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Abstract 

Due to its practical importance, the diagnosis of rolling element bearing has attracted constant interest in 

the scientific community. At the incipient stage of a failure, the measured vibration signal typically 

consists of a series of repetitive transients immerged in background noise. Although they are usually 

carried in high frequency bands due to the high stiffness of bearings, they are fairly weak compared with 
surrounding noise and other interfering signals. In addition, taking random slips and fluctuations into 

account, the transients produced by impacts are not strictly periodic but rather tend to be random 

cyclostationary. This makes the diagnosis of rolling element bearing quite challenging and, consequently, 
various signal processing techniques have been developed for either the detection, the identification or the 

extraction of the fault, whose combination asks for a high level of expertise of the user. The aim of this 

paper is to address all these objectives at once, in the same algorithm, by proposing a semi-automated 
method that requires the setting of only one parameter. It is rooted on a probabilistic model, in the form of 

a mixture of Gaussians, endowed with a hidden variable that indicates the occurrence of impacts. The 

method is shown to be optimal for detection in the Neyman-Pearson sense, it returns an envelope spectrum 

comparable to the best that can be obtained by other means – which often require a careful pre-filtering 
step – from which fault frequencies can be identified, and it eventually returns the fault signal from which 

subsequent severity/health indicators can be computed. There is almost no demand on the user’s expertise 

(apart from setting the frequency resolution), even though the method does not address the decision part. 
The performance is investigated on synthetic signals and its robustness is also verified on several vibration 

signals measured on test-rigs. Results are found superior or at least equivalent to those of the conventional 

semi-automated method based on the fast kurtogram in combination with the envelope analysis. 

Keywords: Automated diagnosis, repetitive transients detection, repetitive transients extraction, bearing 

faults, hidden Markov model, mixture of Gaussians, cyclostationary signals, non-stationary operating 

conditions. 

Highlights: 

A mixture of Gaussians model is introduced for rolling element bearing vibrations. 

The model allows semi-automated diagnosis of bearing faults without need for pre-processing. 

It is optimal in the Neyman-Pearson sense for detecting repetitive transients. 

It allows full-band reconstruction of transients in the time domain. 

It applies under general assumptions, including time-varying operating conditions. 
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1. Introduction 

Rolling element bearings are common but fragile components used in various types of mechanical 

systems, and thus a foremost cause of machinery breakdown. Typical bearing defects are caused by crack, 

breakage, spall or uneven wear (pitting, scuffing, abrasion, erosion), often located on the matting surface 
of the inner race, the outer race or the rolling elements. As the rolling elements strike a defect, a series of 

vibration transients occur at a specific rate corresponding to the bearing “characteristic frequency” or 

“fault frequency”. At the incipient stage, each transient resembles a damped impulse response with 
frequency content specified by the excited structural resonances. Due to the load distribution, the series of 

transients are additionally amplitude modulated by the passing period into and out of the load zone. 

Bearing fault signatures have been well-investigated and their characteristic frequencies are listed from 

given kinematic and geometric parameters [1-2]. Nevertheless, bearing fault signals are often masked by 
numerous extraneous sources of vibration, simply referred to hereafter as “background noise”, such that 

signal processing is necessary to recover the diagnostics information. Another difficulty arises from 

machines which do not operate in stationary conditions, such as wind turbines or crushers, which ask for 

even more advanced data processing.  

The diagnosis of rolling element bearings – as understood in the present paper – includes three main steps, 

whose chronological order actually coincides with their degree of difficulty: 1) detection of the fault, 2) 

identification of the fault and 3) extraction of the fault signal. Since they correspond to different goals, 

they are usually addressed by different signal processing tools. 

The detection of the fault is usually formulated as a problem of detecting the presence of a weak signal in 
background noise, ideally in the form of statistical test. In the case of bearing faults, the signal has a 

complex statistical structure – it is actually cyclostationary, i.e. non-stationary random with periodic 

statistics [3] – which sometime makes this task challenging. This step has nourished a vast literature on a 
variety of methods which nowadays probably culminate to their asymptote in terms of performance. Some 

typical tools are time-frequency analysis[4-6], wavelet analysis [7-9], the stochastic resonance [10,11], 

morphological analysis [12], the spectral kurtosis and the fast kurtogram [13], the spectral correlation 

[14,15], sparsity [16], etc. It must be said that in most of these methods the detection of a fault is done 
visually; few of them actually tackle the problem as a statistical test in terms of probabilities of detection 

and of false alarm.  

Next, the identification of the fault mainly consists in estimating the fault frequency and associating it to a 

given component in the machine. The prevailing method in the modern literature is surely the squared 
envelope spectrum (SES). The envelope spectrum is a mean to demodulate a non-stationary signal – of 

possible random nature, in particular cyclostationary– and identify periodic modulations related with the 

bearing characteristic frequencies [17]. In its most frequent version, the envelope is estimated by squaring 
the signal – or better, the modulus of the analytical signal – and its Fourier spectrum is then computed. 

The fact that the SES contains most of the diagnostic information can be justified theoretically by 

modelling the bearing fault signals as cyclostationary [18]. It is noteworthy that, in the cyclostationary 

framework, the SES can also be introduced as a statistics for fault detection [19]. However, the SES of the 
raw signal is rarely a good diagnostic indicator when used without pre-processing, because it is highly 

sensitive to the presence of background noise and other interfering components [18-22]. The conventional 

way to cope with this difficulty is to determine an optimal frequency band which maximizes the signal-to-
noise ratio (SNR) – i.e. the energy of the transients with respect to that of the background noise – before 

enveloping (incidentally, this is also theoretically required to properly define the “envelope” of a signal 

[23]). This issue has been well addressed and has led to the use of the SES in combination with different 

pre-processing tools apt to identify the optimal demodulation band, for instance rooted on the spectral 
correlation or, most frequently, on the spectral kurtosis – computed with the fast kurtogram– as an 

effective measure of the ‘impulsiveness’ hidden in a signal [1, 24, 25].The use of the kurtosis at this stage 

is further supported by the fact that it is related to the sum of the peaks in the SES divided by the zero-
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frequency SES [26]. A recent extension of the kurtogram, with similar goal but refined properties, is the 

infogram [27-29]. Other approaches – possibly used in conjunction with the latter ones– are based on first 

denoising the signals by various techniques before computing the SES [30, 31]. 

Although not strictly necessary for diagnosis, the final step consisting in extracting the fault signal is 
useful for assessing the severity of the fault and for designing health indicators for trending and for 

prognostics. From the signal processing point of view, this is yet a different task. One way to formulate 

the problem is as a blind deconvolution task, where the impulses due to the contact force on the defect are 
to be recovered from the measurements without knowledge of the impulse response [32-34]. A different 

and probably less ambitious approach is to recover the transients (i.e. the responses to the impulses) as if 

they had been observed in the absence of background noise [35-40].The former solutions actually require 

the use of sophisticated signal processing methods. A suboptimal solution justified by its simplicity is to 
extract an estimate of the fault signal by bandpass filtering with the optimal filter used in the computation 

of the SES. 

