;LÞ2S
aKLðvK � vLÞ2 � ajvj2

where

jvj2 ¼
X
K2U

mK jvK j2; 8v 2 RU :

Combining this information with (26), it was proven
in [64] that

Av � v 	
X

ðK;LÞ2S
jaKLjðvK � vLÞ2 	 CAv � v; 8v 2 U; ð27Þ

for some C depending only on the mesh regularity and on
the anisotropy of the permeability tensor. A similar
property was derived for the SUSHI scheme in [52]. The
abstract framework of polytopal toolboxes of Droniou
et al. [58] also allows to derive inequalities of this type.

1.4 About the paper content

The (physical) energy stability of numerical methods
appears to be a secondary point for a large part of the
mathematical literature concerning porous media flows
with capillary diffusion. This originates probably from the
fact that the mathematical analysis for such problems often
relies on the use of the so-called Kirchhoff transform and
global pressure (see for instance [65–68]) which may mask
the considerations regarding the physical energy. The ques-
tion of the convergence of numerical methods is more often

addressed. For degenerate parabolic scalar equations, we
refer for instance to [69–79], whereas for multiphase porous
media flows, we refer to [80–85]. Here again, the list is of
course far from being exhaustive.

In the remaining of this paper, we will focus on the
construction of schemes for (1)–(4) or more simply for (9)
that make the discrete counterpart of the energy decay with
time. The goal is to design schemes that capture in an accu-
rate way the long-time behavior of the continuous model,
and in particular the equilibriums (8) and (15). Two strate-
gies will be discussed. The first one is detailed in Section 2
and consists in working with the formulation (20) and to
use an appropriate upwinding of the mobilities. The second
one, which is presented in Section 3, rather uses the formu-
lation (24) and aims at preserving a similar structure even
in the presence of a degenerate mobility.

For the sake of simplicity, we do not discuss here about
possible source terms or other boundary conditions. Adding
these terms to the problem is possible but the energy of the
system would no longer decrease in general. However, under
reasonable assumptions, the problem remains energy stable.
We refer to [86] for a detailed treatment of source terms and
inhomogeneous boundary conditions in the context mass-
lumped finite elements.

2 Upstream mobility schemes

Before addressing the two-phase flow problem (1)–(4), let
us first focus on the simpler scalar problem (9).

2.1 The scheme for the simplified problem (9)

The goal is to tune the numerical method (18) to approxi-
mate the solution to (9) while preserving a good energetic
behavior at the discrete level. Concerning the time dis-
cretization, we stick to the backward Euler scheme. Let
s; p be parametrizations of the graph p as in (16), then
the numerical scheme writes: 8K 2 U; 8n � 1;

sðwn
KÞ � sn�1

K

sn
mK

þ
X

L2N K

aKLg
n
KL pðwn

KÞ � pðwn
LÞ þ �K � �L

� �
¼ 0; ð28Þ

where we have used the notation N K ¼ fL j ðK ; LÞ 2 Sg
for the neighbors of K . The time step sn is not necessarily
uniform and can depend on n � 1. The initial saturation
s0

K

� �
K2U is assumed to be given and once wn

K has been
computed for n � 1, one sets

sn
K ¼ sðwn

KÞ:

Following [64] and [87], the mobility gn
KL is chosen thank

to an upwinding that takes the sign of aKL into account:

gn
KL ¼ gðsðwn

KÞÞ if aKL pðwn
KÞ � pðwn

LÞ þ �K � �L

� �
� 0;

gðsðwn
LÞÞ otherwise:

(

ð29Þ
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Note that gn
KL ¼ gn

LK , so that one can write the scheme
(28) under the equivalent form

X
K2U

mK
sðwn

KÞ � sn�1
K

sn
vK

þ
X

K;Lð Þ2S
aKLg

n
KL p wn

K

� �
� p wn

L

� �
þ �K � �L

� �
ðvK � vLÞ ¼ 0:

ð30Þ

In the above formula and as in (20), v is an arbitrary
element of RU .

2.2 Some properties of the scheme

As a consequence of the choice (29) for the mobility gn
KL, the

method preserves the non-negativity. More precisely, this
means that if wn ¼ wn

K

� �
K

is a solution of the scheme
(28), then so does its projection ~wn ¼ maxðwn

K ; wHÞ
� �

K
on

½w; 1ÞU , where w 2 R [ f�1g is such that sðwHÞ ¼ 0
and pðwHÞ ¼ maxfpð0Þg (cf. Fig. 1). So without loss of gen-
erality, we can assume that

wn
K � wH; 8K 2 U; 8n � 1: ð31Þ

This property still holds for transmissivities aKL

violating the monotonicity condition (23). Note that the
inequality (31) is of interest only if wH > �1.

