
simBCI - A framework for studying BCI
methods by simulated EEG

Jussi T. Lindgren1, Adrien Merlini2, Anatole Lecuyer1, and
Francesco P. Andriulli2

1Univ. Rennes, Inria, IRISA, CNRS
2CERL @ IMT-Atlantique

January 25, 2018

Abstract

Brain-Computer Interface (BCI) methods are commonly studied
using Electroencephalogram (EEG) data collected from human ex-
periments. For understanding and developing BCI signal processing
techniques real data is costly to obtain and its composition is apriori
unknown. The brain mechanisms generating the EEG are not di-
rectly observable and their states cannot be uniquely identified from
the data. Subsequently, we do not have generative ground truth for
real data.

To allow studying BCI signal processing methods in controlled con-
ditions, we propose an object-oriented framework called simBCI. The
frawework is for generating artificial BCI data and to test classification
pipelines with it. Parameters of interest on both data generation and
the signal processing side can be iterated over to study the effects of
different combinations. The architecture allows affordable exploration
of how BCI signal processing approaches behave in different conditions
by enabling precise control over the generative process. The proposed
system does not intend to replace human experiments. Instead, it can
be used to discover hypotheses, study algorithms, to educate about
BCI, and to debug BCI signal processing pipelines.

The proposed framework is modular, extensible and freely available
as open source1. The only requirement is Matlab.

1Downloadable from http://gitlab.inria.fr/sb/ . Until the paper has been ac-
cepted and the code can thus be publicly released, please use the login ’sbreviewer’ and
password ’Investigator35b22--’ to obtain the code.

1

1 Introduction

Brain-Computer Interfaces (BCIs) based on Electroencephalogram (EEG)
attempt to translate measurements of the user’s brain activity into commands
for the computer. To obtain a discrete command, the BCI methods process
and classify segments of the EEG signal. Unfortunately the current BCIs
leave a lot to be desired in terms of accuracy [1, 2, 3]. Why is this the case?
Studying this question from the signal processing viewpoint is difficult for
several reasons. One is the cost of running large-scale human experiments
for statistical validity, and the other is the nature of the obtained EEG data.
As the generative sources in the brain cannot be uniquely identified from the
EEG [4], we lack ground truth regarding the components of the data. In
these conditions, we do not know what kind of performance an optimal BCI
could have on such data. It is even hard to be sure if one method is better
than another (see e.g. [5]). It is also difficult to assess how the different
elements of the BCI session contributed to the obtained results. How are
the results affected by the user, the equipment, and the signal processing?
Which properties of these elements had what effects?

In this paper, we propose to alleviate the study of signal processing meth-
ods in BCI by an open source framework called simBCI for simulating some
central parts of BCI experiments. In particular, the framework can gen-
erate simulated BCI data and execute signal processing (or classification)
pipelines. Parameters in both generation and classification can be varied,
and the framework can provide aggregates for quantities of interest such as
prediction accuracies per parameter configuration. The intent of the frame-
work is to allow studying the behaviour of the model BCI systems with
different configurations and parameters, and to numerically investigate how
different generative or discriminative parameters affect the results such as
accuracies and estimated model parameters. If the modelling assumptions
hold, similar behavior may be encountered in real circumstances.

The simulation framework we propose is conceptually situated halfway
between mathematics and human experiments. We do not propose it to
replace either. The benefit of simulation is that it can provide affordable
hypothesis discovery and insight, while only requiring explicit models of the
systems under study and some computational power. For example, simu-
lation may suggest that one method is more resistant to a specific type of
noise or artifact, or less affected by the positions of the discriminable signal
sources in the brain volume. Such discovered hypotheses can then be further
studied with real experiments or mathematical analyses. Another possible
use-case is to illustrate the behavior of the used models for pedagogical pur-
poses. The student can control the simulator and observe the input-output

2

relationships before and after different transformations of the signal. This
can be done both during the data generation, and the signal processing. As
yet another use-case, the generated data can be used to debug existing BCI
systems: easy data can be generated that matches the modelling assump-
tions of the BCI systems’ signal processing. If the system does not process
such data as expected, an issue has been discovered. Further, if the user
provides different head models and/or parameter sets, multiple datasets can
be generated. In principle these datasets could be used to study behavior of
techniques such as deep learning that may be able to benefit from a big data
approach. However, we do not currently provide such learning algorithms in
the system.

The presented framework is open source and available for free. We warmly
welcome extensions and contributions to improve it. Due to the modular de-
sign, new components such as signal and noise models, head models, forward
models, inverse algorithms and other signal processing plugins can be easily
added to the system to improve its realism or to make it more applicable to
study specific questions. Similarly to other Matlab-based systems, extensions
can be simply added by depositing new scripts to the directory hierarchy. As
the source code is hosted on a flexible and open git-based system, the com-
munity enthusiasts can easily clone their own versions of the framework and
submit pull requests if they desire some components to be included in the
upstream version.

The rest of this paper is organized as follows. We begin in section 2 by
a more detailed description of the challenges that simulation can help with.
We describe previous work in section 3. In section 4, we present an overview
of the proposed architecture. In section 5 we describe how the framework
models data generation and in section 6 we present the conventions used
for signal processing. Then, section 7 shows how the generation and the
processing components are put together to form a BCI simulator. Section
8 shows a few illustrative uses of the system with discussion in section 9.
Finally, section 10 concludes.

2 Why simulation?

Since the introduction of computers, simulation has become an increasingly
important technique in research and development in a multitude of fields
[6], ranging from manufacturing [7] to brain research [8]. Although real
experiments are ultimately needed for testing and verification, simulation
is useful in obtaining hypotheses about the studied systems when human
experiments and analytical studies are challenging and costly. In the scope of

3

BCI, we have identified three different reasons why studying signal processing
techniques can be difficult with real data.

1. The cost of human experiments. A legion of different BCI signal
processing pipelines have been proposed, typically with many parameters [9].
If some signal processing technique is promoted based on experiments with
only a few subjects, there is a significant risk that these results are a statis-
tical accident, unless very strict statistical controls are used. Large studies
are to be preferred. Such statistically valid experiments require orchestrat-
ing a large number of subjects to perform long and fatiguing BCI sessions.
The subjects have to be instructed, prepared and set up with the recording
equipment. To attain successful BCI control, the users may also require pre-
liminary training sessions. An overview of the work involved can be found
e.g. in [10, 11, 3].