This brief tour of the state-of-the-art shows that bearing diagnosis often involve a combination of different 

signal processing methods which require a high level of expertise from the user. As a consequence, one of 
the current challenges is to develop a complete standalone diagnosis methodology that can be run without 

(or very limited) intervention of the user. This is referred to as automated diagnosis, or “semi-automated” 

to highlight the fact that even though the processing is fully automatic, the final decision is still taken by 

the end-user upon interpretation of the results. (Semi-) automated diagnosis of rolling element bearings 
has been addressed from two main points of view. The first one is by means of classification algorithms 

borrowed from the domains of data mining and machine learning. Although a large body of literature 

exists on the subject [41-47], it seems that the majority of the proposed solutions are confined to apply to a 
specific installation – on which a classifier has been trained –and cannot be transposed to data recorded on 

other systems which have not been incorporated in the learning set. The second point of view proceeds 

from the signal processing side and ambitions a greater generality than the first one, yet it also appears 
much more challenging. There is indeed a very limited number of publications on the subject and they 

rarely address all the aspects of the diagnosis methodology [48-54].One methodology which has proved 

quite successful is described in Refs. [1, 2, 55] and has been further elaborated in Refs. [56, 57]. It consists 

in first pre-processing the signal, typically by whitening, in order to enhance the presence of low-energy 
transients. Next, an optimal band for demodulation is found from the fast kurtogram, from which the SES 

is computed. Finally, the fault signal is estimated by bandpass filtering in the optimal band returned by the 

kurtogram. In its trimmest version (where whitening is achieved by cepstral editing [56]), the whole 
process requires only one parameter to set which is the decomposition depth of the kurtogram. In many 

instances, the latter can actually be set by default to a predefined value. More sophisticated versions 

essentially improve the pre-processing step by using other whitening schemes [58, 59] or blind 

deconvolution [60]. Eventually, statistical tests can be designed on the so-obtained SES by following the 

lines of Refs. [14, 61-63] in order to automatically detect a fault with a given probability of false alarm. 

The aim of the present work is to proceed with the objective of semi-automated diagnosis by using more 

advanced signal processing tools, while still simplifying the pre-processing step and keeping the number 

of tuning parameters to its minimum. A solution is proposed which addresses at once, in the same 
algorithm, the three goals of fault detection, fault identification and fault extraction. It is rooted on a short-

time-Fourier-transform (STFT) representation of the signal and therefore requires only one parameter 

setting corresponding the spectral resolution. As compared to the aforementioned methodology (whitening 
+ fast kurtogram + SES + filtration), it has the advantage of not requiring any pre-processing (e.g. before 

computing the STFT), of being optimal for detection – in the Neyman-Pearson sense – and of extracting a 

full-band version of the fault signal. It is also interesting as such since it achieves similar goals from a 

different way of processing the data and therefore offers a methodological diversity that is often desirable 

to improve the robustness of a diagnostic system. 
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The use of the STFT is justified because it captures well the time-frequency structure of a series of 

transients produced by a bearing fault. Since the objective is not to arrive at a visual detection, there is no 

critical limitation to expect from the uncertainty principle – e.g. as compared to other time-frequency 
representations, with better time-frequency localization, which have been advocated for diagnosis [5] – as 

long as the STFT returns the whole information contained in the analyzed signal, that is as long as it is 

invertible. In addition, the STFT is a linear transform that can be computed by means of very efficient 
algorithms and is therefore well suited to semi-automated diagnosis. The novelty of the present work is to 

endow the STFT coefficients of a bearing signal with a probabilistic model which switches between states: 

one where only background noise is observed and one where it is superposed with the occurrence of a 

transient. The label of the state is represented by a random latent variable which is encoded into a hidden 
Markov model (HMM). Since the STFT coefficients quickly tend in distribution to a complex-valued 

Gaussian in virtue of the Central Limit theorem [64], this is eventually formulated as a Gaussian mixture 

model. It thus happens that the value of the latent variable is related to a generalized likelihood ratio 
(LLR), from which a detection test can be designed that is optimal in the Neyman-Pearson sense – i.e. 

which maximizes the probability of detection of a fault for a given probability of false alarm. Besides, the 

Fourier transform of the LLR provides a spectrum which is in all point similar to the SES, yet obtained 
automatically without need for careful pre-filtering. Finally, after the GMM has been identified, the 

corresponding faulty state can be extracted as a byproduct and the corresponding time signal recovered by 

inverting the STFT. It is highlighted that the fault signal is extracted in full-band, contrary to the output of 

the fast-kurtogram. Ultimately, it is shown that the proposed approach is general enough to deal with non-

stationary operating conditions. 

It is noteworthy that HMMs have been proposed in 1970s as statistical modelsfor time series and so far 

they have been applied in a wide range of fields including speech recognition, computer vision, pattern 

recognition and many other areas. Numerous works based on HMMs have been reported in fault diagnosis 
during the last decade [65-74], however they are mainly concerned with the use of HMMs as classifiers 

[65-68, 74-75]and not for modelling the vibration signal itself as proposed in the present work. 

The paper is organized as follows. Section 2 first introduces the probabilistic model based on the STFT 

decomposition and next explains the inference of the model parameters by means of the EM (expected-

maximization) algorithm. Section 3 provides the semi-automated diagnosis methodology that addresses 
the issues of optimal fault detection by designing a generalized likelihood ratio test (GLRT), of fault 

identification by means of the Fourier spectrum of the LLR and of fault extraction by means of a time-

varying filter obtained from inverting the STFT. Section 4 addresses the important issue of parameter 
settings and of algorithm initialization which is hereafter verified by synthetic signals in section 5. Finally, 

section 6 validates the proposed methodology on several vibration signals and compare it with the 

reference methodology based on the (whitening + fast kurtogram + SES + filtration) sequence. 

 

2. Probabilistic model 

This section introduces the probabilistic model, its corresponding assumptions, and the inference of its 

parameters by the EM algorithm. 

 

2.1. Signal model and STFT decomposition 

Let      denote the measured signal in the time domain,      the part that contains the diagnostic 

information and      the background noise. By definition, the “informative signal”      and the “noise” 

     are assumed mutually independent. The measured signal is thus expressed by the additive model  

               . (1) 
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Although the background noise actually comprises multiple components, it intervenes in model (1) as a 

global noise process, (e.g. with an equivalent covariance matrix). It is noteworthy that its exact probability 

distribution is not needed at this stage, yet a fair (and widely accepted) assumption is to model it as 

stationary. In contrast, since      represents the fault signal in its early stage, it is well modelled by a 

series of impacts that repetitively excite resonances of the bearing and of its receiving structure, thus 

leading to successive damped impulse responses. Having a localized signature both in time and in 
frequency, such transients are well captured in a time-frequency decomposition, on the contrary to the 

stationary background noise     which is spread all over the time-frequency plane. Although several 

time-frequency decompositions are possible, the proposed approach only requires an invertible one. The 

STFT meets this property while being associated with efficient algorithmic implementations. In addition, 
due to the Central Limit Theorem applied to the DFT (discrete Fourier Transform), the coefficients of the 

STFT quickly tend in distribution to a complex-valued Gaussian [64], an assumption that will 

substantially simplify the probabilistic model introduced hereafter. It is noteworthy that the aim is to 
decompose the signal without loss of information in the time-frequency domain in which it will be 

processed; therefore, considerations such as the uncertainty principle will not matter because they are 

relevant to time-frequency representation (i.e. visual analysis), which is not of concern here. 