Let us now turn to the energy estimate. Choosing
v ¼ pðwn

KÞ þ �K

� �
K

in the weak formulation (30) and using
the convexity inequality

s � �s
� �

p � PðsÞ � Pð�sÞ;

for all ðs;�sÞ 2 DðPÞ2 and for all p 2 @PðsÞ ¼ pðsÞ, we
obtain the following discrete counterpart of (14):

EU snð Þ þ sn

X
K;Lð Þ2S

aKLg
n
KL p wn

K

� ��

þ WK � p wn
L

� �
� WLÞ2 	 EU sn�1

� �
; ð32Þ

where

EUðvÞ ¼
X
K2U

mK PðvKÞ þ vKWKð Þ; 8v 2 RU : ð33Þ

If the monotonicity condition (23) holds (like for instance
for TPFA finite volume schemes), the inequality (32) is
enough to ensure that the second term is non-negative, thus
the discrete energy is diminishing along time, i.e.,

EUðsnÞ 	 EUðsn�1Þ:

Moreover, summing over n provides a control on the
numerical dissipation

0 	
X
n�1

sn

X
ðK;LÞ2S

aKLg
n
KL pðwn

KÞ þ WK � pðwn
LÞ � WL

� �2

	 EUðs0Þ � EUðsnÞ < 1: ð34Þ

This estimate together with (31) is enough to prove the
existence of one solution wnð Þ to the scheme for all n � 1.
Thanks to the monotonicity of the scheme and the non-
degeneracy of the parametrization ðs; pÞ, the solution is
unique (see [34]). Finally, the convergence of the scheme
can be proved if the approximation of the diffusion operator
is consistent. This requires some classical conditions on
the mesh and on the anisotropy tensor for the TPFA
scheme [49].

The case where the condition (23) is not satisfied is more
intricate. Indeed, the estimate (32) still hold but the fact
that 0 is a lower bound in (34) is no longer true in general,
deducing a control on the energy and on its dissipation from
(32) is not straightforward. Indeed, the second term does
not have an obvious sign and we are not able to claim that
the dissipation is positive along time. However, it is possible
to bound from below the dissipation rate. To do so, let us
first remark that the definition (29) of the upstream mobil-
ities implies that

gn
KL ¼

max
w2In

KL

gðsðwÞÞ if aKLðpðwn
KÞ þ �K � pðwn

LÞ � �LÞ

� ðuðwn
KÞ � uðwn

LÞÞ > 0;

min
w2In

KL

gðsðwÞÞ if aKLðpðwn
KÞ þ �K � pðwn

LÞ � �LÞ

�ðuðwn
KÞ � uðwn

LÞÞ < 0;

8>>>>><
>>>>>:

ð35Þ

whatever the non-decreasing function u. In the above
relations, I n

KL denotes the interval with extremal points
wn

K and wn
L and we have used the monotonicity of g.

In the case where g � s is bounded (this is natural in the
porous media flow context since s is), we can take advan-
tage of this formulation with u ¼ p, of the inequality (27),
on the Lipschitz regularity of the external potential � to
show (cf. [88], Sect. 3.2) that

XN

n¼1

sn

X
ðK;LÞ2S

jaKLjgn
KL pðwn

KÞ þ �K � pðwn
LÞ � �L

� �2

	 C 1 þ
XN

n¼1

sn

 !
: ð36Þ

A similar inequality can be obtained even in the case
where g � s is not bounded under suitable assumptions on
the nonlinearities, see for instance ([61], Sect. 3.1). Inequal-
ity (36) allows to show that the discrete energy grows at
most linearly with time, as well as the existence of (at least)
one solution to the scheme thanks to a topological degree
argument. Moreover, it allows one to show the convergence
of the scheme towards the unique solution to the continuous
problem if the mobility function g is bounded and if p�1 is a
function (i.e., when there are no hyperbolic degeneracy in
the problem (9)) when the mesh size and the time step sn

tend to 0. We refer to [88] for the details concerning the
convergence analysis of the scheme (28).

The upstream mobility scheme can be tested by other
quantities of the form uðwnÞ thanks to (35). For
s 2 ½0; 1�, we denote by s�1ðsÞ ¼ ½wðsÞ; wðsÞ� the largest
interval of ½�1; þ1� such that sðwÞ ¼ s for all
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w 2 s�1ðsÞ. Then given a non-decreasing onto function
u : R ! R, there corresponds a convex and coercive func-
tion � : ½0; 1� ! R [ fþ1g such that @�ðsÞ ¼ u � s�1ðsÞ.
In particular, there holds

sðwÞ � sð�wÞð ÞuðwÞ � � � sðwÞ � � � sð�wÞ ð37Þ

for all w; �w 2 ½�1; þ1�.
We can then take benefits of the characterization (35) of

the upstream mobility to get enhanced regularity estimates.
For instance, choosing

uðwÞ ¼
Z w s0ðaÞ

g � sðaÞ da; ð38Þ

one gets that

XN

n¼1

sn

X
ðK;LÞ2S

aKL pðwn
KÞ � pðwn

LÞ
� �

sðwn
KÞ � sðwn

LÞ
� �

	 C 1 þ
XN

n¼1

sn

 !
; ð39Þ

provided � is regular enough and the initial entropy is
finite:

X
K2U

mK�ðs0
KÞ < 1:

Details for estimate (39) are provided in Appendix A.1.
Such an estimate is the corner-stone in the study [89]
where the convergence of an upstream mobility scheme
was established for the Dupuit approximation of multi-
phase porous media flows. It was also used in [8], or in
[90] where a degenerate Cahn-Hilliard system with a very
similar mathematical structure to (1)–(4) (see [91, 92])
was considered.