2. Problems in controlling the data generation. Due to differ-
ent physiologies, mental strategies and possibly other causes, EEG signals
generated by different users have different properties (e.g. in motor imagery
[12, 13, 14]). As adapting the signal processing to these user-specific charac-
teristics improves the classification accuracy, understanding these differences
and their effects can be seen to be directly relevant for BCI development.
In real experiments, some properties are either totally outside the control of
the experimenter (such as the user anatomy, location of different functional
areas in the brain, and electrical propagation through the tissues) or difficult
to control and verify (used mental strategies). The knowledge of anatomical
and functional details may be available in medical circumstances, but such
information is not usually available in other use-cases.

3. Lack of ground truth. The ground truth regarding the signal
generation cannot be easily obtained for real data. This is partly due to
the information-losing physiological volume conduction process that blends,
mixes and dampens the electrical activity when it propagates through the
brain, the skull and the scalp before it can be measured by EEG [15]. Since
we do not have direct access to what happened between the user receiving
some instructions and the eventually observed EEG recording, it is difficult
to determine whether a particular result is due to the user’s skill, physiology,
artifacts, noise, bugs in the system, particular choices in the signal processing,
amount of training data, or perhaps nonstationarity of the brain activity.

In simulations, these issues can be circumvented. The experiments can be
as large as the available computational power and time permits, and all the
various parameters can be controlled up to the capability of the researcher
to reasonably model the phenomena of interest. Since the data is generated
with an explicit specification, we know exactly what is in the data, and
hence we have access to ground truth on all the levels that we model in the

4

generation. Ultimately, the obtained hypotheses and intuition can be further
studied with real experiments.

3 Previous work

Simulating EEG data has a long tradition. The generative models proposed
for EEG can be used to hypothesize about the mechanisms behind the mea-
surements, but also to synthesize simulated data [16, 17, 18, 19]. Simulated
EEG data is commonly used to study EEG forward and inverse models in
the context of source localization (e.g. [20, 21, 22]) and to test blind source
separation methods [23]. It can be also used to study connectivity measures
[24]. Several software packages exist that can generate synthetic EEG data.
These include the Brainstorm package [25], the Fieldtrip toolbox [26], the
SIFT toolbox [27] and the BESA Simulator2. Of these packages, Fieldtrip
provides a few different generators for EEG trials, and the SIFT toolbox can
generate data using autoregressive models. In principle these approaches
could be customized by an advanced user to generate multiclass data for
BCI testing purposes. However, this may require significant expertise from
the part of the user, for example understanding of autoregressive modelling
for SIFT.

In the scope of BCI, some previous simulation work exists. One possible
approach is to simulate the predictions of the classifier [28, 29, 30] in order to
study how usable an application would be when it’s controlled with an inac-
curate BCI. Another way to use simulation is to apply real recordings in an
offline manner [31]. For example, the standard approach of testing BCIs by
cross-validation can be considered simulation. In a real BCI session, the pre-
diction errors made by the classifier may distract the user and hence provide
a feedback effect. This effect is not modeled by offline cross-validation.

Simulated BCI data has been proposed before. One application is to
attempt to use artificial data to complement real data for training the signal
processing models [32]. Artificial datasets have also been used in at least one
competition: the BCI Competition IV featured simulated motor imagery
data [33]. The competitors were not informed beforehand that a particular
dataset was made synthetically. Our framework contains the first public,
open source re-implementation of the used generative technique. A detailed
description of the approach can be found elsewhere [33].

Since the proposed framework not only simulates EEG data, but can also
perform offline BCI signal processing and classification, it is in order to briefly
explain the main difference of the proposed framework to the well-known BCI

2http://www.besa.de/

5

software platforms (for overview, see e.g. [34, 35]). The proposed framework
is mainly intended for offline study of model behavior. Researchers inter-
ested in running realtime BCI experiments can consider e.g. OpenViBE [36]
or BCI2000 [37]. Although our framework can perform signal processing on
real data if the data is converted to the framework’s conventions, a more
extensive collection of signal classification components can be found e.g. in
BCILAB [27]. For EEG data analysis, EEGLAB [27] and Fieldtrip [26] are
classical choices. At present, our framework can carry out the signal process-
ing in BCILAB if requested, and optionally export the data to EEGLAB for
visualizations.

4 Framework overview

The proposed framework aims to simulate BCI-like data in a controlled and
modular fashion and allow BCI signal processing pipelines to be constructed
and tested in the framework as well. These pipelines can use machine learn-
ing techniques and/or inverse modelling as part of their operation if desired.
For convenience, the framework provides a mechanism to test the effects of
varying sets of parameters, both on the generation and the signal processing
side. In the following, we provide a high-level overview of the framework.
For more technical description, we invite the reader to look at the user doc-
umentation supplied with the framework.

The framework is designed with the goal that all the parameters of interest
should be specifiable from a single high-level script. The various submodules
that are used should fill in default values if some parameters are not given.
The framework itself is agnostic about most of the parameters. They are
simply provided to the submodules that recognize them. This convention
allows the experimenter to see at a glance what the framework is requested
to do and specify the experimental parameters from a single location.

The framework consists of three main classes as shown in Figure 1: The
first is the Generative model that constructs simulated experiment time-
lines (sequences of event markers) and simulated EEG-like data using ran-
dom generators3. The second class implements the BCI signal processing and
classification. We call each realization of this class a pipeline. A pipeline is
typically intended to be calibrated using the training data produced by the
generator and tested by an independently generated test dataset. Finally,
the BCI Simulator class is a convenience tool that can iterate over sets of
parameters. It can also perform repeated sampling with the same parame-

3The framework is not tightly tied to EEG, and could in principle be modified for other
streaming data.

6

Train

Compare

Train
Data

True
Labels Predictions

Results

BCI
Simulator

Pipeline

Test
Data

Process

Generative
model

Figure 1: Data flow in the framework between the main components. Dif-
ferent parameter specifications define how the data is generated and what
methods the signal processing pipeline uses.

ters in order to smooth out statistical variations in the results. In the end,
the simulator computes prediction accuracies by comparing the pipeline out-
puts to the known ground-truths from the generator. As part of its design,
the BCI simulator does not let the tested pipeline see the parts of the data
that would not be available in real BCI experiment (e.g. trial labels, cortical
sources, etc). Note that the generator and the pipeline classes can also be
used separately. For example, the data generator can be used to simulate
test data for some third-party BCI system without relying on the simulator
or the pipelines.

We now turn to describe the main modules of the framework in more
detail.