The STFT of signal      over a time interval of length    is defined as 

                        
      

    

  
    
    (2) 

where      denotes a positive and smooth   -long data-window which truncates a segment of the  -long 

signal      at time datum   (       ,                    ) with window shift R (1 <R<  ) 

and where         denotes the frequency (from 0 to     ) with frequency resolution        and 

bin index  = 1, …,    with          . 

It is noteworthy that         is related to the “instantaneous complex envelope” of the signal described in 
both time and frequency. More precisely, its squared magnitude reflects the energy flow which is mapped 

by time index   and frequency    centered in a narrow frequency band    [76]. 

The next subsection introduces a two-state HMM to account for the different probability distributions of 

the STFT coefficients depending on whether a transient is present or not. 

 

2.2. Hidden Markov model 

Hereafter, the STFT coefficients        are collected for all frequency bins at a given time instant i in a 

column vector                      
  

 

. Next,      is represented by a linear combination of   

components – whose events are assumed mutually exclusive – denoted by 

                        
  

 

and contaminated by a noisy component     . All components in the 

model are allowed to have different probability distributions and are controlled by a vector of latent 

variables,                    , each of which acting as a switch taking only values 0 or 1. Thus, the 

proposed model reads 

                    (3) 

where                    is a matrix consisting of   column vectors       and 

                     
  

 

. 
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a) One component case 

Let us first consider the simplest model with only one component of interest, that is 

                       (4) 

Since the latent variable       can take only two values, 0 or 1, with a given probability, say  , it follows 

(by definition)the Bernoulli distribution,                  : 

  
                

                      
   (5) 

Here         means the presence of noise only, i.e. “State 0:          ”, whereas        indicates 

the presence of noise and the signal of interest, i.e. “State 1:                          
          

              ”. This is recognized as a HMM with two hidden states.  

Let us now introduce the likelihood function, 

                   
                       

  , (6) 

where                                     ) denotes the circular-symmetric complex normal 

distribution with mean   and covariance matrix  which naturally arrives as a result of the Central Limit 

theorem applied to the STFT coefficients [64]. Without loss of generality, it is assumed that     (as 

obtained after first centering the signal). Although the covariance matrix   will be full in general, it has 

been observed in numerous cases that a diagonal structure provides an excellent approximation. Diagonal 
covariance matrices will therefore be assumed from now onwards, with the advantage of considerably 

limiting the number of unknowns in the model as well as providing a clear physical interpretation to the 

diagonal elements in terms of the instantaneous spectral density of signal y(t) (at time i). 

Meanwhile, all the unknown parameters of the proposed model are denoted as         
          . It is 

highlighted that the latent variables      are hidden in the sense that they are not observed directly. 
Assuming independent segments in the STFT, the complete log-likelihood function is evaluated from Eq. 

(6) as 

                          
    . (7) 

Developing further, one has 

      
                                                       

                (8) 

                                  
    

    (9) 

where it has been assumed that all states are apriori equally probable. 

The parameters   are next estimated by maximizing the above likelihood function. In theory, this 

completely solves the problem since the estimated latent variable      will then return the times of 
occurrence of the impacts on the faults and therefore the bearing characteristic frequency. Since it is 

difficult to find a closed-form solution, the EM algorithm [77] is used as an iterative method to find the 

maximum likelihood estimates. The EM algorithm makes use of the following quantities. 

First, the posteriori probability distribution of the latent variable is formed as 

                   
     

                  
            

            
    

. (10) 

According to Eq. (10), the expectation of the latent variable       given the measurement is then 

computed as 
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 (11) 

where      denotes      
 . After simple arrangement, this is expressed as 

                   
     

 

  
   

 
         

 (12) 

where     denotes the natural logarithm of the likelihood ratio between the component of interest and the 

noise as given by 

                
       

           
      

    
. (13) 

The EM algorithm is summarized in Table 1.It is noted that it involves two parameters:     for the 

maximum number of iterations and          for the expected relative tolerance between    
     

 and 

   
   

. These can be easily set by default. The estimation of the covariance of the signal of interest is finally 

obtained as    
             

 
where operator      keeps only the positive eigenvalues of a matrix 

(here the positive elements of a diagonal matrix). 

With these estimated parameters, an automatic fault detection scheme and a time-varying filter for 

filtering out the signal of interest are proposed in the next section. 
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Table 1 : Explicit steps of the EM algorithm to infer the parameters in the HMM. 

 

 

b) K-component case 

Let us now consider the general case with    components of interest,              . In this case, 

the probability that two (or more) components occur together will be assumed so small that such events 

will be disregarded(this may be seen as an extreme sparse representation where only one state is allowed 

at a time). Therefore, under the mutually exclusive assumption, the occurrence of the    state is defined 

as 

                                    (14) 

where         indicates the presence of the     signal      . The pure noise case – i.e.            
 } – is denoted as the        state. Thus, there is a total of     possible states in the model. 

Therefore, the marginal probability distribution treads 
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    (15) 

where the     latent variable follows the Bernoulli distribution,                     : 

  
               

             
 . (16) 

(Note that the latent variables are now dependent because of the mutually exclusive assumption.) 

The posteriori probability distribution then reads 

                  
              

                 
            

            
     

. (17) 

 

Assuming mutually exclusive states, the expectation of the     latent variable is thus 

                   
              

            
  

                
        

             
  

. (18) 

 

Figure 1 illustrates the situation with K = 2 components, which involves three states. 

 

 
 

Figure 1. Graphical model in the case of K = 2 components. 
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3. Proposed methodology 

This section now explains how the proposed HMM can be used for diagnosis. As explained in the 

introduction, the diagnosis tasks are divided into the detection, the identification and the extraction of a 

fault. 

 

3.1. Detection 

Being base on a Gaussian mixture model, the proposed probabilistic model easily lends itself to the 
formulation of a statistical detection test. This is formally stated by comparing two hypothesis, the null 

one, H0, corresponding to the situation where no transient is present in the signal and the alternative one, 

H1, where transients (and therefore a fault) are present. The test of hypothesis therefore literally reads 

  
                        
                          

  (19) 

or, in mathematical language, 

  
                                    

    
   

                                         
                     

    
   

  (20)  

 

An advantageous solution for testing H1 against H0 is by means of the generalized likelihood ratio test 

(GLRT). The principle is to take the ratio (or its logarithm) of the probability under H1 to the probability 

under H0– where all unknown parameters are replaced by their maximum likelihood estimates – and to 
reject the null hypothesis if the ratio happens to be greater than a certain value. The GLRT has the 

advantage of being optimal in the Neyman-Pearson sense, that is it maximizes the probability of detection  

(here of accepting H1 when there is actually a fault) for a given probability of false alarm (accepting H1 
when there is no fault). Another definite advantage of the GLRT in the present case is to come with a 

theoretical value for the threshold against which to compare the ratio.  