2.3 Convergence of the scheme

Let us illustrate the convergence of the scheme (28) when
the mesh size and the time step tend to 0. As a model prob-
lem, we consider the very simple convection diffusion
equation

@ts � $ � ðsK$ðlogðsÞ � x2ÞÞ ¼ 0 in X � ð0; tfÞ ð40Þ

where X ¼ ð0; 1Þ2, x ¼ ðx1; x2Þt, and tf ¼ 0:05. The perme-
ability tensor is assumed to be diagonal of the form

K ¼
j 0

0 1

� �
:

The equation boils down into the very simple linear
equation

@ts þ $ � ðse2 � K$sÞ ¼ 0; ð41Þ

where e2 ¼ ð0; 1Þt . We choose the initial condition and the
no-flux boundary condition in accordance with the exact
solution

sexðx; tÞ ¼ exp �at þ x2

2

� �
p cosðpx2Þ þ 1

2
sinðpx2Þ

� �

þ p exp x2 � 1
2

� �
; ð42Þ

with a ¼ p2 þ 1=4. Note that siniðxÞ ¼ sexðx; 0Þ vanishes
when x2 ¼ 1.

The solution is computed thanks to a Control Volume
Finite Element scheme [87, 88]. This scheme requires
conformal triangulations of X. We use successively refined
Delaunay grids from the FVCA5 benchmark [93]. In the
isotropic case (corresponding to j ¼ 1), the scheme is
monotone, i.e., condition (23) is fulfilled. This is no longer
true in the anisotropic case j ¼ 20.

We also compute the solution to our scheme with an
anisotropy ratio j ¼ 20. The numerical solutions are com-
pared with those computed with the following linear scheme
with centered convection: 8K 2 U;

sn
K � sn�1

K

�t
mK þ

X
L2N K

aKL sn
K � sn

L þ sn
K þ sn

L

2
ðWK � WLÞ

� �
¼ 0:

ð43Þ

Here, WK ¼ xK � e2. The scheme (43) is second order
accurate in space. In the isotropic case and for fine enough
grids (leading to small enough Peclet numbers), the scheme
turns out to be monotone. This is no longer the case in the
anisotropic case j ¼ 20 even though the scheme remains
second order accurate in space.

In order to make sure that the error corresponding to
the time discretization remains small when compared to
the error corresponding to the space discretization, we
divide the time step by 4 when the mesh size is divided
by 2. We present on Figure 2 the L2ðX � ð0; tfÞÞ error
corresponding to the numerical solutions produced by the
schemes (28) and (43) for Delaunay triangular grids
from [93].

The method (28) preserves positivity whatever the
anisotropy ratio. This is not the case of the linear scheme
(43) that produces undershoots in the anisotropic case
j ¼ 20. As expected because of the upwinding procedure,
the scheme (28) is first order accurate in space, i.e.,

jju � uhjjL2ðX�ð0;tf ÞÞ 	 Ch; ð44Þ

where uh denotes the piecewise constant reconstruction on
the dual mesh and where h denotes the mesh size. But it
appears on Figure 2 that the constant C appearing in
(44) strongly depends on the anisotropy ratio.

To sum up, the method (28) enjoys a very strong
stability when used in the non-monotone context, but this
is mainly due to the excessive numerical diffusion. Even
though the method is still first order accurate w.r.t. space,
the constant strongly depends on the anisotropy ratio. This
makes the method inefficient in the case of large anisotropy
ratios or of poor quality meshes. However, the upstream
mobility finite volume scheme remains a very robust
method for solving complex but isotropic problems, like
for instance some degenerate Cahn-Hilliard systems [90]
or multiphase porous media flows [8, 89, 94].
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2.4 Long-time behavior of the scheme

It is natural to wonder if the numerical scheme is able to
reproduce in an accurate way the long-time behavior (15)
of the continuous problem. This question is indeed of broad
interest for porous media flows, in particular in the context
where the time scales are long like for instance in basin mod-
eling or for nuclear waste repository management. There-
fore, the study of the long-time behavior of Finite Volume
schemes for convection-diffusion problems has been the pur-
pose of several contributions (see, e.g., [13, 62, 95–97]).

We go back to the two-phase flow model presented in
Section 1.1 that we discretize on a Delaunay mesh thanks
to a classical fully implicit upstream mobility finite volume
scheme (see for instance [94] or [8]). In particular, the mono-
tonicity relation (23) is fulfilled and the discrete saturations
remain bounded between 0 and 1.

At the continuous level, the relation (8) prescribing the
long-time limit boils down to the following alternative:

either s1
n 2 f0; 1g or pðs1

n Þ ¼ ðqn � qwÞg � x þ c ð45Þ

for some c 2 R: The parameter c is determined by the con-
servation of massZ

X
/s1

n dx ¼
Z

X
/sini

n dx:

The steady state (45) can be discretized directly into

0 2 pðs1
n;KÞ þ ðqw � qnÞg � xK þ c0; 8K 2 U ð46Þ

with c0 fixed so thatX
K2U

mK/Ks1
n;K ¼

X
K2U

mK/Ks0
n;K : ð47Þ

In the above relation, /K ¼ /ðxKÞ is the discrete poros-
ity. In particular, in the classical case where p : ð0; 1Þ ! R
is a (single-valued) function, the following alternative holds:

either s1
n;K 2 f0; 1g or pðs1

n;KÞ ¼ ðqn � qwÞg � xK � c0

for all K 2 U.
Let EU be the discrete counterpart of the energy (5), i.e.,

EUðsn
nÞ ¼

X
K2U

Pðsn
n;KÞ þ sn

n;Kðqw � qnÞg � xK

� �
mK ; ð48Þ

then the energy is decreasing along time, i.e.,

EUðsn
nÞ 	 EUðsn�1

n Þ; n � 1:

One can show (cf. Appendix A.2) that s1
n;K

� �
K2U

is a min-

imizer of EU under the constraint (47). Therefore the relative
energy EUðsn

nÞ � EUðs1
n Þ is non-negative. If the capillary

pressure p is an increasing function on ð0; 1Þ, then the rela-
tive energy vanishes if and only if sn

n ¼ s1
n . This quantity

can be used to illustrate the convergence of sn
n towards s1

n
as n tends to 1. In the case depicted on Figure 3, we set
X ¼ ð�1=2; 1=2Þ2, K ¼ I, kr;aðsÞ ¼ s, ln ¼ 10, lw ¼ 1,
qn ¼ 0:87, qw ¼ 1, g ¼ ð0; �9:81ÞT , / 
 1, siniðxÞ ¼ e�4jxj2 ,
and

pðsÞ ¼
ð�1; 0� if s ¼ 0;

s=10 if s 2 ð0; 1Þ
½1=10; þ1Þ if s ¼ 1:

;

8><
>:

We see on Figure 3 that the relative energy converges
exponentially fast towards 0 until it reaches the machine
precision. This shows both that the energy is effectively dis-
sipated along time and that s1

n given by (45) and (46) is a
steady solution to the scheme.

3 Schemes with local positive dissipation
tensors

The upstream mobility numerical schemes presented in the
previous section enjoy very nice properties but they are
merely first order accurate in space and lack robustness
w.r.t. the anisotropy ratio (or to the mesh regularity) as
illustrated in Figure 2. This motivates the development of
alternative numerical methods with the following
specifications.

(i) No Kirchhoff transform: the scheme should only
involve quantities with a clear physical meaning.

(ii) Nonlinear stability: the scheme must fulfill a discrete
counterpart of the energy/energy dissipation relation
(14).

(iii) Convergence: when the mesh size tends to 0 and
under mild regularity assumptions, the approximate
solution produced by the numerical scheme must
converge towards a solution to the PDE (9).

(iv) Second order accuracy: if the solution to (9) is
smooth enough (say C2), the error between the exact

Fig. 2. L2ðX � ð0; tfÞÞ error as a function of the mesh size for the
scheme (28) in the isotropic case j ¼ 1 (solid red) and
anisotropic case j ¼ 20 (solid blue) corresponding to upstream
mobilities (29). Comparison with the solution to the linear
scheme (43) in the isotropic case (dashed red) and anisotropic
case (dashed blue).
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and the approximate solution must behave as h2

where h stands for the mesh size.
(v) Robustness: the scheme should allow general grids

and general anisotropy tensors. The accuracy should
not be excessively impacted by the anisotropy ratio
or the mesh regularity.

3.1 Presentation of the methodology

Assume that the building block (18) is second order
accurate, then a natural scheme to fulfill the specifications
(i) and (iv) of the previous list for problem (9) is

sðwn
KÞ � sn�1

K

sn
mK þ

X
L2N K

aKLg
n
KL pðwn

KÞ
�

þ �K � pðwn
LÞ � �LÞ ¼ 0; ð49Þ

with a centered choice for the mobility:

gn
KL ¼

g s wn
K

� �� �
þ g s wn

L

� �� �
2

; K; Lð Þ 2 S:

Multiplying the scheme by sn pðwn
KÞ þ �K

� �
and sum-

ming over K 2 U leads once again to

EUðsnÞ þ sn

X
ðK;LÞ2S

aKLg
n
KL pðwn

KÞ
�

þ �K � pðwn
LÞ � �LÞ2 	 EUðsn�1Þ: ð50Þ

Already in the case developed in Section 2 where gn
KL was

chosen thanks to upwinding, the sign of the second term of
the left-hand side was unclear. It was however possible to get
a sufficient control to claim that the energy was growing at
most linearly, cf. (36). This conclusion does not hold any
longer in general for a centered choice of the mobilities
and no control on the energy can be deduced from (50).
Hence the specification (ii) is not satisfied by scheme (49).

In order to correct this, we propose a scheme based on
the formalism (24), that is

sðwnÞ � sn�1

sn
; v

	 

0;U

þ
X

M2M
dM pðwnÞ þ Wð Þ

�BMðwnÞdMv ¼ 0: ð51Þ

The above relation must hold for any v 2 U. The matrix
BMðwnÞ 2 R‘M �‘M is called the local dissipation tensor. It
must incorporate the local diffusion AM but also the mobil-
ities gðsðwnÞÞ. In order to ensure the dissipation property
for the scheme, we want BMðwnÞ to be symmetric semi-defi-
nite positive. In [61], we proposed to choose

BMðvÞ ¼ HMðvÞAMHMðwÞ; ð52Þ

with

HMðvÞ ¼ diag
ffiffiffiffiffiffiffiffiffiffiffiffi
gM

i ðvÞ
q

; 1 	 i 	 ‘M

� �
; 8v 2 U; ð53Þ

for the particular choice

gM
i ðvÞ ¼

gðsðvKM
i

ÞÞ þ gðsðvKM
0

ÞÞ
2

; 1 	 i 	 ‘M : ð54Þ

The fact that the energy is diminishing along time is
obtained by choosing v ¼ pðwnÞ þ W and by applying a
simple convexity inequality, leading to

EUðsnÞ þ sn

X
M2M

dM pðwnÞ þ Wð Þ

� BMðwnÞdM pðwnÞ þ Wð Þ 	 EUðsn�1Þ; ð55Þ

the second term being non-negative since BM ðwnÞ is semi-
definite positive.