5 The generative model

The default signal generation module in the system follows the common linear
superposition model [4, 38]

X = AS + N, (1)

7

where X is an [electrodes × samples] matrix of measured EEG observations
over time, A is the leadfield matrix modelling the volume conduction and S is
a [sources × samples] matrix of source activities in the volume. The matrix
S can include both signal and noise components. N is a matrix of surface
noise. The rows of X correspond to individual surface electrodes and the
rows of S to source dipoles in the volume. The electrodes and the sources
are assumed to have 3D coordinates in relation to a head model associated
with the leadfield. The leadfield matrix coefficients encode the model of the
electrical propagation from the sources to the surface. Depending on the
used level of detail, such leadfields may vary from single-sphere models to
physiologically realistic, subject-specific models with different compartments
and their conductivities. For details, see e.g. [4, 38].

Due to the linear superposition model, the different data components can
be generated both in the volume (in S) and on the surface (in N). The
framework by default mixes the components on the surface. Although it
would be possible to work directly with matrices S and N, the dimensions of
these matrices and the appropriate indexing depends on the used head model.
Subsequently, their manipulation can become tedious and error-prone. For
this reason, the framework provides a higher-lever interface to specify the
signal components. With this interface, each signal component is assumed
to have three properties: when, what and where. Their interpretation is
intuitive. The when specifies the event times and durations on a timeline,
what specifies the signal content that is introduced to the EEG by these
events, and where is the placement of this activity either in the volume or on
the surface. This is illustrated in Figure 2. Each component also has a power
parameter (or Signal-To-Noise Ratio, SNR) which we have omitted from the
figure for clarity. The whole process can be alternatively seen as rendering
that realizes a concrete multichannel signal from a more abstract timeline.

Note that in the framework, the different signal components are, by de-
fault, independent of each other. The respective generators do not see the
parameters or the outputs of the others. To introduce dependencies, the user
can implement a monolithic generator that internally handles them. Alter-
natively, the user can design a timeline that has dependencies between the
events.

To give an example of the workflow, the investigator (user) first specifies
the desired event generators and their parameters (or even the actual event
timeline), specifies signal generators that react to these events, and declares
where each type of activity should occur with relation to the head model.
The framework uses the head model to obtain the positions and indexes of the
relevant dipoles in S, and uses the associated forward model to project the
volume data to the surface using eq. 1. With this approach, the head models

8

Insert +
forward

Signal
Generator+

EEG
before

EEG with
new component

Event
timeline

 “What” “Where”

Effect parameters

t

Signal

 “When”
parameters + + } =

Triggers

Event
Generator 1

Event
Generator 2{

Figure 2: EEG signal generation. First, one or more event generators are
used to make a timeline of discrete events with durations. Then, different
generators are specified to react to the events. Each generators’ output is
then inserted to the signal as requested. In the figure we show only one signal
component generation for clarity, even though the user can mix and match
any amount of such components and provide new generators.

9

can be changed and the scripts remain interpretable as they are defined on a
more semantical level. Geometrical information is encapsulated in the head
model. The user can either use the example head models provided with the
framework, provide their own, or assemble a head model with the assistance
of third-party packages such as Fieldtrip [26] or OpenMEEG [39].

The proposed abstraction allows relatively easy adaptation of generative
recipes from one type of BCI to another. For example, let us assume that
two-class SSVEP [40] and Motor Imagery [41] experiments have similar noise
profiles but different origin and nature of the signal part. Then, it suffices to
change the ’what’ and ’where’ parts of the specification: going from Motor
Imagery to a simple SSVEP model, the ’what’ part is changed to a function
that generates a specific SSVEP response frequency depending on the class
of the trial, and the ’where’ part is changed from left and right motor cortices
to cover a region of the occipital lobe.

The framework provides heuristic methods to approximate certain loca-
tions of interest from the used head model geometry. Specific keywords such
as eyes, occipital lobe and left and right motor cortex are recognized by the
heuristic where function and use simple deterministic selection rules such as
’eyes are approximated by two dipoles that are about halfway in z, in front
in x, and symmetrically about 1/4 skull-width from the y midline on both
sides’. If accurate anatomical knowledge and cortical segmentation is pro-
vided in the head model, this can be used instead of the heuristic approach,
simply by using an exact where function that refers to the head model.

The framework conventions also suggest that each callable function imple-
ments an optional visualization. By enabling the visualization, the function
itself can illustrate the data it generates in a way that is suitable for such
data. Additionally, the framework provides some simple visualizations for
aggregated or surface signals.

Figure 3 shows the used concepts and some of their options available at
the time of writing.

5.1 Data generation example: BCI Competition IV

We make the previously introduced concepts more concrete with a motor
imagery example. We follow the technique used to create one of the datasets
in the BCI Competition IV [33]. The proposed framework includes the first
public re-implementation of the generator.

A specification to make data in the style of BCI Competition IV is shown
in Figure 4. As can be seen, the specifications in the framework are either
lists or composed of key,value pairs, where the value can also be a list of
a function and its parameters. The parameters are passed to the functions

10

Component Options
’where’ heuristic: eyes, occipital lobe, left and right motor cortexes, cluster of K

dipoles
exact: from the head model, whole surface, whole volume

’what’ Gaussian and pink noise, eye movements [33], eyeblinks [33], noise with
spectral dependencies[33], single frequency noise (e.g. 50hz/60hz), beta
desynchronization [33], P300 template, SSVEP frequency responses

’when’ Trial generator supports trial length, rest length, burn-in, class count and
class ordering parameters. Random event generator is also available.

Examples
provided

Motor Imagery [33], elementary SSVEP [40], elementary P300 [42]

Head models 9417x247 MRI-based, constrained/nonconstrained dipole orientation,
sphere

Figure 3: Various options provided for data generation. User-provided op-
tions can be alternatively used.

that handle them.
The specifications in Figure 4 make it apparent how to change the various

parameters such as the timeline of the experiment and the used head model
without modifying the actual signal generators. The head specification de-
clares the forward model used to map volume data to the surface and to
provide the positions of the dipoles for the signal generation. The timeline
specification contains the parameters related to synthesizing the experiment
timeline. The effects specification concerns the actual activity simulated.
Here, four data generators in total are specified and called in sequence. The
first two simulate beta desynchronization at 12 Hz. The framework is in-
structed to insert these activities to the left and right motor cortex dipoles,
heuristically localized using the specified head model. The next directive re-
quests the generation of artifact noise originating from the eyes, and finally
generic noise activity to be placed on the surface. The framework projects the
volume data to the surface using the specified head model and then merges
the different parts of the data by linear superposition with weighting chosen
to give the desired SNR (on the surface).

Figure 5 illustrates some visualizations related to the generative specifi-
cation we just described.