Using Eq. (20), the logarithm of the GLRT is 

       
                     

                        
    

   

              
    

   

 (21) 

    

 

   

        
           

   
  

    

    
   

    
               

   
  

    

        
   

             
   

  
           

    

 

   

 

 

where   ,    
   and     are the maximum likelihood estimates returned by the EM algorithm (see Table 1) 

and  

    
             

            (22) 

 

Because the hypotheses H0 and H1 are nested, it can be shown from Wilk’s theorem that, under H0, twice 

the logarithm of the GLRT follows a Chi2 distribution with number of degrees of freedom equal to the 

difference between the number of unknown parameters under H1 (1 for   ,    for    
   and    for    ) and 
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H0 (   for    
  ), viz 

          

   (23) 

Therefore, the test of hypothesis is 

Reject H0 if              
  

at the risk  (i.e. probability of alarm), where          
  is the quantile of the Chi2 with probability 1-. 

 

3.2. Identification 

As explained in the introduction, the main tool to identify a bearing fault is the envelope spectrum due its 

ability to estimate the bearing characteristic frequencies. In the proposed HMM, the LLR in Eq. (13) may 
be interpreted as the likelihood that a transient is present at any time datum i and its variation in time 

reveals the fault frequency. Therefore, the Fourier transform of the LLR turns out a valid alternative to the 

SES. Other quantities also contain the information on the fault frequency such as the latent variables      
and the logarithm of the GLRT in Eq. (21), yet it has been verified in numerous examples that the 

spectrum of the LLR is more accurate than the former and just as good as the latter while involving a 

simpler expression. One shared advantage of the LLR and GLRT is that they can capture subtle 
modulations of the transient magnitudes (as would typically happen when the fault is subjected a non-

uniform load distribution), which is less likely the case for the binary latent variable. 

 

3.3. Fault extraction 

As shown in this subsection, the fault signal can be reconstructed in full band based on the latent variables 

and the covariance matrices estimated in the HMM. First, let introduce the posterior probability 

distribution of the     signal of interest       as  

                                                 (24) 

The posterior probability density at a given frequency then reads 

                         
 

                        
 

   
      

           
 

   
     

     
        

     
 (25) 

where    
      and    

      stand for the noise and signal variance of the k
th

 component frequency   , 

respectively. After some manipulations, Eq. (25) is expressed as  

                         
 

             
      

 

  
     

   
     

               
        

       (26) 

with 

  
  

       
      

   
     

 
 

   
     

 
  

  
      

  
     

   
     

            

  (27)  

Therefore the expectation of the     signal of interest          is  



  

12 
 

                           
      

     

       
   

     

   
     

       . (28) 

Finally, the time signal        is obtained from Eq. (28) by using the inverse STFT. 

Two remarks are noteworthy. First, it is seen that Eq. (28) corresponds to a time-varying filter from which 

superior performance is expected than from a conventional time-invariant filter. Second, the standard 

Wiener filter appears as a particular case under the assumption of stationarity, that is 

                     
 

  
  

     

  
     

       , (29) 

where the latent variable       for all time instants. In other words, Eq. (29) corresponds to the case 

where “State 1:               ” occurs only.  

The detection, identification and extraction tasks will be extensively illustrated in the next sections. 

 

4. Parameter setting, algorithm initialization and validation 

This section is divided in two parts. The first one addresses the setting of the parameters of the STFT 
decomposition – which are the only ones not estimated in the proposed methodology – and in particular of 

the frequency resolution which is the only one that possibly requires an intervention by the user. The 

second part then addresses the initialization the EM algorithm by means of an effective data-driven 

approach.  

 

4.1. Parameter setting 

The parameters entering into the STFT are the window length    and the window shift   (see Eq. (2)) 

 

4.1.1. Window length    

The value of    directly controls the frequency resolution, 

         , (30) 

which characterizes the carrier frequency. It is required to cover at least the duration    of a transient, 

which implies the condition  

        . (31) 

As the STFT is subjected to the uncertainty principle,       , the highest switching frequency of the 

latent variable,       , is bounded upward by    [78]. Therefore the available range of the latent 

variable is limited by 

     . (32) 

Therefore,    should be taken short to allow a high switching rate in Eq. (32), but long enough to satisfy 

Eq. (31), i.e.                as illustrated in Fig. 2. 
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Figure 2: Illustration of how to select the window length    and shift   with respect to transient durations TI and 

cycle t. 

 

Other reasons for taking    small is to reduce the computation time required by the STFT and also to 

ensure sufficient segments for accurate parameter estimation. 

It is noticed here that the rule for setting    also works in the special case where the interval between 

adjacent transients    is close to the transient duration   . In other words, it is robust enough to balance 

the trade-off between a fine resolution and a high switching frequency of the latent variable. These facts 

will be further experimentally verified in subsection 4.3. 

 

4.1.2. Window shift   

There are two considerations for setting the window shift  : 

 first, for the STFT to be invertible, it is recommended to take at least    overlap with a Hanning 
window, 

 second, if inevitability is not required,   should be taken sufficiently small to keep enough 

diagnostic information while not increasing too much the computational cost and the dependence 

between adjacent segments; a typical choice is within     and    overlap with a Hanning 

window. 

 

Therefore, the window shift can be easily set by default. 

 

4.2. Initializing of the EM algorithm 

The EM algorithm generally requires a good initialization for two reasons. The first ones is to avoid being 
trapped in possible local maxima of the likelihood and the second one is to achieve a fast convergence 

speed. A simple self-running solution is given hereafter to obtain good initial values for the covariance 

matrices of the two states in the HMM. 

Initial estimates of the diagonal elements of the noise covariance matrix,    
   

    , are obtained by taking 

the median value of the natural logarithm of the squared magnitude of the STFT coefficients        with 
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respect to time instant  , i.e. 

    
   

                               . (33) 

This estimator is based on the fact that State 0 is characterized by a higher probability than State 1 so that 

the median in the above equation is almost unaffected by the occurrences of the fault. Besides, the initial 

estimate of the covariance matrix in State 1 is based on the extreme values of              .Specifically, 

let define the “deviation” 

      
 

  
              

  

    
 

 

  
                

    
 (34) 

and a threshold equal to a fraction of the maximum of     . Then, the sample set     is constructed by 

collected all indices i where      is found greater than . Hence, the diagonal elements of the covariance 

matrix in State 1 are estimated as 

      
   

     
 

  
                  (35) 

where    is the cardinal of set     . Finally,    
   

 is obtained as       
   

    
   

 
 

.The corresponding 

probability is initialized to 

       
    

 
. (36) 

It has been observed in numerous experiments that the proposed initializations are often quite close to the 
maximum likelihood estimates (global maximum)while allowing at the same time a fast convergence 

speed of the EM algorithm. This will be demonstrated in the next section. 