Additionally, the method is globally mass conservative,
i.e., X

K2U
sn

KmK ¼
X
K2U

sn�1
K mK ¼

X
K2U

s0
KmK ; ð56Þ

where sn
K ¼ sðwn

K Þ. This estimate is obtained by choosing
v ¼ 1 in (50). Let us stress that in the particular cases of
the schemes studied in [61, 62, 86], the scheme is also
locally conservative since fluxes can be constructed.

In general, the quantity gM
i ðvÞ appearing in (52) is

chosen as a convex combination of gðsðvKM
j

ÞÞ
� �

0	j	‘M

. In

order to assess that the scheme (50)–(52) converges, the
numerical mobilities have to satisfy an additional coercivity
condition, that is

gM
i ðvÞ � a max gðsðvKM

i
ÞÞ; gðsðvKM

0
ÞÞ

� �
ð57Þ

for some uniform a > 0. The condition (56) is clearly sat-
isfied by the choice (53) with a ¼ 1=2, but it prohibits the
choice gM

i ðvÞ ¼ gðsðvKM
0
ÞÞ that would have been quite nat-

ural in the context of the SUSHI [52] or VAG [59]
schemes.

The implementation of the scheme (50)–(53) can appear
to be too involved. An easy way to simplify it is to choose
gM

i ðvÞ independent on i, i.e.,

0 5 10 15 20 25 30 35 40 45
10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Fig. 3. Evolution of the relative energy EUðsnÞ � EUðs1Þ as a
function of time. We observe the exponential convergence
towards 0 until the machine precision is reached.

C. Cancès: Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73, 78 (2018) 9



gM
i vð Þ ¼ gM

j vð Þ ¼: gM vð Þ; 1 	 i; j 	 ‘M :

The matrix HMðvÞ then reduces to
ffiffiffiffiffiffiffiffiffiffiffiffi
gMðvÞ

p
I‘M and

commutes with AM , leading to the simpler formula
BMðvÞ ¼ gMðvÞAM . In view of the constraint (56), a natural
choice for gMðvÞ is

gMðvÞ ¼ 1
‘M þ 1

X‘M

j¼0

gðsðvKM
j

ÞÞ

� 1
‘M þ 1

max gðsðvKM
i

ÞÞ; gðsðvKM
0

ÞÞ
� �

: ð58Þ

This choice was successfully used in [86] for a method
based on conformal P1 finite elements with mass lumping
(here ‘M ¼ d), and in [62, 63] for a nonlinear DDFV method
(here d ¼ 2 and ‘M ¼ 3).

3.2 Conditional positivity preservation
and convergence w.r.t. the grid

The scheme (50) amounts at each time step to a system of
nonlinear equations of the form

F nðwnÞ ¼ 0; with F n : RU ! RU : ð59Þ

The functions g, s and p are uniformly continuous on R,
then F is also uniformly continuous. In order to ensure the
existence of a solution wn to the system, we need some
bounds on wn (that might depend on the mesh and the time
step).

In the case where (10) holds, the estimate (55) (in
particular the dissipation term) provides a sufficient bound
on wn in order to apply a topological degree argument and
to claim that there exists (at least) one solution to the
scheme (51). In the more intricate situation where (10) is
no longer satisfied, corresponding to the situation where

lim
s!0þ

pðsÞ ¼ �1; ð60Þ

(with a slight abuse of notation), then one can show
that

sðwnÞ � f > 0 ð61Þ

for some f depending on the time step sn and on the mesh.
This is done for instance in [61] of Lemma 3.7 in the
context of the VAG scheme, or in [63] of Lemma 3.5 for
a DDFV scheme. In both case, the proof strongly relies
on the coercivity assumption (57).

As a consequence of (61), the scheme (51) preserves the
positivity as soon as (60) holds. This property is unfortu-
nately lost in general when (10) is satisfied. To illustrate
this fact, we show results of [61] where the solution of the
porous medium equation

@ ts � $ � K$s2
� �

¼ 0 ð62Þ

is rewritten under the form

@ts � $ � KgðsÞ$pðsÞð Þ ¼ 0 ð63Þ

for three different choices of nonlinearities, that are

(a) gðsÞ ¼ 1 and pðsÞ ¼ jsjs (recall that we need to
extend the nonlinearities for negative saturations if
(10) holds);

(b) gðsÞ ¼ 2jsj and pðsÞ ¼ s;
(c) gðsÞ ¼ 2s2 and pðsÞ ¼ logðsÞ.

The case (a) does not enter our framework since
gð0Þ ¼ 1 6¼ 0, but it is interesting since it corresponds to
the most natural approach to solve (62). The condition
(10) holds in cases (a) and (b), whereas (60) holds in case
(c). Therefore, the positivity of the solutions should be
guaranteed only in this last case. To illustrate this fact,

let us choose X ¼ fðx; yÞ 2 ð0; 1Þ2g, K ¼ 1 0
0 100

� �
and

let us approximate the exact solution to (62) defined by

sðx; y; tÞ ¼ maxð0; 2t � xÞ ð64Þ

thanks to the VAG scheme [61] on successively refined
triangular meshes from the FVCA5 benchmark [93]. The
problem is here complemented with Dirichlet boundary
conditions.