6 EEG classification pipelines

In the presented framework, a signal processing chain is called a pipeline.
A pipeline can be calibrated with training data, and used to process new
data. Pipelines are made using one or more modules called processors. These

11

headParams = {’filename’, ’./leadfield.mat’};

timelineParams = { ’samplingFreq’, 200, ’eventList’, { ...

{’when’, {@when_trials, ’events’,{’left’,’right’}, ...

’numTrials’,10, ...

’trialLengthMs’,4000, ’restLengthMs’, 2000, ...

’trialOrder’, ’random’, ’includeRest’, true}}, ...

{’when’, {@when_random, ’events’,{’eyeblink’},’eventFreq’,0.1}}} ...

};

effectParams = { ...

{’SNR’, 1.0, ’name’, ’signalLeft’, ’triggeredBy’, ’left’, ...

’what’, {@gen_desync, ’centerHz’,12,’widthHz’,1,’reduction’,0.5}, ...

’where’, {@where_heuristic, ’position’,’rightMC’} }, ...

{’SNR’, 1.0, ’name’, ’signalRight’, ’triggeredBy’, ’right’, ...

’what’, {@gen_desync, ’centerHz’,12,’widthHz’,1,’reduction’,0.5}, ...

’where’, {@where_heuristic, ’position’,’leftMC’}}, ...

{’SNR’, 0.1, ’name’, ’blinks’, ’triggeredBy’, ’eyeblink’, ...

’what’, @noise_eyeblinks, ...

’where’, {@where_heuristic, ’position’,’eyes’}}, ...

{’SNR’, loop_these([0.005, 0.001, 0.01]), ...

’name’, ’noise’, ’triggeredBy’, ’always’, ...

’what’, {@noise_spectrally_colored, ’subType’,’fake’, ...

’strength’, [1.0 0.5, 0.3]}, ...

’where’, {@where_whole_surface}} ...

};

Figure 4: Simplified specification generating 2-class motor imagery data re-
sembling the approach of the BCI Competition IV. The timeline specification
has an event generator to make a basic two class timeline and an eyeblink
event generator. The framework then triggers signal generators to react to
these events. For example, the ’right’ class event triggers ’left’ motor cortex
desynchronization in the above specification. The parameters that follow the
functions specified with @ are simply arguments to those functions. In the
last signal component, the directive ’loop these()’ tells the BCI Simulator to
expand this specification to 3 new ones, each with different level of surface
noise SNR.

12

Figure 5: Components of a generated motor imagery signal as visualized by
the framework. Top left, the discriminable signal from two desynchronization
generators combined to one display. Top right, eye artifacts. Bottom left,
the noise. Note that since the noise originates from the whole volume, only
the 6 first dipoles are shown. Bottom right, first 15 s of surface data for the
4 first electrodes. The beta desynchronization generators are driven by the
timeline shown, whereas the eye artifact generator reacts to random events
(not shown). The noise generator is simply always active. After generation,
these signals will be inserted to the places that were selected by the heuristic
’where’ function and projected to the surface using the leadfield of the head
model. Note how the eye artifacts are stronger than the mixture of the two
other components in the surface data.

13

processors are used in the order they are specified in a list such as the one
shown on the bottom of Figure 6. Separate specifications are not required
for calibrating the pipeline and processing data with it, and neither separate
processors are needed. Instead, the pipeline and all processors are classes
that must provide ’train()’ and ’process()’ member functions. A pipeline
is essentially constructed by feeding it training data with the ’train()’ call,
and data transformation results are obtained using the ’process()’ call for
some set of data. If the pipeline ends with a classifier, it is expected to
output probability vectors, which can then be seen as just another data
transformation.

With this design, only a single specification is needed for train and test.
It avoids potential discrepancies between train and test runs. Yet the cho-
sen approach can support components that do not need training (such as
usual temporal filters, fixed arithmetic, etc) as well as machine learning and
statistical components. The data-independent classes simply do nothing on
train and just process the data when processing is requested. The classes
that construct a model do this during the train() call and then encapsulate
the estimated model inside the constructed class object. When a pipeline is
calibrated, it calls the train function of each processor of the specification
sequentially. The first processor gets the original dataset, and the second
processor gets the data as it is after having been processed by the first pro-
cessor, and so on. The processing of new data is performed in the same order.
This is illustrated on the top of Figure 6. In the conventions of the frame-
work, a pipeline is ultimately expected to return a class probability vector
for each trial in the given dataset. However, this is not strictly necessary: a
pipeline can return an arbritrary transformation of the data. Predictions are
only used by the BCI Simulator class that compares the results to the trial
labels. Note that the framework is in general agnostic to what the processors
pass to each other, it just assumes that the processors are specified in an
order that the next processor is able to consume the output of the previous
processor.

Figure 6 illustrates also a pipeline defined with parts provided with the
framework. It implements a classic CSP-bandpower based pipeline for classi-
fication of Motor Imagery [43]. In the specification, each processor is followed
by parameters specific to that processor. It’s worth noting that the pipeline
could also be implemented as single monolithic class, if the described pro-
cessing stages were carried out inside the class code. When implementing a
new pipeline, the designer has to choose the preferred level of modularity.

Figure 7 lists processors bundled with the framework. The bundled set is
meant to be illustrative and it is not intended to implement the full extent
of the current BCI knowledge. Rather, the processors were written to sup-

14

.process().train()@proc1(params1)

.process().train()@proc2(params2)

.process().train()@procK(paramsK)

Trainset
predictions

Testset
predictions

Pipeline

pipeLDA = {’name’,’csp-bandpower-lda’, ’processors’, { ...

{@proc_bandpass_filter, ’freqLow’,8,’freqHigh’,30}, ...

{@proc_csp, ’dim’, 2, ’tikhonov’, 0.5, ’shrink’, 0.5}, ...

{@proc_power_transform, ’logFeats’,true}, ...

{@proc_normalize}, ...

{@proc_lda} } };

Figure 6: Top. Schematic for a signal processing pipeline, expanding the
Pipeline class of Figure 1. For efficiency, a train() call is not required to
return any data. In that case, the framework simply calls the correspond-
ing process() function with the training data to obtain input for the next
processor (not shown). Bottom, an example of pipeline specification. The
specification declares the usual CSP-Bandpower LDA pipeline (e.g. [43]) us-
ing 5 different processors in a sequence. Each processor is constructed with
its own parameters.