 

5. Validation on synthetic signals 

The section deals with a validation of the proposed methodology on synthetic signals. 

 

5.1.Cases 1&2: demonstration of parameter selection 

To demonstrate the performance of the proposed algorithm and its initialization, a synthetic signal is 

generated with a resonance frequency         Hz, which is further modulated by a relatively high fault 

frequency              Hz (           s, the sampling frequency is normalized as      

Hz). The synthetic signal is described as: 

                   
  
          (37) 

      
         

                 (38) 

where                     and                   account for the uncertainties on the 

arrival time and on the magnitude of the     transient, respectively. The white noise      is set to a SNR 

of      and the signal length is       samples. A second-order system is defined by Eq. (38), whose 

numerator and denominator coefficients are          and                       with       , 

respectively. Figure3 shows the spectrogram (magnitude of the STFT) of the raw signal whose record in 

time is displayed in Fig. 4 (a).The frequency resolution is set to             Hz and a default 

value of 85% is used for overlap (R = 20). 
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Figure 3. Spectrogram of the signal simulated in Case 1 with resonance frequency         Hz,        and fault 

frequency              Hz (           s,      ,     and SNR = -6dB). 

 

 

Figure 4. (a) Synthetic signal of Case 1with white noise (SNR = -6 dB). (b) Synthetic repetitive transients. (c) 

Deviation      (black line) with threshold (red dotted line) set to               with            .(d) Estimated 

latent variable      . 

 

Following Eqs. (33)-(36), one can initialize the parameters    
   

,    
   

 and       as shown in Fig. 5 (a).It is 

seen that the proposed initialization is simple and effective, even though the estimated spectrum of the 

signal of interest still contains a significant contribution from noise especially below 0.08 Hz. After 
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convergence of the EM algorithm, the estimation of the signal and noise spectra are close to the real 

values as can be seen in Fig. 5 (b). The very good estimation of the latent variable is verified in Fig. 4 (d). 

 

 

Figure 5. (a) Initialized spectra (diagonals of covariance matrices    
   

 and    
   

) (red line and blue asterisks) and (b) 

estimated ones from the EM algorithm (diagonals of covariance matrices    
     

 and    
     

) (red lines) together with 

the squared magnitude of the frequency response     (black dashed line and blue asterisks). 

 

The detection capability of the HMM is now checked by means of the statistical test introduced in section 
3.1. The same experience is repeated for several values of the signal-to-noise ratio (SNR) ranging from -

20dB to 0dB and different values of the frequency resolutioncorresponding to         
              . In each case, 500 hundreds realizations of the same signal (with different noise 
generations) are run. The signal length is 100,000 samples and the risk is set to 5%. The results are 

reported in Table 2. It is seen that the presence of the fault is detected for SNRs greater than or equal to -

16dBfor all frequency resolution up to 2
-8
 (SNRs even lower than this can be reached when the transient 

are lightly damped), which proves a certain robustness with respect to the latter parameter. It reduces to -

8dB when the frequency resolution decrease to 2
-9

 because it then becomes comparable to the fault 

frequency   . For frequency resolution smaller than    the fault could not be detected, which is consistent 
with the discussion of subsection 4.1.1. The results are also displayed in Fig. 6, which demonstrates that 

the proposed GLRT grows exponentially above the statistical threshold as the SNR increases. 

 

Table 2: parameters used in the detection test. 

        2-5 = 1/32 2-6 = 1/64 2-7 = 1/128 2-8 = 1/256 2-9 = 1/512 

          15 31 63 127 255 

N (STFT length) 19994 9994 4994 2558 1293 

Threshold          
  13 23 42 78 147 

SNR from which H0 is rejected -16dB -16dB -16dB -16dB -8dB 
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Figure 6. Evolution of the logarithm of the GLRT as a function of the SNR and the frequency resolution f = 1/Nw. 
The statistical threshold is marked by a dotted horizontal line corresponding to a risk of 5%. The red bullet indicates 

the SNR where the GLRT goes above the threshold, i.e. where the fault is detected. 

 

The same experiment is now carried on in order to check the effect of the initialization of the EM 

algorithm. The main parameter that governs initialization is the threshold  defined after Eq. (34). 

Different values are tested, i.e.     ,     ,     ,              , which are represented in Fig. 7 (a) 

together with the deviation     . Figure 7 (b) displays the corresponding estimates of the transient 

spectrum in State 1 (i.e. the diagonal of covariance matrix    
   

), which is probably the most difficult to 
obtain. It is seen that all initial estimates are very similar and also quite close the reference given by the 

squared magnitude of the frequency response     . A closer look around the resonance in the band        

to       actually shows that the initial estimation gradually improves when the threshold is increased. 

The normalized root-mean-square error (RMSE)                        
  

               
    

 
   is 

displayed in Fig. 8 as a function of the iteration number k in the EM algorithm. It evidences that the 

convergence speed of EM algorithm also increases with the threshold. For information, thetotal 

computational time in the case              is      CPU (Central Processing Unit) with a PC with i7-

3930K 3.20 GHz Processor. 

(a) (b) 

(c) (d) 
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Figure 7. (a) Deviation     (black line) with threshold (colored dotted lines) set to     ,     ,     ,     

          and (b) corresponding initialized spectrum (diagonal of covariance matrix   
   

) in colored lines together 

with the squared magnitude of the frequency response      (black dashed line and blue asteriks). 

 

 

Figure 8. Normalized root-mean-square error (RMSE) on        as a function of the iteration number of the EM 

algorithm (       and               on          ). 
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In order to verify the robustness with respect to the setting of the frequency resolution, a second synthetic 

signal is generated and analyzed with a deliberately coarse value of   . The resonance frequency is   
       Hz and the fault frequency              Hz. The frequency resolution is chosen as 

      (            Hz), which covers   integer multiples of    Hz but cannot resolve the 

resonance frequency   . The corresponding limit on the detection of the fault frequency is         
         Hz. All the other parameters are as in Case 1 (SNR = -6dB). Figure 9 shows the spectrogram 

of the raw signal. Since the modulation frequency is now close to the resonance one, this case encounters 
a trade-off between a fine spectral content and a large fault frequency range. After running the detection 

test, the GLRT     is found equal to 3703 which is much greater than the statistical threshold at the risk of 

5%,          
    . Hence the fault is detected without ambiguity. Figure 10 (a) displays the estimated 

LLR, which accurately localizes the fault occurrences: the function sharply takes very large values when it 

identifies a transient. Besides, the estimated latent variable       locates exactly all the STFT segments that 

contains a fault occurrence, as shown in Fig. 10 (b). To further identify the fault type, the spectra of the 
LLR and of the latent variable are displayed in Fig. 11 together with the SES of the actual fault signal 

(note that all spectra are normalized to a unit maximum and that the limit      is indicted by a vertical 

black dotted line). As explained in section 3, the spectrum of the LLR is preferred because it can capture 
modulations of the transient magnitudes which are not in the binary latent variable. It is indeed checked 

that the spectrum of the LLR in Fig. 11 (a) has a slightly larger extend than the spectrum of the latent 

variable in Fig. 11 (b). It is also noteworthy that the two spectra perfectly match the SES of the theoretical 

fault signal. Despite the coarse frequency resolution used in this case, this proves that the proposed 

method can still detect and identify the expected fault frequency with very good accuracy. 