We observe in Tables 1–3 that second order convergence
is destroyed for all the three schemes because of the lack of
regularity of the exact solution. As expected, the discrete
solution corresponding to the choice (c) remains positive
because condition (60) is verified. This is no longer the case
for the choices (a) and (b) and undershoots are observed.
But the choice (b) appears to be both cheaper and more
accurate than the choice (a), whereas the amplitude of
the undershoots is reduced.

Let us illustrate again the ability of the approach. We
consider the linear and isotropic convection diffusion
equation

@ts þ $ � ðse2 � $sÞ ¼ 0;

Table 1. Choice (a) of mobility and pressure functions, convergence towards (64).

h #V �tinit �tmax errL2 rate errL1 Rate errL1 Rate umin #Newton

0.306 37 0.001 0.01024 0.116E-01 – 0.371E-02 – 0.764E-01 – �0.065 148
0.153 129 0.00025 0.00256 0.423E-02 1.461 0.116E-02 1.672 0.388E-01 0.977 �0.039 436
0.077 481 0.00006 0.00064 0.149E-02 1.501 0.337E-03 1.788 0.233E-01 0.737 �0.021 1438
0.038 1857 0.00002 0.00016 0.524E-03 1.513 0.932E-04 1.856 0.129E-01 0.856 �0.010 4912
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that we rewrite under the nonlinear form

@ts þ $ � s$ logðsÞ � x2ð Þð Þ ¼ 0: ð65Þ

We aim to approximate the exact solution (42) thanks
to the nonlinear DDFV method proposed in [62, 63]. We
compute the approximate solution corresponding to the
sequence of Kershaw meshes from [93], see Figure 4. The
numerical results are presented in Table 4.

As expected, since pðsÞ ¼ logðsÞ fulfills (60), the solution
remains positive although the grid is very irregular. The con-
vergence at order 2 on u is not affected by the poor mesh reg-
ularity. We observe a super-convergence for the gradient.

Finally, let us show that the methodology presented in
this section is often much more robust w.r.t. anisotropy
than the methodology presented in Section 2. To this
end, we stick to the test-case of the linear Fokker-Planck
equation written in a nonlinear form described in
Section 2.3. We discretize it with the energy stable P1 finite
element scheme with mass lumping proposed in [86]. In this
scheme, the mobilities gMðvÞ are chosen according to
formula (58). The final time is set to tf ¼ 0:25. The
L2ðð0; tfÞ � XÞ error as a function of the mesh size is plotted
on Figure 5. As expected, the method is of order 2 whatever
the anisotropy ratio. But it is worth noticing that the accu-
racy is almost not affected by the anisotropy ratio j.

3.3 About the long-time behavior of the scheme

We aim now to illustrate the long-time behavior of the
scheme. One discretizes the equation (65) complemented
with no-flux boundary conditions following the methodol-
ogy of [61]. In particular, we take s ¼ Id, hence we denote
by sn ¼ wn the vector of the unknown saturations. The
scheme (51) then rewrites

sn � sn�1

s
; v

	 

0;U

þ
X

M2M
dM logðsnÞ þ Wð Þ � BMðsnÞdMv ¼ 0; ð66Þ

for any v 2 U. The mobilities are discretized thanks to
formula (54). The mass is conserved along time, i.e.,

X
K2U

mKsn
K ¼

X
K2U

mKs0
K ; 8n � 1: ð67Þ

For any q > 0, the vector s1 ¼ s1
K

� �
K2U of RU defined

by

s1
K ¼ qe�WK ; 8K 2 U; ð68Þ

is a steady solution to the scheme (66) since
dM logðsnÞ þ Wð Þ ¼ 0 for all M 2 M. Then the expected
long-time limit as n ! 1 is s1 where q has been tuned
so that X

K2U
mKs1

K ¼
X
K2U

mKs0
K :

Table 2. Choice (b) of mobility and pressure functions, convergence towards (63).

h #V �tinit �tmax errL2 Rate errL1 Rate errL1 Rate umin #Newton

0.306 37 0.001 0.01024 0.769E-02 – 0.210E-02 – 0.645E-01 – �0.032 138
0.153 129 0.00025 0.00256 0.263E-02 1.546 0.613E-03 1.775 0.326E-01 0.983 �0.017 383
0.077 481 0.00006 0.00064 0.897E-03 1.554 0.173E-03 1.823 0.164E-01 0.996 �0.009 1246
0.038 1857 0.00002 0.00016 0.306E-03 1.551 0.481E-04 1.849 0.821E-02 0.996 �0.005 4234

Table 3. Choice (c) of mobility and pressure functions, convergence towards (63).

h #V �tinit �tmax errL2 Rate errL1 Rate errL1 Rate umin #Newton

0.306 37 0.001 0.01024 0.523E-02 – 0.997E-03 – 0.105E+00 – 0.000 479
0.153 129 0.00025 0.00256 0.205E-02 1.352 0.344E-03 1.535 0.522E-01 1.013 0.000 1143
0.077 481 0.00006 0.00064 0.898E-03 1.190 0.123E-03 1.490 0.259E-01 1.012 0.000 2218
0.038 1857 0.00002 0.00016 0.380E-03 1.240 0.417E-04 1.554 0.128E-01 1.012 0.000 5652

Fig. 4. The Kershaw meshes are highly deformed topologically
cartesian grids. The coarsest mesh of the family is depicted here.
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To illustrate this fact, we plot on Figure 6 the evolution
of the relative energy EUðsnÞ � EUðs1Þ as a function of the
discrete time ns for the sequence of successively refined
triangular meshes used in Tables 1–3 and for the Kershaw
mesh depicted on Figure 4. The relative energy is proved
to be decreasing along time and vanishes if and only if
sn ¼ s1.