15

Type Variants provided
Classifiers LDA [44], liblinear [45], MD Classifier (as in [46]), fixed

threshold, BCILAB bridge [27]
Filters Temporal filter, bandpass filter, BCILAB
Feat. extraction CSP [43], inverse transforms (MN & WMN [38], sLORETA

[47], ...), time/frequency features, ICA [48], time interpola-
tion

Other Correlation feature selector, normalization, downsampling
Simple DSP Squaring+log, identity, BCILAB

Figure 7: Basic processors provided in the framework to build pipelines. New
processors can be inserted by adding new Matlab classes to the directory
tree. The classes just need to conform to the interface conventions of the
framework.

port specific studies regarding CSP-Bandpower-LDA and inverse modelling.
Hence, these modules suffice to illustrate how to design pipelines using the
conventions of the framework. A user wishing to quickly evaluate a larger
set of state of the art is suggested to use the ’BCILAB’ processor provided
in the framework. This way, any processing available in BCILAB can be
used. The framework by default provides specifications to construct the
CSP/Bandpower/LDA pipeline (e.g. [43]) as well as a few pipelines based
on inverse models: One is inspired by Cincotti et al. [49] and the another
is after Edelman, Baxter and He [46]. The user is invited to look into the
package archive to find these and other example specifications.

7 BCI simulation

Artificially generated data and signal processing pipelines provide the central
components to carry out BCI simulations. In the proposed framework, we
also include a third central component called the BCI Simulator. This is a
convenience tool used to repeatedly call the data generation and the pipeline
training and testing, to compare the results to ground truth, and to aggre-
gate the results. By default, prediction accuracies are computed and stored.
Given the definitions for generation and the pipelines, the Simulator can per-
form repeated experiments by resampling new sets of data while keeping the
sampling parameters the same. This way, better statistical characterization
of the results related to each parameter condition can be obtained: enough
iterations allows the empirical estimates of the pipeline accuracy and vari-
ance to converge and reduces the chance that some particular result was due
to a statistical accident.

The system allows testing the effects of parameter changes by providing

16

a simple construct for the purpose. The specifications (such as those shown
in Figures 2 and 6) controlling the system can contain statements which
essentially instruct the Simulator to run multiple experiments while taking
the parameter values from given sets. For example, an SNR parameter for
some signal component could be specified as a range of values to test, as in
Figure 2. In the figure, the simulator will construct 3 experiments where
each has a different value of the SNR but keeps the other parameters equal.
A similar mechanism is available in BCILAB [27] for classification. In our
framework, the loop requests can be used both in the generating and the
pipeline specifications. It is also possible to have multiple loop requests.
Then the total number of train/test runs in the experiment is a product of
the sizes of the combinations times the number of repetitions.

Note that for data generation, the parameters can also be different be-
tween the train and tests sets. The only compatibility requirement between
the two sets is that the pipelines estimated with a training set must be able
to return results comparable to the ground truth when they are provided the
test set. For example, the specifications can differ in the number of trials or
the nature of noise. Also, if inverse models are used in the pipelines, different
head models can be used in the data generation and the pipeline definitions.
This can simulate the effect that in practice we rarely have a perfect head
model of the BCI user in question. On the other hand, the structural pa-
rameters such as the number of sources and electrodes should stay the same,
unless the pipeline processors are modified to handle such differences, for
example by interpolation.

8 Example simulations

We presume a typical use of the framework is to simulate experiments by
repeatedly generating data with different characteristics (parameters) while
possibly modifying the pipeline parameters at the same time and then analyze
the resulting classification accuracies. This allows empirical discovery of what
is easy and what is difficult for different algorithms. For example, signal
generation parameters such as artifact occurrence frequency or SNR could
be modified while observing how this affects the BCI pipeline prediction
accuracy. Experiment parameters can also be modified, for example the
number of trials, trial length and the sampling rate. On the pipeline side it is
possible to change everything from algorithm parameters (e.g. regularization,
filter bandwidths, CSP dimensions, etc) to the algorithms themselves.

The signal data used in the experiments described in this section has been
generated using forward models based on a standard three-layer mesh (scalp,

17

skull, brain) obtained from processing MRI data with FieldTrip [50]. The
three layers were assigned respective normalized conductivities of 1, 1/15
and 1 (as in [51]) and were composed of up to 46 000 triangles for the high
resolution cases. The generated models map 9417 cortical dipoles oriented
along the normal to the cortical surface to 249 electrodes. An ajoint double
layer formulation has been used to compute this mapping.

Eyeblink frequency vs eyeblink power. As an example, Figure 8
shows how the common CSP/LDA pipeline prediction accuracy behaves
when the eyeblink artifact frequency and its SNR are changed. The data
generation was following the BCI Competition IV style of Motor Imagery
simulation using the model described earlier. In this case we replaced the
data driven noise of the original approach [33] with volumetric pink noise to
ensure the results are not due to a particularities of a specific EEG recording
that is normally used to obtain the method’s spectral dependency model.
The SNR of the pink noise was calibrated to give 80% pipeline prediction
accuracy without any eyeblinks.

After the detrimental effect of the eyeblinks is observed, the experimenter
could proceed e.g. by studying if the pipeline regularization parameters
would help against the eyeblinks, or how much more training data would
be needed (in principle) to compensate for them. In the framework, this
would be just a matter of specifying ranges for these additional parameters
of interest and let the computer perform the experiment. Alternatively, the
researcher might attempt to implement an eyeblink removal technique and
examine how well it performs, or route the data to some more robust signal
processing technique. After satisfying intuition and solution to the prob-
lem has been obtained, real experiments could be carried out to validate the
hypotheses formed with the simulated experiment.

Suppose that the experiment described above was done with real subjects.
They would be asked to modulate the strength and frequency of their eye-
blinks in addition to performing the challenging task of motor imagery at the
same time. How much time would such a study take? In total, to draw the
plot of Figure 8, we tested 60 parameter combinations with 25 resampled rep-
etitions for each combination. This means 1500 simulated EEG sessions con-
sisting of generating a train and a test set pair. The train set had 16 trials and
the test set had 54. With trial length of 4 seconds, followed by rest of 2 sec-
onds, the total length of the dataset is 1500∗(16s+54s)∗(4s+2s) = 630000s
or 175 hours of simulated EEG. A real recording session following the Graz
BCI paradigm [41] would be much longer due to additional time needed for
setup and dismantling of the electrode montage (from 7 to 20 minutes of
setup per session in the study of Nijboer et al. [11]), possible initial burn-in
period (e.g. 30sec per recording) and a few seconds overhead for cue on-

18

0.5
1

0.55

0.8

0.6

0.65

0.8

0.7

0.6

0.75

1 csp-bandpower-lda

A
cc

ur
ac

y

0.6

0.8

SNRfreq

0.85

0.4

0.9

0.4

0.95

1

0.2 0.2

00

Figure 8: Effect of eyeblink frequency to simulated CSP/Bandpower/LDA
two-class motor imagery classification. Each point is an average accuracy
of 25 simulated experiments with resampled train and test sets. Low SNR
indicates the eyeblink effect is stronger compared to the other signal compo-
nents. Notice the apriori unintuitive result: having no eyeblinks is optimal
for the accuracy, but many eyeblinks is generally better than having only a
few of them. This may be due to the statistical pipeline possibly being able
to take eyeblinks somewhat into account in the modelling when they are no
longer rare. If eyeblinks are present, the SNR appears more important to the
accuracy than the blink frequency. Approximately 175 hours of simulated
BCI data was used to compute the plot.