 

 

Figure 9. Spectrogram of the signal simulated in Case 2 with resonance frequency           Hz,       and 

fault frequency              Hz (SNR = -6dB). 
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Figure 10(a) LLR(i)with the statistical threshold at the risk of 5%,          
    and (b) latent variable       in the 

time domain. 

 

 

Figure 11: Spectra of the LLR(blue line) (a) and of the latent variable (b) superimposed with the SES of actual fault 

signal (red dotted line). The limit               Hz is indicted by a vertical black dotted line(Normalization to 

unit maximum value). 
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5.2. Case 3: Separation of a mixture of independent transients 

This subsection demonstrates the potential of proposed HMM to deal with K = 2 simultaneous 

components in background noise. A synthetic signal with two different components is generated as shown 

in Fig. 12. The first component       has a resonance frequency   
       Hz with       and its 

cyclic frequency is  
           Hz (       

      samples), whereas the second one      has 

a resonance frequency   
       Hz with       and cyclic frequency  

           Hz (   
    

      samples) – see Fig. 12 (a) and (b), respectively. All other parameters are set as in Case 1, 

with  
             and   

       . The SNR is 0 dB. 

The spectrogram of the measurement computed with       and      (overlapping ratio      
     ) is shown in Fig. 13. The estimated diagonals of the three covariance matrices are displayed in Fig. 

14. It is seen that the spectra of all components are correctly identified. The corresponding latent variables 

      and       are displayed in Fig. 15. Compared with the reference signals, it is obvious that the times 

of occurrence of the two components have been correctly located. 

 

 

Figure 12(a) Component       with period        samples (  
         and   

     ).(b) Component       

with period        samples (  
         and   

     ).(c) Noisy measurement (SNR =  dB). 
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Figure 13. Spectrogram of the signal simulated in Case 3 with two components (       samples and        

samples respectively). 

 

 

Figure 14. Estimated spectra of component       (red solid line), component       (green solid line) and noise (blue 

dashed line). The squared magnitudes of the two frequency responses are indicated by black dashed lines. 
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Figure 15. (a) Estimated latent variable       (red solid line) together with the actual first component (black solid 

line). (b) Estimated latent variable       (green solid line) together with the actual second component (black solid 

line). 

 

Finally, Fig. 16 displays the reconstructed repetitive transients      and       as well as their summation. 

Very good reconstruction is obtained, which demonstrates the performance of the proposed algorithm. 

 

 

Figure 16. Reconstructed repetitive transients corresponding to (a) the first component       with period        

samples and (b) the second component       with period        samples. (c) Summation of two components 

      and      . 
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6. Validation on vibration signals 

This section illustrates the application of the proposed methodology on actual vibration signals, where the 

three goals of detection, identification and fault extraction are again addressed separately. It is also 

demonstrated that the proposed methodology applies to time-varying operating conditions (data captured 
during a run-up), as often encountered in industrial applications. Comparison are made with the reference 

semi-automated diagnosis method described in the introduction where the signals are first whitened, then 

processed with the fast kurtogram in order to estimate an optimal frequency band for computing the SES 

and finally the fault is extracted by bandpass filtering.  

 

6.1. Case 4: diagnosis of a ball fault 

Three typical types of fault (i.e. inner race, outer race and ball fault) are investigated in a dataset from the 
Vibrations and Acoustics Laboratory of the University of New South Wales (Sydney) [78]. The test-rig is 

a one-stage gearbox with primary and secondary shafts supported by ball bearings. Since it is often more 

difficult to identify a ball defect, particularly at incipient stage, this case is tested here. The spectrogram of 
the raw signal is displayed in Fig. 17. It is seen that there exists non-stationary components in the high 

frequency band above 10 kHz, whereas the low frequency range is dominated by high energy components 

related to the gearbox vibrations. 

 

 

Figure 17. Spectrogram (logarithmic scale) of signal of Case 4 (frequency resolution        Hz). 

 

The SES of the raw signal is displayed in Fig. 18. It is noted that there exists a relatively high value at the 

gearmesh frequency          Hz surrounded by shaft speed sidebands (        Hz) which originates 

from the gearbox. Clearly, the information of the bearing fault is completely masked by high-energy 

components from the gearbox in the SES. At this point, it is therefore important to resort to methods that 

automatically select frequency bands in the signal where the SNR is maximum. As stated in Ref.  [78], the 
fast kurtogram has proved a powerful fourth-order spectral analysis tool for detecting and characterizing 

impulses in a signal. The fast kurtogram is applied here with     decomposition levels in a    -binary 
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tree. As seen in Fig. 19, there exists several local maxima in the kurtogram. They are coherent with the 

spectrogram of Fig. 17 which evidences a clear non-stationary activity above 10 kHz. All the dyads with 

very high kurtosis values have been checked to have similar complex envelopes. Therefore one maximum 

is taken at 71.83 whose corresponding to the frequency band               Hz. The SES in that band is 

displayed in Fig. 20. It clearly reveals the even BSF (ball spin frequency) surrounded by modulation 

sidebands at cage speed (FTF).  

Next, the HMM model is estimated with the parameter settings listed in Table . The detection test returns 
a value of 171, 160 for the GLRT to be compared to a statistical threshold of 42 with a risk of 5%, which 

clearly concludes to the presence of a fault. Next, the LLR spectrum is displayed in Fig. 21. Comparing 

with Fig. 20, the LLR spectrum better enhances the odd harmonics of the BSF than the SES from the 

kurtogram, even if the diagnostics information is very similar in both cases.  

 

Table 3: Parameter settings in Case 4. 

Sampling frequency    (Hz) 48000 

Duration (s) 1.365 

      

  20 

Rotation frequency –      (Hz) 10 

Ball spin frequency – BSF (Hz) 26.11 

Fundamental train frequency – FTF (Hz) 4.08 

 

 

 

 
Figure 18: Squared envelope spectrum of the raw signal (normalized to unit maximum value). 
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Figure 19. Kurtogram of signal of Case 4 computed over     levels with a    -binary tree and a 8 coefficient 

prototype filter. Several local maxima are presented. One maximum is taken to the frequency band               
Hz. 