We show in Figure 6 that the relative energy converges
exponentially fast towards 0, providing a discrete counter-
part to the relation

sexðx; tÞ � e�WðxÞ  	 Ce�at

that is deduced from (42). We observe on Figure 6 that
the scheme preserves exactly (up to machine precision)
the long-time behavior of the equation, i.e., the long-time
limit s1 is a discretization through (67) of the exact long-
time behavior of (64). Figure 6 suggests that the
convergence speed is sensitive to mesh regularity (the con-
vergence is slightly too fast on the Kershaw mesh) and to

mesh size (the convergence is too slow on coarse triangular
meshes). Note that the relative energy is defined only for
non-negative sn. For a behavior like the one depicted on
Figure 6, the scheme must (at least) preserve positivity
and admit s1 defined by (67) as a steady state.

3.4 Application to two-phase porous media flows

We show now preliminary results obtained thanks to the
methodology of this section to simulate two-phase porous
media flows. We consider an anisotropic quarter five spot
problem with injection in a top-left corner and extraction
in the bottom-right corner. We neglect gravity, so that
the equations boil down into

/@tsn þ $ � gnðsnÞK$ pw þ pðsnÞð Þð Þ ¼ qnðsn; xÞ; ð69Þ

�/@tsn þ $ � gwðsnÞK$pwð Þ ¼ qwðsn; xÞ: ð70Þ

In the above system, we eliminated the unknowns pn
and sw. They can be deduced from pw and sn by the

0 0.5 1 1.5 2 2.5 3 3.5 4
10-20

10-15

10-10

10-5

100

105

 Triangular 1
 Triangular 2
 Triangular 3
 Triangular 4
 Triangular 5
 Kershaw

Fig. 6. Plot of the log of the relative energy EUðsnÞ � EUðs1Þ
(in log scale) as a function of time.

Table 4. Approximation of (42) with a nonlinear DDFV scheme [62, 63] on the Kershaw mesh family from [93], final
time T = 0.25. M is the mesh index, s is the time step, errgs and errs respectively stand for the L2ðX � ð0; TÞÞ error on
rs and the L1ðð0; TÞ; L2ðØÞÞ error on s, whereas ordgs and ords are the corresponding convergence orders. N max and
Nmean are the maximal and mean numbers of Newton iterations, and smin minimal value of the approximation of s during
the whole simulation.

M s errgs ordgs errs ords Nmax Nmean smin

1 2.0E-03 6.693E-02 – 7.254E-03 – 9 2.15 1.010E-01
2 5.0E-04 2.353E-02 1.54 1.751E-03 2.09 8 2.02 2.582E-02
3 1.25E-04 1.235E-02 1.61 7.237E-04 2.20 7 1.49 6.488E-03
4 3.125E-05 7.819E-03 1.60 3.962E-04 2.11 7 1.07 1.628E-03
5 3.125E-05 5.507E-03 1.58 2.556E-04 1.98 7 1.04 1.628E-03

10-2 10-1 100
10-4

10-3

10-2

10-1

100

 P1 FE, isotropic case =1
  P1 FE, anisotropy  = 100
  P1 FE, anisotropy  = 0.1
 slope 2

Fig. 5. Convergence towards the analytical solution (42) of the
Fokker-Planck equation (41) for different values of the
anisotropy ratio j.
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relations sw ¼ 1 � sn and pn ¼ pw þ pðsnÞ. We fix the
nonlinearities gn, gw, p, fn, and fw as in [98]:

gnðsÞ ¼
s3 2 � sð Þ if s 2 0; 1½ Þ;
s2 if s < 0;

�
gwðsÞ ¼ 2ð1 � sÞ4

;

and

pðsÞ ¼ ð1 � sÞ�1=2 if s 2 ½0; 1Þ;
0:5 s if s 	 0:

(

The pure wetting phase is injected in
xinj ¼ ð0; 0:05Þ � ð0:95; 1Þ near the top-left corner, while
the fluid occupying the area xprod ¼ ð0:98; 1Þ � ð0; 0:02Þ
near the bottom-right corner is extracted (see Fig. 7). Defin-
ing the fractional flow functions by

fnðsÞ ¼ gnðsÞ
gnðsÞ þ gwðsÞ and fwðsÞ ¼ gwðsÞ

gnðsÞ þ gwðsÞ ;

then the source terms qn and qw are defined by

qaðs; xÞ ¼ fað0Þ1xinj
ðxÞ � faðsÞ1xprod

ðxÞ; a 2 fn; wg:

The permeability tensor K ¼ 1 0
0 5

� �
is anisotropic

and we take a constant saturation profile / 
 1.
The system (69)–(70) is complemented with no-flux

boundary conditions and with the initial condition
snð�; 0Þ 
 0:9.