19

0 10 20 30 40 50 60

Depth%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

CSP/Bandpower

Inverse

Figure 9: The effect of cortical depth of the signal generators on two signal
processing pipelines. The decrease in accuracy for the inverse model based
pipeline is due to the source going farther away from the fixed ROI specified
for the the pipeline. For details, see text.

set/offset per trial. In contrast, the simulated experiment can be run on a
normal desktop PC in one night.

Effect of location of the discriminable sources. Figure 9 shows an-
other simulated experiment where we compare the CSP/Bandpower pipeline
to a method based on inverse models, inspired by Cincotti & al. [49]. The
first pipeline optimizes a statistical spatial filter, whereas the second model
reconstructs the sources in the cortical volume before classification. The
source reconstructing pipeline also removes source dipoles from considera-
tion which are not inside a hand-specified region of interest (ROI) roughly
covering the motor cortices. The first pipeline was illustrated in Figure 6,
and the second is included in the framework distribution. The data gener-
ation is the same as before, using 16 training trials of 4 seconds each and
54 test trials. We disabled the eyeblink artifacts. Instead, we change the
location of the sources that generate the discriminable signal. We move the
two cortical dipoles downwards along the cortex, starting from their usual
location under the electrodes C3 and C4 and then move the sources lower
until the moved distance is approximately 60% of the diameter of the cortex
model. It can be noted that the inverse pipeline performs well compared to
the CSP/Bandpower, but its accuracy drops significantly when the sources
eventually go out of the cortical ROIs specified for the inverse approach.
However, it is of interest that this accuracy drop is not a on-off phenomenon.

20

Figure 10: Correlation matrices of a specific kind of generated data (left)
and real EEG data (middle). Right, a matrix showing pairwise electrode
closeness measures. For details, see text.

This is due to a phenomenon called source leakage (e.g. [3]): the imprecision
of the source reconstruction spreads the source activities to nearby sources
when the sources are reconstructed. Thus, when the volumetric sources are
reconstructed in the method, some relevant information leaks to the ROI
even if the source is not originally inside it. This leakage is then caught by
the statistical feature selection and classification techniques of the method,
suggesting that the used BCI method can benefit from source leakage. As the
source leakage is usually considered a harmful phenomenon in source recon-
struction, this appears as another interesting finding that simulated studies
can provide for further consideration. Finally, the plot shows an accuracy
anomaly near 30% depth. As both pipelines are affected, this suggests a sud-
den change in how the leadfield projects the sources to the surface. Note that
since we used a constrained orientation leadfield, the dipole traversal along
the cortex changes the directions the source dipoles radiate to according to
the folding of the cortical model.

Do electrode correlations require source correlations? In addition
to providing quantitative results such as accuracies, the framework can be
used to obtain qualitative insights about the model system. For example,
using the framework to visualize the correlations of the generated data as in
Figure 10 illustrates that the forward transform can introduce dependencies
to the EEG. In the data, using the same head model as before, we specified
all the sources in the volume to generate mutually independent pink noise. In
the volume these sources were then approximately uncorrelated (not shown).
However, after projection of the sources to the scalp EEG by the forward
model, the surface data exhibits the typical EEG-like correlation patterns
that in this case must emerge from the modeled volume conduction. For
comparison, we also recorded a real dataset with an high-grade EGI system4

4256-channel EGI (Electrical Geodesics, USA) cap with EGI NetAmps 300 amplifier.

21

Figure 11: Spatial filters. Top, CSP filters obtained using simulated data.
Bottow, filters from the WMN algorithm corresponding to reconstruction of
the true sources. CSP uses only EEG data to build its model, whereas WMN
relies on physiological information only and does not use data.

22

that the electrode set of the head model was modeled after. Note that the
leadfield we used was not estimated from the same subject as the EEG was
recorded from. Nevertheless, the correlation structure exhibits similar pat-
terns both in simulated and real EEG. The correlations of real EEG data are
stronger than those of the simulated data, suggesting that real brain activity
has more dependencies in the volume than the independent noise we used. In
both cases the correlations are qualitatively related to the electrode distance,
as the image on the right in Figure 10 suggests. The image simply plots a
Gaussian weighted distance between each electrode pair in the used electrode
set.

The resemblance of CSP and WMN inverse model. Finally, for
Figure 11, we generated one session of 2-class motor imagery data originating
from 2 dipoles located on the left and right side motor cortexes and mixed
these sources with pink volumetric noise as before, but with no artifacts. The
figure illustrates the two most important CSP filters obtained with the data,
as well as the corresponding projections obtained from the Weighted Mini-
mum Norm estimate (WMN). The latter approach attempts to reconstruct
the generating sources, using the generating leadfield and knowledge which
sources generated the data, but not the data itself. The left and right are
swapped in CSP as the algorithm does not order the filters in any manner.
The integration performed by the WMN approach appears to focus tightly
on the electrode locations close to the sources, whereas the CSP solution is
less sparse and more spread across the electrodes. The CSP solution becomes
less defined if eyeblink artifacts are present in the data, when the amount of
training data is reduced, or the signal component is made weaker (not shown)
but the WMN model is not affected by these changes as it does not use the
data. With real data it would be more difficult to investigate the CSP reac-
tions to different conditions, as the ground truth would not be available and
some parameters such as the strength of Event-Related Desynchronization
(ERD) or position of the sources would be difficult to modulate by a subject.