 

 

Figure 20. Squared envelope spectrum in frequency band               Hz returned by the kurtogram 

(normalization to unit maximum value). 
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Figure 21: Spectrum of the LLR with markers at the theoretical fault frequency and harmonics; the limit          

Hz is indicted by a vertical black dotted line(normalization to unit maximum value). 

 

Before extracting the fault signal in the time domain, it is interesting to display the noise and signal 

spectra (diagonals of the covariance matrices     and    
 ). It is seen in Fig. 22 that the two spectra cross 

around 8 kHz, which is consistent with the two frequency bands identified in the spectrogram of Fig. 17. 

This reflects the fact that the high energy vibrations of the gearbox dominate the lower frequency range, 

whereas the repetitive transients dominate the higher frequency range.  

 

Figure 22. Diagonals of covariance matrices (frequency resolution        Hz); the spectrum of the fault signal is 

indicated by a red solid line and that of the noise by a blue dashed line. 
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The capability of the proposed HMM method to reconstruct the full-band fault signal is now demonstrated 

and compared with the band-pass results obtained from the kurtogram.Figure23 (a) displays 1.36 s of the 

vibration signal and Fig. 24 (a) an enlarged view in the vicinity of a transient. The band-pass filtered 

signal in band               Hz is displayed in Fig. 23 (b) and its enlarged view in Fig. 24 (b); it 

clearly evidences the presence of transients with maximum SNR. The reconstructed signal from the 

proposed HMM-based time-varying filter is displayed in Fig. 23 (c) and its enlarged view in Fig. 24 (c). 
As compared to the filtered signal based on the kurtogram, the reconstructed signal achieves an exact 

location of the transients with their full-band spectral content. This may be used advantageously to better 

characterize the fault signature, infer the fault dimension and spectral content, and possibly update trend 

models for prognostics. 

 

 

Figure 23(a) Vibration signal of Case 4 and (b) band-pass filtered signal in the frequency band              Hz. 

(c) Full-band reconstructed fault signal from the proposed HMM-based time-varying filter. 
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Figure 24(a) Enlarged view of vibration signal of Case 4 (with indication of the period corresponding to the peak    

in Fig. 18) and (b) enlarged view of band-pass filtered signal in the frequency band               Hz. (c) 

Enlarged view of the full-band reconstructed fault signal from the proposed HMM-based time-varying filter. 

 

6.2. Cases5&6: diagnosis of bearing and gears 

Signal recorded on another test rigare now considered. The test rig mainly consists of an electric 

asynchronous motor, a rotary encoder, 4 accelerometer sensors, a speed variator, a driving gear with 45 

teeth, four bearings (3 healthy and 1 outer race fault) and two pinions (healthy and broken) – see Fig. 25. 

 

Figure 25. Test rig setup. 
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Two conditions are considered: 1) a damage bearing (outer race fault),and 2) a damage bearing (outer race 

fault) and a damaged gear together. It is highlighted here that the hole seen on the flank of the bearing in 

the upper right part of Fig. 25 is not the fault, but a through-bore used to seed a defect on the outer race. 

The actual size of the defect is about 2mm. 

To demonstrate the effectiveness of the proposed method, two tests are considered hereafter: Case 

5involvesa damage bearing (outer race fault) in cooperation with almost new gears and Case 6relates to 

the combination of the outer race fault and the broken pinion connected to the driving gear. The parameter 

settings for the HMM are listed in Table . 

 

Table 4: Parameter settings in Case 5 and Case 6. 

 Case 5 Case 6 

Sampling frequency    (Hz) 51200 

Duration (s) 10 

      

  45 71 

Main shaft rotation frequency –        (Hz)                     

Secondary shaft rotation frequency –        (Hz)              

            

             

            

 

a) Analysis of Case 5 

The detection test returns a value of 392,330 for the GLRT to be compared to a statistical threshold of 42 

with a risk of 5%, which clearly concludes to the presence of a fault. Figure 26 shows the spectrum of the 

LLR which indicates the harmonic structure of the suspected fault frequencies BPFO (Ball Pass 
Frequency on the Outer Race). Meanwhile the repetitive transients (characterized by the fault 

frequency),and the residual noise are separated from the raw signal as shown in Fig. 27. 
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Figure 26: Spectrum of the LLR with markers at the suspected fault frequencies BPFOand its harmonics 

(normalization to unit maximum value). 

 

 

Figure 27(a) Vibration signal of Case 6 divided into (b)the full-band reconstructed fault signal      from the 

proposed HMM-based time-varying filter and (c) the noise (residual) signal (                ). 
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b) Analysis of Case 6 

Using the same test rig and the same parameter settings, a compound source of vibration that contains gear 

and bearing faults together is diagnosed in Case 6. The detection test returns a value of 117, 640 for the 

GLRT to be compared to a statistical threshold of 42 with a risk of 5%, which concludes to the presence of 
a fault. Figure28 shows the spectrum of the LLR which reveals the harmonics of BPFO and the harmonics 

of the secondary shaft (      ), thus demonstrating the simultaneous presence of the outer race defect and 

of the gear defect. The extracted transients – signal      –and the residual noise –       – are displayed in 

Fig. 29 and their respective SES’s in Fig. 30. Since the bearing fault has a transient nature it is recovered 

in       whereas the gear fault has a more stationary nature (with slight modulations) that is recovered in 

     .  

 

 

Figure 28: Spectrum of the LLR with markers at the suspected fault frequencies BPFO, its harmonics and        

(normalization to unit maximum value). 
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Figure 29 (a) Vibration signal of Case 6divided into (b) the full-band reconstructed fault signal      from the 

proposed HMM-based time-varying filter and (c) the noise (residual) signal (                ). 

 

 

Figure 30. Squared envelope spectrum of (a) the vibration signal of Case 6, (b) the full-band recovered time signal 

and (c) the noise (residual) signal (normalization to unit maximum value). 
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6.3.Case 7: diagnosis of bearing in non-stationary operating conditions 

This subsection illustrates the potential of the proposed methodology in variable operating conditions. A 

runup of      from      to       has been manually produced with the test rig of Fig. 25. The 

instantaneous speed is displayed in Fig. 31 (a) and the corresponding acceleration signal in Fig. 31 (b). 
The latter undergoes speed-dependent variations in magnitude and phase. Since it places no constraint on 

the distribution of the time instants of the impacts, the HMM can in theory cope with machine signals 

recorded in time-varying operating conditions. However, in order to account for the speed-dependent 
variation of the probability distribution of the states, the whole signal is divided into consecutive speed 

segments of 12 rotations as suggested in Ref. [79]– see Fig. 31 (c). Then, the parameters of the HMM are 

estimated separately on each segment. The probability of State 1 in the five operating conditions takes the 

following estimates:   0.28, 0.30, 0.30, 0.33 and 0.37. 

The detection test returns values of consecutive speed segments, i.e. 749,520, 195,640, 161,570, 155,220 
and 339,850 for the GLRT to be compared to a statistical threshold of 42 with a risk of 5%, which 

concludes to the presence of a fault. 