For the discretization, we use conforming P1 finite ele-
ments with mass lumping on a structured triangulation T
made of 5000 triangles and a constant time step s ¼ 10�3.
For the phase mobilities, we make a choice of type (58).
As explained in [86], the method is locally conservative:
one can build equilibrated fluxes /n

a;h in the Raviart-
Thomas-Nedelec space RTN1ðT Þ such that

sn
a;h � sn�1

a;h

s
þ $ � /n

a ¼ qn
a;h; a 2 fn; wg;

where sn
a;h denotes the P1 approximation of the saturation

sa at time tn ¼
Pn

k¼1sk .
We plot snapshots of the saturation sn on Figure 8.
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A Some technical details

A.1 About Estimate (39)

We now give some details on the derivation of estimate
(39). Note that the derivation of estimate (36) relies on sim-
ilar arguments.

Let u be defined by (38), then multiplying (28) by
snuðwn

KÞ and summing over K 2 U leads to

An þ Bn ¼ 0 ð71Þ

where

An ¼
X
K2U

mK sn
K � sn�1

K

� �
uðsn

KÞ;

Bn ¼ sn

X
ðK;LÞ2S

gn
KLaKLðpðwn

KÞ þ �K � pðwn
LÞ � �LÞ

�ðuðwn
KÞ � uðwn

LÞÞ:

The term An can be underestimated thanks to the con-
vexity inequality (37):

An �
X
K2U

mK �ðsn
KÞ � �ðsn�1

K Þ
� �

: ð72Þ

Thanks to the characterization (35) of the upstream
mobility, the term Bn can be underestimated by

Bn ¼ sn

X
ðK;LÞ2S

~gn
KLaKLðpðwn

KÞ þ �K � pðwn
LÞ � �LÞ

� ðuðwn
KÞ � uðwn

LÞÞ;

whatever the mean value ~gn
KL between gðsn

K Þ and gðsn
LÞ.

Choosing

~gn
KL ¼

sn
K �sn

L
uðwn

K Þ�uðwn
LÞ

if sn
K 6¼ sn

L;

sn
K otherwise;

(

which lies between gðsn
K Þ and gðsn

LÞ because of the defini-
tion (38) of u, one gets that

Bn � Bð1Þ
n þ Bð2Þ

n ;

where

Bð1Þ
n ¼ sn

X
ðK;LÞ2S

aKLðpðwn
KÞ � pðwn

LÞÞðsn
K � sn

LÞ

is the quantity that we want to bound from above, and

Bð2Þ
n ¼ sn

X
ðK;LÞ2S

aKLðWK � WLÞðsn
K � sn

LÞ

¼ sn

X
K2U

mKsn
K

1
mK

X
L2N K

aKLðWK � WLÞ
 !

:

The quantity

1
mK

X
L2N K

aKLðWK � WLÞ;

which is an approximation of �$ � ðK$WÞ at xK , is sup-
posed to be bounded from below by some quantity M
depending only on the regularity of the mesh. Since the
method preserves the positivity of the saturations sn

K ,
one obtains that

Bð2Þ
n � �Msn

X
K2U

mKsn
K ¼ �Msn

X
K2U

mKs0
K ð73Þ

thanks to the global conservativity of the scheme (28). As
a consequence, one gets that

XN

n¼0

Bð1Þ
n 	

X
K2U

mK �ðs0
KÞ � �ðsN

K Þ
� �

þ C
XN

n¼1

sn:

One concludes by noticing that U is bounded from
below, hence X

K2U
mK�ðsN

K Þ � �mX inf �:

A.2 Relation (45) as an optimality condition

Before justifying why (45) can be seen as an optimality con-
dition for the discrete energy under the mass contraint (47),
let us first notice that since

sn
n;K þ sn

w;K ¼ 1; 8K 2 U; 8n � 0;

the discrete counterpart

EUðsnÞ ¼
X
K2U

/KmK Pðsn
n;KÞ �

X
a2fn;wg

sn
a;Kqag � xK

 !

of the energy (5) can be rewritten as

EUðsnÞ ¼
X
K2U

/KmK Pðsn
n;KÞ þ sn

n;Kðqw � qnÞg � xK

� �

þ
X
K2U

/KmKqwg � xK :

The second term in the above equality does not depend
on sn, hence it can be omitted in (48) and we can write the
discrete energy as a function of sn

n only, i.e., EUðsn
nÞ.

A second preliminary remark is the following: if
/KmK ¼ 0 for some K 2 U, then sn

n;K has no influence on
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the energy EUðsn
nÞ. Its value can be fixed arbitrarily, for

instance by (45). We assume for simplicity that
/KmK > 0 for all K 2 U even though this assumption can
be easily bypassed.

Let us now go to the constrained optimization problem

s1
n 2 argmin

sn2X
EUðsn

nÞ;

where, setting m ¼ /K mKð Þ 2 RU , we denoted

X ¼ sn 2 RU j sn � m ¼ s0
n � m

� �
:

Note that sn necessarily belongs to ½0; 1�U otherwise EU
would be infinite. The problem is equivalent to the sad-
dle-point problem

min
sn2RU

max
c02R

EUðsnÞ þ c0ðsn � s0
nÞ � m

� �
:

We can swap the min and the max and optimize w.r.t.
sn, so that we get the optimality condition

0 2 @EUðs1
n Þ þ c0m � RU ;

which is equivalent to (45).
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