9 Discussion and future work

The proposed framework is not intended as a realistic brain simulator (a
massive undertaking, see e.g. [8]). Even if the used models are made to
match the current knowledge, some properties of the real brain ale likely to
be presently unknown. The simulated data can only exhibit such behavior
that can result from the models that are used. If some behavior of the real
brain is outside the scope of these models, it cannot be discovered from the
simulated data alone. On the contrary, analysis of real data may be able

23

to discover and use data characteristics which are outside the scope of the
current generative models. Due to this, great care should be taken when
drawing inferences regarding real BCI from simulated EEG. Instead of being
a basis for such inferences, the framework should be used to gain insight
about the interplay of the models being studied. Once some interesting
hypotheses have been formulated, they can be used to guide the design of
human experiments.

We stress that the user should apply our framework with consideration.
For example, if a large set of different signal processing parameters are stud-
ied, it may be necessary to detect which differences are statistically significant
and correct for multiple comparisons, for example using the functions from
the Matlab’s statistics toolbox. Even so, significant differences on simulated
data do not guarantee the same differences on real data, and any findings
should be taken only as hypotheses for additional study. Further, the data
generation should be configured reasonably. As an example of the contrary,
a long recording session of stationary EEG may be very difficult to obtain
with a human subject, whereas for the simulator it is effortless. On the other
hand, phenomena such as eyeblink frequency and modulating the strength
of the Event-Related Desynchronization (ERD) in motor imagery may very
well correspond to real phenomena.

In the future, the framework could be extended to many directions. One
possibility involves adding connectivity modelling of brain areas over time.
Another direction would involve implementing lower-level models of neuronal
assemblies and even spiking neurons and model how their activities are aggre-
gated into dipolar volume currents. The framework could also be extended
to generate and test multiuser datasets for machine learning techniques that
benefit from big data.

10 Conclusion

We have proposed a framework for studying BCI signal processing through
simulation and have described the main aspects of its design. To summarize,
the framework can generate and test multiclass EEG data and classification
pipelines according to specifications given by the user. By its modular de-
sign, the framework allows mixing and matching of different kinds of signal
generators, head models, BCI timelines, signal positioning, as well as noise
and artifact generators. Similar mixing of parts is possible for the signal
processing pipelines. For convenience, the framework can automatize the
generation and testing of different parameter combinations of interest.

In the scope of the paper, we have illustrated that already simple simu-

24

lated experiments can reveal interesting and apriori counterintuitive hypothe-
ses for further consideration. As the proposed framework is open source and
available free of charge, we hope that the community will find the proposed
system useful in illustrating BCI systems to students, in debugging existing
BCI systems with artificial data, and most of all for studying a variety of
questions that remain in BCI signal processing.

Acknowledgement

We thank Axelle Pillain, Lyes Rahmouni and John-Erick Guzmann for con-
tributions to the framework. We also thank Camille Jeunet and Benoit le
Gouis for comments on an earlier version of this manuscript. This work was
funded by the Labex CominLabs project SABRE.

References

[1] B. Allison and C. Neuper. “Could Anyone Use a BCI?” In: Brain-
Computer Interfaces. Ed. by D. S. Tan and A. Nijholt. Human-Computer
Interaction Series. Springer, 2010, pp. 35–54. isbn: 978-1-84996-271-1.

[2] L. Nicolas-Alonso, L. Fernando, and J. Gomez-Gil. “Brain Computer
Interfaces, a Review.” In: Sensors (Basel) 12.2 (2012), pp. 1211–1279.

[3] M. Clerc, L. Bougrain, and F. L. (eds). Brain-Computer Interfaces.
Vol. 1-2. ISTE-Wiley, 2016.

[4] S. Baillet, J. C. Mosher, and R. Leahy. “Electromagnetic brain map-
ping”. In: IEEE Signal Processing Magazine 18 (6 2001), pp. 14–30.

[5] J. T. Lindgren. “As above, so below? Towards understanding inverse
models in BCI”. In: Journal of Neural Engineering 15.1 (2017).

[6] W. J. Kaufmann and L. L. Smarr. Supercomputing and the Transfor-
mation of Science. New York, NY, USA: W. H. Freeman & Co., 1992.
isbn: 0716750384.

[7] D. Mourtzis, M. Doukas, and D. Bernidaki. “Simulation in Manufac-
turing: Review and Challenges”. In: Procedia CIRP 25 (2014), pp. 213–
229. issn: 2212-8271.

[8] H. Markram et al. “Introducing the Human Brain Project”. In: Procedia
Computer Science 7 (2011). Proceedings of the 2nd European Future
Technologies Conference and Exhibition 2011 (FET 11), pp. 39–42.
issn: 1877-0509.

25

[9] F. Lotte et al. “A review of classification algorithms for EEG-based
brain-computer interfaces”. In: Journal of Neural Engineering 4.2 (2007).

[10] B. Graimann, B. Allison, and G. Pfurtscheller. “Brain–Computer In-
terfaces: A Gentle Introduction”. In: Brain-Computer Interfaces: Rev-
olutionizing Human-Computer Interaction. Ed. by B. Graimann, G.
Pfurtscheller, and B. Allison. Springer Berlin Heidelberg, 2010. Chap. 1,
pp. 1–27.

[11] F. Nijboer et al. “Usability of three electroencephalogram headsets for
brain-computer interfaces: a within subject comparison”. In: Interact-
ing with computers 27.5 (2015). Ed. by H. Gamboa et al., pp. 500–
511.

[12] G. Pfurtscheller et al. “EEG-based discrimination between imagina-
tion of right and left hand movement”. In: Electroencephalography and
Clinical Neurophysiology 103.6 (1997), pp. 642–651.

[13] M. Grosse-Wentrup et al. “Beamforming in noninvasive brain-computer
interfaces”. In: IEEE Transactions on Biomedical Engineering 56.4
(2009), pp. 1209–1219.

[14] M. Besserve, J. Martinerie, and L. Garnero. “Improving quantification
of functional networks with EEG inverse problem: Evidence from a
decoding point of view”. In: NeuroImage 55 (2011), pp. 1536–1547.

[15] P. L. Nunez and R. Srinivasan. Electric Fields of the Brain, 2nd edition.
Oxford University Press, 2006.

[16] L. H. Zetterberg and K. Ahlin. “Analogue simulator of e.e.g. signals
based on spectral components”. In: Medical and biological engineering
13.2 (Mar. 1975), pp. 272–278.

[17] A. Isaksson and A. Wennberg. “An EEG simulator—a means of ob-
jective clinical interpretation of EEG”. In: Electroencephalography and
Clinical Neurophysiology 39.4 (1975), pp. 313–320.

[18] B. Kemp and F. H. L. da Silva. “Model-based analysis of neurophysio-
logical signals”. In: Digital Biosignal Proessing. Ed. by R. Weitkunat.
Elsevier, 1991, pp. 129–155.