Figs. 32-33 display the raw signal on a few selected segments together with the corresponding 

reconstructed transients. It is seen that the transients are all well identified, although their behavior slightly 

changes with the rotation speed: the 4
th
 segment corresponding to a speed around 20Hz exhibits the 

cleanest signature of the fault. 

 

 

Figure 31.(a) Estimated instantaneous speed of signal in Case 7 and (b) its corresponding acceleration signal which 

undergoes speed-dependent magnitude modulation.(c) Division of the estimated instantaneous speed in 5 operating 

conditions. 
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Figure 32. (a) Raw signal in operating condition No. 2 and (b) the corresponding reconstructed transients from the 

HMM-based time-varying filter; (c) raw signal in operating condition No. 3 and (d) the corresponding reconstructed 

transients from the HMM-based time-varying filter. 

 

 

Figure 33. (a) Raw signal in operating condition No. 4 and (b) the corresponding reconstructed transients from the 

HMM-based time-varying filter; (c) raw signal in operating condition No. 5 and (d) the corresponding reconstructed 

transients from the HMM-based time-varying filter. 
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The identification of the fault characteristic frequency requires specific processing under non-stationary 

operating conditions. Since the defect impacts occur periodically with respect to the angular position, its 

frequency is to be computed in the order domain [80]. Therefore, the phase-corrected STFT in Eq. (2) 
have been resampled (using cubic splines interpolation) from the time to the angular domain, while 

maintaining a constant spectral bandwidth. The order spectrum of the LLR has then been computed on the 

resampled data. As seen in Fig. 34, it clearly reveals the presence of the Ball Pass Order on the Outer race 

(BPOO). 

 

 

Figure 34. Order spectrum of LLR with markers at the suspected fault frequency BPOO and its harmonics 

(normalization to unit maximum value). 

 

6.4. Case 8: diagnosis in the presence of multiple components 

In order to demonstrate the performance of the HMM in the case of multiple-components, the dataset 
supported by the Department of Mechanical Engineering of Curtin University (Bentley) and made 

available online(http://data-acoustics.com/measurements/bearing-faults/bearing-1/) has been used. It 

corresponds to radial vibration measurements taken on the bearing housing of the SpectraQuest Machinery 
Fault Simulator test rig with a known outer race bearing fault. This case is interesting since there exists 

two different probabilities of states, as shown in Fig. 35. Their corresponding spectrograms are displayed 

in Fig. 36. Table  presents the parameter settings used in Case 8. 

 

Table 5: Parameter settings in Case 8. 

Sampling frequency    (Hz) 51200 

Duration (s) 10 
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  45 

Rotation frequency –      (Hz) 29 

Ball pass frequency, outer race – BPFO (Hz) 103.6 

Ball pass frequency, inner race – BPFI (Hz) 157.4 

Fundamental train frequency – FTF (Hz) 11.5 

Ball (roller) spin frequency – BSF (Hz) 67.3 

 

 

Figure 35. Measured signal(a) from 0 to 2.5s and (b) from 2.5 to 5s withevidence of interfering components in time 

interval       s. 
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Figure 36. Spectrogram (logarithmic scale) of signal of Case 8 with evidence of two states: (a) global distribution 

with spectral content in band               and (b) local distribution with spectral content in band               and 

          . 

 

It is seen that two families of transients occur with different frequency contents. The proposed multiple-

component model introduced in Section 2.2 has thus been used with K = 2. The estimated probabilities 

are   = 0.634 (noise only),      0.029 and      0.337 for States 0, 1 and 2.Figure 37displays the 

estimated diagonals of the corresponding covariance matrices. The noise spectrum is found fairly flat, 

whereas the first component has a high energy around               and            and the second 

component has its energy concentrated around              . The spectrum of the LLR of the second 

component      reveals the BPFO of a bearing fault, i.e.          Hz, while that of the first component 

     shows some smeared component in the low frequency, around          and         Hz (see 

Fig. 38). 
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Figure 37. Diagonals of covariance matrices of the three components,      (red solid line),       (green solid line) 

and noise (blue dashed line). 

 

 

Figure 38. Spectra of the LLR of the two components: (a)      and (b)      , respectively (normalization to unit 

maximum value). 

 

The reconstructed components are displayed in Fig. 39 and 40 in intervals                             . 

While the bearing fault is identified (f3 = BPFO) in the second component      , the first component 
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      corresponds to transients that occur in the second time interval only; since their frequency    

happens to be about twice the cage speed, it might indicate that the bearing is also misaligned.  

 

 

Figure 39. (a) Measured signal from 1.9 to 2.3s. Reconstructed components (b)       and (c)       from the HMM-

based time-varying filter. 

 

 

Figure 40. (a) Measured signal from 3.45 to 3.85s. Reconstructed components (b)     and (c)      from the HMM-

based time-varying filter. 
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7. Conclusion 

The HMM provides a versatile tool for characterizing the non-stationarity of a signal from its second-

order statistics only, regardless of operating speed. 

This paper has introduced a new stochastic model for representing the vibration signature of bearing faults 

in their incipient stage, when they have the typical form of a series of transients overlaid with stationary 
background noise. It is based on a HMM with intermittent switches between states characterized by 

Gaussian distributions with different covariance matrices. The main goal of the model is to provide a 

semi-automated diagnosis method that can handle at the same time the tasks of fault detection, fault 

identification and fault extraction. As compared to other semi-automated diagnostic solutions, the 
proposed one provides several advantages: first, the detection test is optimal in the Neyman-Pearson 

sense, second the spectrum of the LLR – a quantity equivalent to the SES– does not require pre-

processing, and third the extraction of the fault signal is full-band and based on a time-varying filter 
superior to alternative stationary filters. The performance of the proposed method has been demonstrated 

on several vibration signals from test rigs (gear and bearing). Superior or equivalent results to the 

conventional methodology based on the fast kurtogram and envelope analysis and have been observed in 
all cases. Results are clearly superior in terms of reconstruction of the fault signal when compared to 

conventional band-pass filtering. The proposed model also deals with the case where there exists multiple 

components and with signals acquired under non-stationary operating conditions of the machine. The 

proposed methodology requires the setting of only one parameter, the frequency resolution; it has been 
verified to be quite robust in this respect provided that the frequency resolution is set greater than the 

potential fault frequencies. The performance is however based on the validity of the stochastic model and 

there might be cases which cannot be represented by the latter; in particular, a marked limitation, is that 
the proposed HMM applies only to incipient/localized faults with a transient nature. Nevertheless, the 

methodology introduced in the paper may open the way to the proposal of other types of stochastic models 

that can capture fault configurations not covered in the present work. 
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Highlights  

 

 A mixture of Gaussians model is introduced for rolling element bearing 

vibrations. 

 The model allows semi-automated diagnosis of bearing faults without need 

for pre-processing. 

 It is optimal in the Neyman-Pearson sense for detecting repetitive transients. 

 It allows full-band reconstruction of transients in the time domain. 

 It applies under general assumptions, including time-varying operating 

conditions. 
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