[19] B. Kemp et al. “Analysis of a sleep-dependent neuronal feedback loop:
the slow-wave microcontinuity of the EEG”. In: IEEE Transactions on
Biomedical Engineering 47.9 (Sept. 2000), pp. 1185–1194.

[20] D. Gutierrez, A. Nehorai, and C. H. Muravchik. “Estimating brain
conductivities and dipole source signals with EEG arrays”. In: IEEE
Transactions on Biomedical Engineering 51.12 (Dec. 2004).

26

[21] J. Yao and J. P. Dewald. “Evaluation of different cortical source lo-
calization methods using simulated and experimental EEG data”. In:
NeuroImage 25.2 (2005), pp. 369–382.

[22] A. Bradley et al. “Evaluation of Electroencephalography Source Lo-
calization Algorithms with Multiple Cortical Sources”. In: PLOS ONE
11.1 (Jan. 2016), pp. 1–14.

[23] D. A. Bridwell et al. “Spatiospectral Decomposition of Multi-subject
EEG: Evaluating Blind Source Separation Algorithms on Real and Re-
alistic Simulated Data”. In: Brain Topography (2016).

[24] S. Haufe et al. “A critical assessment of connectivity measures for EEG
data: a simulation study”. In: Neuroimage 64 (2013), pp. 120–133.

[25] F. Tadel et al. “Brainstorm: A User-Friendly Application for MEG/EEG
Analysis”. In: Computational Intelligence and Neuroscience 2011 (2011).

[26] R. Oostenveld et al. “FieldTrip: Open Source Software for Advanced
Analysis of MEG, EEG, and Invasive Electrophysiological Data”. In:
Computational Intelligence and Neuroscience (2011).

[27] A. Delorme et al. “EEGLAB, SIFT, NFT, BCILAB, and ERICA: New
Tools for Advanced EEG Processing”. In: Computational Intelligence
and Neuroscience, (2011).

[28] J. d. R. Millán et al. “Combining Brain–Computer Interfaces and As-
sistive Technologies: State-of-the-Art and Challenges”. In: Frontiers in
Neuroscience 4 (2010), p. 161.

[29] D. Boland et al. “Using Simulated Input into Brain-Computer Inter-
faces for User-Centred Design”. In: International Journal of Bioelec-
tromagnetism 13.2 (2011), pp. 86–87.

[30] D. A. Rohani et al. “BCI using imaginary movements: The simula-
tor”. In: Computer Methods and Programs in Biomedicine 111.2 (2013),
pp. 300–307.

[31] C. Brunner et al. “Improved signal processing approaches in an of-
fline simulation of a hybrid brain–computer interface”. In: Journal of
Neuroscience Methods 188.1 (2010), pp. 165–173. issn: 0165-0270.

[32] F. Lotte. “Generating Artificial EEG Signals To Reduce BCI Calibra-
tion Time”. In: 5th International Brain-Computer Interface Workshop,
Graz. 2011, pp. 176–179.

[33] M. Tangermann et al. “Review of the BCI Competition IV.” In: Fron-
tiers in neuroscience 6 (2012).

27

[34] C. Brunner et al. “BCI software platforms”. In: Towards Practical
Brain-Computer Interfaces. Springer Berlin Heidelberg, 2013, pp. 303–
331.

[35] J. Lindgren and A. Lecuyer. “OpenViBE and Other BCI Software Plat-
forms”. In: Brain–Computer Interfaces 2: Technology and Applications.
John Wiley & Sons, 2016.

[36] Y. Renard et al. “OpenViBE: An Open-Source Software Platform to
Design, Test and Use Brain-Computer Interfaces in Real and Virtual
Environments”. In: Presence : teleoperators and virtual environments
19.1 (2010).

[37] J. Mellinger and G. Schalk. “BCI2000: A General-Purpose Software
Platform for BCI Research”. In: Toward Brain-Computer Interfacing.
Ed. by G. Dornhege and J. M. et al. MIT Press, 2007, pp. 372–381.

[38] R. Grech et al. “Review on solving the inverse problem in EEG source
analysis”. In: Journal of NeuroEngineering and Rehabilitation 5.25
(2008).

[39] A. Gramfort et al. “OpenMEEG: opensource software for quasistatic
bioelectromagnetics”. In: BioMedical Engineering OnLine 9.45 (2010).

[40] F. B. Vialatte et al. “Steady-state visually evoked potentials: Focus on
essential paradigms and future perspectives”. In: Progress in Neurobi-
ology 90.4 (2010), pp. 418–438.

[41] G. Pfurtscheller and C. Neuper. “Motor imagery and direct brain-
computer communication”. In: Proceedings of the IEEE 89.7 (2001),
pp. 1123–1134.

[42] R. Fazel-Rezai et al. “P300 brain computer interface: current challenges
and emerging trends”. In: Frontiers in Neuroengineering 5.14 (2012).

[43] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg. “Designing op-
timal spatial filters for single-trial EEG classification in a movement
task”. In: Clinical Neurophysiology 110.5 (1999), pp. 787–798.

[44] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, 2nd edition. Springer, 2008.

[45] R.-E. Fan et al. “LIBLINEAR: A library for large linear classification”.
In: Journal of Machine Learning Research 9 (2008), pp. 1871–1874.

[46] B. J. Edelman, B. Baxter, and B. He. “EEG Source Imaging Enhances
the Decoding of Complex Right-Hand Motor Imagery Tasks”. In: IEEE
Transactions on Biomedical Engineering 63 (1 2016), pp. 4–14.

28

[47] R. Pascual-Marqui. “Standardized low-resolution brain electromagnetic
tomography (sLORETA): technical details”. In: Methods Find Exp Clin
Pharmacol 24 (2002), pp. 5–12.

[48] A. J. Bell and T. J. Sejnowski. “An information maximisation approach
to blind separation and blind deconvolution”. In: Neural Computation
7.6 (1995), pp. 1129–1159.

[49] F. Cincotti et al. “High-Resolution EEG Techniques for Brain-Computer
Interface Applications”. In: Journal of Neuroscience Methods 167.1
(2008).

[50] R. Oostenveld et al. “FieldTrip: open source software for advanced
analysis of MEG, EEG, and invasive electrophysiological data”. In:
Computational intelligence and neuroscience 2011 (2011), p. 1.

[51] T. F. Oostendorp, J. Delbeke, and D. F. Stegeman. “The conductivity
of the human skull: results of in vivo and in vitro measurements”. In:
IEEE transactions on biomedical engineering 47.11 (2000), pp. 1487–
1492.

29

